Appendix 1: Course materials

Instructor Materials

Learning Objectives

- Reflect on the potential implications of environmental NTM being present in the local environment.
- Demonstrate safe and effective laboratory techniques.
- Describe MinION sequences and how it can be used to answer research questions.
- Be able to identify sequence mutations and predict the functional implications on the protein.

Safety Issues

Student protocols were designed to avoid contact with any harmful reagents or biological components.

Master Supply List

A list of supplies and catalogue numbers is provided below. The curriculum was designed to use only equipment found in a typical microbial teaching laboratory and materials available from Oxford Nanopore Technologies (ONT). In addition, minimal computational resources are required.

Bacterial Isolates

- 400µg High Molecular Weight DNA (per sample)
 - See Sample Collection and DNA Isolation Protocol below

DNA library preparation

- Pipettes: P10 recommended; P2 (optional)
- Thermocycler
 - Alternative: two heat blocks, one set to 30°C and the other set to 80°C
- Ice bucket with ice for incubation
- Microfuge

- Timer
- Rapid Barcoding Kit
 - ONT SQK-RBK004
- Nuclease-free water (7.5µl per sample)
- Tubes (1 per sample + 1 per library)
 - 1.5ml Eppendorf DNA tubes or 0.2ml PCR tubes depending on thermocycler/heat block size

Sequencing

- MinION device
 - o ONT MIN-101B (MinION Mk1B)
- Flow Cell
 - ONT FLO-MIN106 or ADP-FLG001
- Flow Cell Priming Kit
 - ONT EXP-FLP002
- Flow Cell Wash Kit
 - ONT EXP-WSH003
- Vortex
- Pipettes: P10, P20, P200, and P1000
- Nuclease-free water (4.5µl per library)
- Tube (1 per library)
 - 1.5ml Eppendorf DNA tubes or 0.2ml PCR tubes depending on thermocycler/heat block size
- Computer
 - USB3 port or adapter
 - o 16GB RAM
 - 1 TB internal storage
- MinKNOW software to control MinION device
 - See current system requirements as these may change
- Alternative: ONT MinION Mk1C
 - The MinION device, Computer, and MinKNOW software can be substituted for the MinION Mk1C. This is an all-in-one device that controls the sequencing run and displays results.
- iPads for streaming (optional)

Post-Sequencing Analysis

- Basecaller
 - There are several options for basecalling and each has different system requirements. The MinKNOW software (run from a computer or the MinION Mk1C) offers a fast-basecalling option for immediate results. External Guppy

software offers high-accuracy basecalling for improved results. Guppy can be run on CPUs but this can be very slow so a NVIDIA GPU-based system is recommended. Compute resources may also be accessed through Amazon Web Services (AWS), Google Cloud Platform (GCP), EPI2ME, or other cloud-based platforms.

- Assembler
 - Many assemblers are available. For long-read only assembly, we recommend Canu. If Illumina data is also available, we recommend hybrid assembly with Unicycler.

Bioinformatics Tutorial

- Computers for students
- Internet access

Methods

Bioinformatics Tutorial

There are many different types of analysis that can be performed after DNA sequencing. The purpose of this tutorial is to introduce students to gene identification, sequence alignment, and protein visualization.

The tutorial titled "Nontuberculous mycobacteria: A Genetic Analysis using Online Bioinformatics Tools" can be accessed at <u>http://www.stronglab.org/ntmlesson/</u>.

Handouts

Instructor and student handouts can be found below. We recommend that the Bioinformatics Tutorial be distributed to students digitally to allow students to copy and paste the provided sequences.

MinION Sequencing Lab Protocol Overview Rapid Barcoding Kit¹

Protocol step	What's actually happening				
Testing the pore activity of the flow cell using the MinKNOW software.	The MinION detects which nanopores on the flow cell are available by sequencing DNA test fragments that are present in the storage buffer. The minimum number of available pores recommended is 800.				
Barcoding the DNA in each library separately	Each piece of genomic DNA within a library is enzymatically cleaved and a pre-assigned barcode is attached to each end of every resulting fragment.				
	transposase + barcodes genomic DNA				
Pooling the samples	Each barcoded library is then combined in equal proportions to be processed and sequenced together on a single flow cell.				
Attaching the sequencing adapters	An enzyme attaches sequencing adapters to each end of every barcoded DNA fragment. A single motor protein comes pre-attached to each sequencing adapter.				
	motor protein + sequencing adaptor + barcode + DNA				
Priming the flow cell	The flow cell must be primed to receive the final DNA sequencing library. This step removes the storage buffer and provides ATP for the motor proteins.				
Preparing the final DNA sequencing library	The barcoded, pooled and adapted DNA is then mixed with loading beads, which help to distribute the DNA fragments evenly across the sensor array during loading.				
Loading the DNA library	The final library is loaded directly onto the sensor array for sequencing.				

¹ Adapted for use with Oxford Nanopore Technology's Rapid Barcoding Kit (<u>SQK-RBK004</u>)

Key Terms

Nanopore: A synthetic transmembrane channel through which one strand of each DNA fragment to be sequenced passes. Characteristic changes in the electrical field induced by each passing base are detected and recorded by the MinION sequencer.

Flow cell: A piece of nanotechnology which contains an array of nanopores upon which DNA samples to be sequenced are loaded. It transmits the electrical signals from the nanopores to the MinION sequencer.

Library: A sequencing library consists of all the DNA fragments originating from a single sample that will be sequenced simultaneously. A "pooled" or "multiplexed" library consists of all the DNA fragments originating from multiple source libraries that are combined in order to be sequenced simultaneously.

Barcode: A sequence of DNA manufactured to be unique enough that, when attached to a subset of DNA fragments within a pooled library, can be used to algorithmically sort the resulting sequences into their original source libraries.

Multiplexing: Combining multiple libraries to be sequenced simultaneously on a single flow cell.

Sequencing adapter: A sequence of synthetic DNA which attaches to each barcoded DNA fragment and allows the fragment to interface with the nanopore.

Motor protein: A protein attached to each sequencing adapter, and therefore to each DNA fragment to be sequenced, which ratchets one strand of the DNA fragment into the nanopore one base at a time.

¹ Adapted for use with Oxford Nanopore Technology's Rapid Barcoding Kit (<u>SQK-RBK004</u>)

Teacher's Prep Guide

Required equipment and reagents:

- Micropipettes and tips
- MinION device and flow cell*
- Computer with <u>MinKNOW software</u>
- Thermocycler
- Lo-Bind Eppendorf tubes
- PCR tubes
- Molecular biology grade water
- Ethernet or wifi

* Included in the MinION Basic Starter Pack

Recommended equipment:

- Vortex
- Microcentrifuge
- DNA quantification system (i.e. Qubit)

Required kits:

- Oxford Nanopore Rapid Barcoding Kit (<u>SQK-RBK004</u>)
- Oxford Nanopore Flow Cell Priming Kit (<u>EXP-FLP002</u>)*

Pre-lab preparation:

- Source high molecular weight genomic DNA from one or more microbial cultures. If extracting DNA from generic microbial cultures, we recommend using a commercial kit optimized for soil or stool (i.e. <u>Machery-Nagel</u>).
- Quantify the DNA to obtain its concentration. The minimum concentration needed for this workflow is around 50 ng/µL per library.
- For detailed equipment and reagent handling procedures, refer to the <u>Oxford Nanopore</u> <u>Community</u> (free customer account required) for manufacturer protocols. The 'Āina-Informatics protocols provided here are abridged for student use.

Set your stations:

- The number of student stations will depend on the number of libraries you intend to prepare. These protocols are optimized for 3 or fewer libraries.
- For each station:

P-10 or P-20 micropipette and tips	1
Molecular biology grade water	>10.0 µL
Genomic DNA sample	>7.5 µL
PCR tube	1
Fragmentation Mix RB01-12 (one per station)	1 tube

You are now ready to begin library preparation for a multiplexed MinION whole genome sequencing run.

¹ Adapted for use with Oxford Nanopore Technology's Rapid Barcoding Kit (<u>SQK-RBK004</u>)

MinION Sequencing Library Preparation Protocol Rapid Barcoding Kit¹

Step	Protocol Action			What's actually happening
Testin	g pore activity of t	the flow cell		
1	Connect the MinION to the computer and install the flow cell. Using the MinKNOW software, run a pore test experiment.			The MinION detects which pores are actively sequencing using DNA test fragments in the storage buffer.
Fragm	nent the genomic I	ONA and attach th	e barcodes	
2	In a small PCR tube, prepare the following recipe for each library :			Each DNA barcode is attached to a transposase, an enzyme which can cleave
	Reagent		Volume	your genomic DNA into fragments, and then attach
	400 ng genomic DNA		7.5 µL	the barcode sequence to the
	Fragmentation M for each sample)	ix RB01-12 (one	2.5 µL	fragment.
	Total		10.0 µL	
3	Using a thermocyc following temperat	cler, incubate the re tures:	eaction at the	The transposome is activated by raising the reaction temperature to 30 °C. The
	Temperature	Duration		enzyme is then deactivated at 80 °C, and the product is
	30 °C	1:00 min		preserved by holding the temperature at 4 °C
	80 °C	1:00 min		
	4 °C	HOLD		

¹ Adapted for use with Oxford Nanopore Technology's Rapid Barcoding Kit (<u>SQK-RBK004</u>)

Pool t	Pool the barcoded samples					
4	In a 1.5 mL Eppendorf tube, combine equal volumes of each library for a total volume of 10 μL .	Running multiple libraries together on a single flow cell, or multiplexing , makes the most efficient use of the flow cell.				
Attach	the sequencing adapters					
5	To your DNA, add 1 μL of Rapid Adapter (RAP) . Mix gently by flicking the tube, and spin down. Incubate the reaction at room temperature for 5 min .	Each sequencing adapter comes pre-attached with a single motor protein. An enzyme attaches an adapter to each end of every barcoded fragment of DNA in your reaction.				
Continue on to priming and loading the flow cell						

Key Terms

Library: A sequencing library consists of all the DNA fragments originating from a single sample that will be sequenced simultaneously. A "pooled" or "multiplexed" library consists of all the DNA fragments originating from multiple source libraries that are combined in order to be sequenced simultaneously.

Barcode: A sequence of DNA manufactured to be unique enough that, when attached to a subset of DNA fragments within a pooled library, can be used to algorithmically sort the resulting sequences into their original source libraries.

Multiplexing: Combining multiple libraries to be sequenced simultaneously on a single flow cell.

Sequencing adapter: A sequence of synthetic DNA which attaches to each barcoded DNA fragment and allows the fragment to interface with the nanopore.

Motor protein: A protein attached to each sequencing adapter, and therefore to each DNA fragment to be sequenced, which ratchets one strand of the DNA fragment into the nanopore one base at a time.

Loading the MinION Flow Cell Protocol¹

Step	Protocol Action	What's actually happening	
Prime	the MinION flow cell		
1	Prepare the Priming Mix by adding 30 µL (Tether (FLT) directly into 1 tube of Flush B Mix by vortexing.	This Priming Mix contains ATP which powers the motor protein.	
2	Open the priming port . Set a P-1000 pipette to 200 µL and insert th the <u>priming port</u> . Using the pipette wheel, d small amount of storage buffer into the pipe	This step is to remove any air, which is damaging to the nanopores in the sensor array , from the priming port.	
S	Slowly load 800 μL of the Priming Mix in th <u>priming port</u> , avoiding the introduction of air Wait 5 min .	The Priming Mix forces the yellow storage buffer off the sensor array and into the waste channel.	
Prepa	re the library for loading onto the flow cel	I	
4	In a 1.5 mL Eppendorf tube, prepare the library for loading according to the following recipe:		The Loading Beads settle quickly and must be resuspended immediately
	Reagent	Volume	before use. The beads help to distribute the DNA
	Sequencing Buffer (SQB)	34.0 µL	fragments evenly across the sensor array during the
	Loading Beads (LB), mixed before use	25.5 µL	loading process.
	Nuclease-free water	4.5 µL	
	Prepared DNA library	11.0 µL	
	Total 75.0 μL		

¹ Adapted for use with Oxford Nanopore Technology's Flow Cell Priming Kit (<u>EXP-FLP002</u>), which is included with the Rapid Sequencing Kit (<u>SQK-RAD004</u>) and the Rapid Barcoding Kit (<u>SQK-RBK004</u>).

Comp	lete the final step in priming the flow cell	
5	Gently lift the SpotON sample port cover . Slowly load 200 µL of the Priming Mix into the <u>priming port</u> , pausing for buffer coming up from the SpotON port to recede before loading more.	This step ensures that when the library is loaded, it is continuous with the Priming Mix, and therefore no air is introduced into the flow cell.
Load 1	the DNA library	
6	Mix the prepared library by gently pipetting up and down to resuspend the loading beads. Add 75 µL of your prepared library in a drop-wise fashion into the <u>SpotON sample port</u> , ensuring that each drop flows into the port before adding the next. Return the SpotON sample port and priming port covers to their closed positions.	Your sample is now in contact with the nanopores in the sensor array and can be sequenced.
Start t	he sequencing run	
7	In the MinKNOW software, begin the sequencing run by providing a run ID, sample ID, library prep kit information and a location for data storage. Select fast basecalling and barcoding options if applicable.	The software will begin detecting the electrical signals generated by bases passing through each active pore and send the data to the cloud for basecalling.

Parts of a MinION Flow Cell

Washing the MinION Flow Cell Protocol¹

Step	Protocol Action	What's actually happening				
Prepa	Prepare the flow cell wash mix					
1	If sequencing is still ongoing, note the nur active pores in MinKNOW and stop data a In a 1.5 mL Eppendorf tube, prepare the F Wash Mix according to the following recip pipetting and store on ice until needed.	The Flow Cell Wash Mix contains DNase I, an enzyme that digests double-stranded DNA, diluted in a buffer which maximizes the activity of DNase I.				
	Reagent	Volume	This solution will remove any remaining DNA on the			
	Wash Mix (WMX)	2.0 µL	sensor array from the previous sequencing run.			
	Wash Diluent (DIL)	398.0 µL				
	Total	400.0 μL				
Remo	ve waste from the flow cell waste chann	el				
2	With both the priming port and SpotOn port closed, use a P-1000 pipette to remove all the fluid in the waste channel from waste port 1 .		This step should only remove fluid from the waste channel, not from the sensor array.			
Flush	the previous libraries from the flow cell	sensor array	,			
സ	Open the <u>priming port</u> . Set a P-1000 pipette to 200 μ L and insert the tip into the <u>priming port</u> . Using the pipette wheel, draw back a small amount of fluid into the pipette tip.		This step is to remove any air, which is damaging to the nanopores in the sensor array, from the priming port.			
4	Slowly load 400 μ L of the Flow Cell Wash Mix in through the priming port, avoiding the introduction of air bubbles. Close the priming port and wait 60 min.		The Flow Cell Wash Mix digests up to 99.9% of the DNA from the previous run.			

¹ Adapted for use with Oxford Nanopore Technology's Flow Cell Wash Kit (<u>EXP-WSH004</u>).

Remo	emove waste from the flow cell waste channel				
5	With both the priming port and SpotOn port closed, use a P-1000 pipette to remove all the fluid in the waste channel from waste port 1.	This step again removes fluid from the waste channel, not from the sensor array.			
To reu	ise the flow cell right away				
6	To prepare the flow cell for short term storage, proceed to step 7.	The washed flow cell can be reused immediately.			
	Use the Priming and Loading the MinION Flow Cell Protocol to re-prime the flow cell for immediate reuse.				
To prepare the flow cell for short term storage					
7	Open the <u>priming port</u> . Set a P-1000 pipette to 200 µL and insert the tip into the <u>priming port</u> . Using the pipette wheel, draw back a small amount of fluid into the pipette tip.	This step is to remove any air, which is damaging to the nanopores in the sensor array, from the priming port.			
8	Add 500 µL room temperature Storage Buffer (S) in through the <u>priming port</u> , avoiding the introduction of bubbles. Close the <u>priming port</u> .	The Storage Buffer preserves the sensor array and allows for subsequent pore checks.			
Remo	Remove remaining waste from flow cell and store				
9	Use a P-1000 pipette to remove all the fluid in the waste channel from waste port 1.	Once all waste is removed, store the flow cell at 4 ° C .			

Parts of a MinION Flow Cell

Nontuberculous mycobacteria: A Genetic Analysis Using Online Bioinformatics Tools

Overview

This lesson asks you to compare gene sequences between one wild-type and one of a variety of mutant nontuberculous mycobacterial strains. You will identify mutations as single-nucleotide polymorphisms (SNPs) and then make an inference on whether your variant strain will impact the activity of the protein or antibiotics that target the protein.

Objectives

By the end of this activity you will be able to:

1) Infer mycobacterial species identity, using sequence search tools including <u>BLAST</u>, https://blast.ncbi.nlm.nih.gov/Blast.cgi

2) Compare environmental NTM sequences to clinical sequences, using multiple sequence alignment tools, including <u>CLUSTAL</u>, https://www.ebi.ac.uk/Tools/msa/clustalo/

3) Identify and explain what a single-nucleotide polymorphism (SNP) is when comparing two gene sequences.

4) Navigate online scientific tools to translate DNA into polypeptide sequences, using tools such as <u>GeneMarkS</u> http://exon.gatech.edu/GeneMark/genemarks.cgi , and to compare and contrast wild-type and variant polypeptide sequences using CLUSTAL, https://www.ebi.ac.uk/Tools/msa/clustalo/.

5) Determine whether your given SNP will result in sense, missense, or nonsense mutations in the resulting amino acid sequence.

6) Hypothesize whether a SNP will impact antibiotic activity, using information derived from protein databases including the <u>Protein Data Bank (PDB)</u>, https://www.rcsb.org

Part 1

A patient has just been diagnosed with a mycobacterial infection. In order to treat this effectively, you need to know the species. You decide single gene sequencing is adequate for this.

Please use <u>BLAST</u>, to search DNA databases to determine the species of mycobacteria, based on the DNA sequence.

```
>unknown species
```

```
atgcgcggcaacactggaggaccgatcttggcagtctctcgccagactaagaccgataac
gcaactactaactccgtacctggggcccctagccgactttccttcgccaagctgcgtgaa
ccgcttgcggttcccggcctgctcgatgtgcagacggagtcctttgaatggctggttgga
{\tt tcgccgcgctggcgtgaggttgcgactgcacgcggtgaggtgaacccgaccggcggcctt}
gaggagatcctcacggagctttcgccgatcgaagacttctccggctcgatgtcgctgtcg
ttcagcgacccgcgcttcgacgaggtcaaggcgcccgtcgacgagtgcaaagacaaggac
atgacgtacgcggccccgctgttcgtcacggccgagttcatcaacaacaacaccggtgag
atcaagagccagacggtcttcatgggtgatttcccgatgatgaccgatatgggcaccttc
atcatcaacqqcaccqaqcqcqtqqtcqtqtcqcaqctcqtccqttcqccqqqtqtctac
ttcgacgagagcatcgaccagtcgaccgagaagaccctgcatagcgtcaaggtcatcccc
ggccgcggtgcctggctcgagttcgacgtcgacaagcgcgacaccgtcggcgtccgcatc
gaccgcaagcgccgccagccggtcaccgtgctgctgaaggcgctgggctggaccaacgag
cagatcgtcgagcgcttcgggttctccgagatcatgatgggcaccctggagaaggacaac
atcgccgqtcccgacgaggcgttgctggacatctaccgcaagctgcgcccgggcgagccg
ccgaccaaggagtcggcgcaggccctgctggagaacctgttcttcaaggagaagcgttac
gacctggcccgcgtgggtcggtacaaggtgaacaagaagctgggcctgggcggcaccaat
ccqqctcaqqtqaccaccaccaccctcaccqaqqaaqacqtcqtcqccaccatcqaqtac
ctqqtqcqcctqcacqaqqqccaqaccacqatqaccqcccccqqtqqcqtcqaqqtqccq
gtggatgtggacgacatcgaccacttcggtaaccgtcgcctgcgtaccgtcggcgagctg
accacgcaggacgtcgaggcgatcaccccgcagaccctgatcaacatccgtcccgtcgtg
gcggcgatcaaggagttcttcggaaccagccagctgtcgcagttcatggaccagaacaac
ccgctgtcgggcctgacccacaagcgtcgt
```

Limit search to: Mycobacteria (taxid:85007) and Sequences from Type Material

Part 2

You asked the patients to sample their home, to see if any swabs came up NTM culture positive. Some locations came up positive, which you then sequenced using the Sanger method. <u>BLAST</u> each of the following sequences to determine potential species.

>Environmental_Location_1
1 acgacgettg tgggtcagae ecgacagegg gttgttetgg tecatgaaet gegaeagetg
61 getggtteeg aagaaeteet tgategeege eaceaeggga eggatgttga teagggtetg
121 eggggtgate geetegaegt eetgegtggt eatgegeteg egeaegaeae gtteeataeg

181	ggacaggccg	acccggatct	ggttctggat	cagctcgccg	acggtacgca	ggcgacggtt
241	accgaagtgg	tcgatgtcgt	ccacgtccac	cggcacctcg	acgccgccgg	gggcggtcat
301	cgtggtctgg	ccctcgtgca	ggcgcaccag	atactcgatg	gtggcgacga	catcttcctc
361	ggtgagggtg	gtggtggtca	cctgagccgg	attggtgccg	cccaggccca	gcttcttgtt
421	caccttgtac	cqacccacqc	gggccaggtc	gtaacgcttc	tccttgaaga	acaggttctc
481	caqcaqqqcc	tgcgccgact	ccttqqtcqq	cqqctcqccc	qqqcqcaqct	tgcggtagat
541	gtccagcaac	acctcatcaa	gaccggcgat	attatccttc	tccaqqqtac	ccatcatgat
601	ctcqqaqaac	ccgaagcgct	cgacgatctg	ctcqttqqtc	caqcccaqcq	ccttcagcag
661	cacggtgacc	gactgacggc	acttacaatc	gatgcggacg	ccgacggtgt	cacacttatc
721	gacgtcgaac	tcgagccagg	caccocoocc	ggggatgacc	ttgacgctgt	gcagggtctt
781	ctcggtcgac	ttgtcgatgc	tctcgtcgaa	gtagacaccc	gacgaacgga	cgagetgega
841	gacgaccacg	cactcaatac	cottoatoat	gaaggtgccc	atotcootca	tcatcgggaa
901	atcacccato	aagaccgtct	aactettaat	ctcacconto	ttattatta	tgaactcggc
961	cataacaaac	aacaaaacca	catacatcat	atccttatct	ttacactcat	caacaaacac
1021	cttgacctcg	tcaaaacaca	adtcactaaa	caacaacaac	atcgagccgg	agaagtette
1021	gatcooccaa	agetcegtga	ggeegeegua	aaggeegee	atcaaattca	cctcaccoco
1141	tacaatcaca	acctcacqcc	agenerade	tccaaccadc	cattcaaadd	actocatota
1201		accoccocca	agegeggega	ttcacqcaqc	ttaacaaaaa	accedence
1261	agggggggg	agyccyggaa	tagtagtag	attatogato	ttagtgtgaagg	aaageeggee
1321		cctccagtat	taccacacat	getategget	ctagtetgge	gagagaetge
1921	caagattygt	cettedgege	cyccycycat			
>Envi	ronmental L	ocation 2				
1			ccaacaacaa	attattetaa	tccatgaact	acaacaacta
61	actaattcca	aagaactcct	tgatcgccgc	cacgacggga	cagatattaa	tcagggtctg
121	cogagtgatc	gcctcgacgt	cctgagtggt	catgcgctcg	cacacaacac	gctccatacg
181	cascadacca	accogatet	aattetaaat	cagetcacca	acagtacge	gacgacggtt
241	accgaagtga	tcgatgtcgt	cgacctcgac	addacctca	aaaccaccaa	agacgatcat
301	cataatctaa		gacgcaccag	gtactcgatg	ataacaacaa	catcttcctc
361	aataaacata	ataacaatca	ccadadccdd	attagcacca	ccaagaccca	acttettatt
421	caccttotac	caacccacac	aaaccaaatc	gtaacactto	teettaaaa	acaggttctc
481	cadcadddcc	tacacaact	ccttaatcaa	caactcaccc	agacacaact	tacagtagat
541	atccagcagc	acctcatcaa	gaccggcogg	attatccttc	tccaggetcc	ccatcatgat
601	ctcqqaqaac	ccgaaacgct	caacatcta	ctcattaatc	cauccuautu	ccttcagcag
661	cacqutqacq	aactaacaac	acttacatc	ratococaca	cccacqutqt	cacacttate
721	gacatogaag	tcrarccatr	caccacquee	gaegegeaea	ttaacactat	acaggeetgee
781	ctcaatcaac	ttatcoatot	tctcqtcqaa	gggggggggggg	aacaaacaaa	cragetrera
841	cacqaccacq	cactcaatac	cattantat	gaagatacce	atctcontca	tcatcororaa
901	atcacccato	aagaccgtct	agetettaat	gaaggegeee	ttattatta	taaactcaac
961	catacceacy	addagaggggg	catacatcat	atcettatet	ttacactcat	caacaaacac
1021	cttgacgaac		agtacgtcat	adacadeda	atgragecco	agaagteete
1021	atagaga	agetagetag	ggttgttgaa	agacagegac	atcgagetta	agaagteete
11/1	gattyytyaa	agetterage	ggattettette	aaggeegeeg	gittyggttta	astaatata
1201	aycayttyta	acticatyce	accygygiga	yccaaccayc	ttarcaaagy	aatteget
1201		ayyeeyyyaa		attatacata	ttoatataa	aaayuuyyuu
1201	ayyyycccca	yytacgyagt	tagtagtigC	yllalCygiC	ιιαγιζιφάζ	yayayacıgc
TJCT	caayateggt	celeeagigt	ryccycycat			
\Fnit	ronmontal T	ogation ?				
∕сп∨⊥ 1			aaaaaaaaa	2200012200	coastaacto	catacaaaaa
Ŧ	acceryyeay	licitayida	yaycacaycy	uacyclaada	claalaallC	cycccayya

decomposed gageteraged gageteraged aregeterated connected of the second gageteraged
 generation generation of the second gageteraged gageteraged and gageterage gageterage
 generation gageterage gageteraged gageterage gageterage
 generation gageterage gageterage
 generation gageterageterage
 generation gageterage

301 361 421 481 541 601 661 721 781	gtcaaggcgc gtgacttcc gtggtgagcc accgagaaga gacgtcgaca accgtgctgc tccgagatca ctggacatct	cggtcgacga agttcatcaa cgatgatgac agctcgtgcg cgctgcacag agcgcgacac tcaaggcgct tgatgggcac accgcaagct	gtgcaaagac caacaacacc cgagaagggc ctctcccggt cgtcaaggtg cgtcggtgtg cggttggacc cctggagaag gcgtccgggc	aaggacatga ggtgagatca accttcatca gtgtacttcg atccccggcc cgtatcgacc aacgagcaga gacagcaccg gagccgccga	cgtacgcggc agagccagac tcaacggcac acgagagcat gcggtgcgtg gcaagcgccg tcaccgagcg ccggtcccga ccaggagtc	cccgctgttc ggtcttcatg cgagcgtgtc cgacaagtcc gctcgagttc ccagccggtc cttcggcttc cgaggcgctg cgcgcagacc
841	ctgctggaga	acctgttctt	caaggagaag	cgctacgacc	tggcccgcgt	cggccgctac
901	aaggtcaaca	agaagctggg	cctgaacgcc	ggccagccga	tcacgtcgtc	gaccctcacc
961	gaggaagacg	tcgtcgccac	catcgagtac	ctggtgcgcc	tgcacgaggg	ccagaccacg
1021	atgaccgtcc	ccggcggcgt	cgaggtcccg	gtcgaggtgg	acgacatcga	ccacttcggt
1081	aaccgtcgtc	tgcgtaccgt	gggtgagctg	atccagaacc	agatccgggt	cggcctgtcc
1141	cgcatggagc	gcgtcgtgcg	tgagcgcatg	accacccagg	acgtcgaggc	gatcacgccg
1201	cagaccctga	tcaacatccg	tcccgtcgtg	gcggcgatca	aggagttctt	cggcaccagc
1261	cagctgtcgc	agttcatgga	ccagaacaac	ccgctgtcgg	gtctgaccca	caagcgtcg
>Envi	ronmental_L	ocation_4				
1	atcttggcag	tctctagcca	gagcaagtca	gcgaacgcta	tcaccaataa	ctccgtccca
61	ggagcaccga	accgagtttc	atttgccaag	ctccgtgaac	cgcttgaggt	tccggggcta
121	ctcgacgttc	agaccgattc	cttcgactgg	ctcgtcggtg	cggatgaatg	gcggcagaag
181	gccgtcgatc	gcggcgagac	cgaccccaag	ggcggcctcg	aagaggtgct	cgaagagctc
241	tccccgatcg	aggatttctc	gggctcgatg	tcgctgagct	tctccgaccc	gcgcttcgac
301	gaggtcaaag	ctccggtcga	cgagtgcaaa	gacaaggaca	tgacgtacgc	agccccgctg
361	ttcgtcacgg	ccgagttcat	caacaacaac	accggtgaga	tcaagagcca	gacggtcttc
421	atgggtgact	tcccgatgat	gaccgagaag	ggcaccttca	tcatcaacgg	caccgagcgt
481	gtcgtggtga	gccagctcgt	gcgctctccc	ggtgtgtact	tcgacgagag	catcgacaag
541	tccaccgaga	agacgctgca	cagcgtcaag	gtgatccccg	gccgcggtgc	gtggctggag
601	ttcgacgtcg	acaagcgcga	caccgtcggt	gtgcgtatcg	accgcaagcg	tcgtcagccg
661	gtcaccgtgc	tgctgaaggc	gctgggctgg	accaacgagc	agatcaccga	gcgcttcggc
721	ttctccgaga	tcatgatggg	caccctggag	aaggacagca	ccgccggtcc	cgacgaggcg
781	ctgctggaca	tctaccgcaa	gctgcgtccg	ggcgagccgc	cgaccaagga	gtccgcgcag
841	accctgctgg	agaacctgtt	cttcaaggag	aagcgctacg	acctggcccg	cgtgggccgc
901	tacaaggtca	acaagaagct	gggcctgaac	gccggccagc	cgatcacgtc	gtcgactctg
961	accgaggaag	acgtcgtcgc	caccatcgag	tacctggtgc	gcctgcacga	gggccagacc
1021	acgatgaccg	tccccggcgg	cgtcgaggtc	ccggtcgagg	tggacgacat	cgaccacttc
1081	ggtaaccgtc	gtctgcgcac	cgtgggcgag	ctgatccaga	accagatccg	cgtcggcctg
1141	tcccgcatgg	agcgcgtcgt	gcgtgagcgc	atgaccaccc	aggacgtcga	ggcgatcacc
1201	ccgcagaccc	tgatcaacat	ccgtcccgtc	gtggcggcga	tcaaggagtt	cttcggaacg
1261	tcgcagctgt	cgcagttcat	ggatcagaac	aacccgctgt	cgggtctgac	ccacaagcgt
1321	cgt					
>Envi	ronmental_L	ocation_5				
1	acgacgcttg	tgggtcaggc	ccgacagcgg	gttgttctgg	tccatgaact	gcgacagctg
61	gctggttccg	aagaactcct	tgatcgccgc	cacgacggga	cggatgttga	tcagggtctg
121	cggggtgatc	gcctcgacgt	cctgcgtggt	catgcgctca	cgcacgacgc	gctccatacg
181	ggacaggccg	acccggatct	ggttctgaat	cagctcgccg	acggtacgca	ggcgacggtt
241	accgaagtgg	tcgatgtcgt	ccacatccac	cggcacctcg	acgccaccgg	gggcggtcat

301 cgtggtctgg ccctcgtgca ggcgcaccag gtactcgatg gtggcgacga cgtcttcctc
 361 ggtgaggtg gtggtggtca cctgagccgg attggtgccg cccaggccca gcttcttgtt
 421 caccttgtac cgacccacgc gggccaggtc gtaacgcttc tccttgaaga acaggttctc

```
481
     caqcaqqqcc tqcqccqact ccttqqtcqq cqqctcqccc qqqcqcaqct tqcqqtaqat
541
     gtccagcaac gcctcgtcgg gaccggcgat gttgtccttc tccagggtgc ccatcatgat
     ctcggagaac ccgaagcgct cgacgatctg ctcgttggtc cagcccagcg ccttcagcag
601
661
     cacqqtgacc ggctggcggc gcttgcggtc gatgcggacg ccgacggtgt cgcgcttgtc
721
     gacgtcgaac tcgagccagg caccgcggcc ggggatgacc ttgacgctat gcagggtctt
781
     ctcqqtcqac ttqtcqatqc tctcqtcqaa qtaqacaccc qqcqaacqqa cqaqctqcqa
841
     cacqaccacg cgctcggtgc cgttgatgat gaaggtgccc atatcggtca tcatcgggaa
901
     atcacccatg aagaccgtct ggctcttgat ctcaccggtg ttgttgttga tgaactcggc
     cqtqacqaac aqcqqqqccq cqtacqtcat qtccttqtct ttqcactcqt cqacqqqcqc
961
1021 cttgacctcg tcgaagcgcg ggtcgctgaa cgacagcgac atcgagccgg agaagtcttc
1081 gateggegaa ageteegtga ggateteete aaggeegeeg gtegggttea eeteacegeg
1141 tgcagtcgca acctcacgcc agcgcggcga tccaaccagc cattcaaagg actccgtctg
1201 cacategage aggeegggaa eegeaagegg tteaegeage ttggegaagg aaagtegget
1261 aggggcccca ggtacggagt tagtagttgc gttatcggtc ttagtctggc gagagactgc
1321 caagatcggt cctccagtgt tgccgcgcat
```

Based on this information, which location warrants further investigation, by whole genome sequencing?

Part 3

You are interested in variations in protein sequences of these strains as well, corresponding to the RNA polymerase beta subunit. Translate the environmental isolate sequences to amino acid sequences, using <u>GeneMarkS</u>.

Part 4

Perform a Multiple Sequence Alignment on the translated protein sequences, to examine amino acid variation of the rpoB protein, in the environmental NTM, using <u>CLUSTAL</u>.

Part 5

In addition to being an essential protein involve in RNA transcription, the RNA polymerase beta protein is an important drug target, in both NTM and M. tuberculosis.

Search the <u>Protein Data Bank (PDB)</u>, using the Environmental Isolate 5 sequence, to see if protein structures with similar sequences have been determined.

References

Epperson, L. Elaine, and Michael Strong. "A scalable, efficient, and safe method to prepare high quality DNA from mycobacteria and other challenging cells." *Journal of clinical tuberculosis and other mycobacterial diseases* 19 (2020): 100150.