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Supplementary Information: Leakage and the Reproducibility
Crisis in ML-based Science

Supplemental Experimental Procedures.

Overview of the Appendix. In Section S1, we justify our choice of the word reproducibility. In Sec-
tion S2, we provide a detailed description of the methods we used to select papers for our review of civil war
prediction and fix reproducibility issues in the papers with errors. In Section S3, we show how model info
sheets address each type of leakage identified in our survey. In Section S4, we include a template for the
model info sheets.

We include a list of all 124 papers that we considered for our literature review on civil war prediction as
supplementary documents with this submission.

S1 Why do we call these reproducibility issues?

We acknowledge that there isn’t consensus about the term reproducibility, and there have been a number
of recent attempts to define the term and create consensus1. One possible definition is computational
reproducibility—when the results in a paper can be replicated using the exact code and dataset provided by
the authors2. We argue that this definition is too narrow because even cases of outright bugs in the code
would not be considered irreproducible under this definition. Therefore we advocate for a standard where
bugs and other errors in data analysis that change or challenge a paper’s findings constitute irreproducibility.

The goal of predictive modeling is to estimate (and improve) the accuracy of predictions that one might
make in a real-world scenario. This is true regardless of the specific research question one wishes to study
by building a predictive model. In practice one sets up the data analysis to mimic this real-world scenario
as closely as possible. There are limits to how well we can do this and consequently, there is always
methodological debate on some issues, but there are also some clear rules. If an analysis choice can be shown
to lead to incorrect estimates of predictive accuracy, there is usually consensus in the ML community that
it is an error. For example, violating the train-test split (or the learn-predict separation) is an error because
the test set is intended to provide an accurate estimate of ‘out-of-sample’ performance—model performance
on a dataset that was not used for training3. Thus, to define what is an error, we look to this consensus in
the ML community (e.g. in textbooks) and o↵er our own arguments when necessary.

S2 Materials and Methods: Reproducibility issues in civil war

prediction

Di↵erent researchers might have di↵erent aims when comparing the performance on civil war prediction —
determining the absolute performance, or comparing the relative performance of di↵erent models of civil
war prediction. Whether the aim is to determine the relative or absolute performance of models of civil war
prediction, data leakage causes a deeper issue in the findings of each of the 4 papers with errors that leads
to inaccurate estimates of both relative and absolute out-of-sample performance.

In correcting the papers with errors4–7, our aim is to report out-of-sample performance of the various
models of civil war prediction after correcting the data leakage, while keeping all other factors as close to
the original implementation as possible. Fixing the errors allows a more accurate estimate of out-of-sample
performance.



At the same time, we caution that just because our corrected results o↵er a more accurate estimate
of out-of-sample performance doesn’t mean that we endorse all other methodological choices made in the
papers. For example, to correct the results reported by Muchlinski et al.4, we use imputation on an out-of-
sample dataset that has 95% missing values. While an imputation model created only using the training data
avoids data leakage, it does not mean that using a dataset with 95% missing values to measure out-of-sample
performance is desirable.

S2.1 Paper selection for review

To find relevant papers on civil war prediction for our review, we used the search results from a dataset
of academic literature8 for papers with the terms ‘civil’ AND ‘war’ AND (‘prediction’ OR ‘predicting’ OR
‘forecast’) in their title or abstract, as well as papers that were cited in a recent review of the field9. To
keep the number of papers tractable, we limited ourselves to those that were published in the last 5 years,
specifically, papers published between 1st January 2016 and 14th May 2021. This yielded 124 papers. We
narrowed this list to the 15 papers that were focused on predicting civil war and evaluated performance
using a train-test split. Of the 15 papers that meet our inclusion criteria, 12 share the complete code and
data. For these 12, we attempted to identify errors and reproducibility issues from the text and through
reviewing the code provided with the papers. When we identified errors, we re-analyzed the data with the
errors corrected. We now address the reproducibility issues we found in each paper in detail.

S2.2 Muchlinski et al.
4

Imputation is commonly used to fill in missing values in datasets10. Imputing the training and test datasets
together refers to using data from the training as well as the test datasets to create an imputation model that
fills in all missing values in the dataset. This is an erroneous imputation method for the predictive modeling
paradigm, since it can lead to data leakage, which results in incorrect, over-optimistic performance claims.
This pitfall is well known in the predictive modeling community — discussed in ML textbooks3, blogs11 and
popular online forums12.

Muchlinski et al.4 claim that a Random Forests model vastly outperforms logistic regression models in
terms of out-of-sample performance using the AUC metric13. However, since they impute the training and
test datasets together, their results su↵er from data leakage. The impact of leakage is especially severe
because of the level of missingness in their out-of-sample test dataset: over 95% of the values are missing
(which is not reported in the paper), and 70 of the 90 variables used in their model are missing for all
instances in the out-of-sample test set.1 When their imputation method is corrected, their Random Forests
model performs no better than the logistic regression models that they compared against.

We focus on reproducing the out-of-sample results reported by Muchlinski et al.4. Table S1 provides
the comparisons between the results reported in Muchlinski et al.4, our reproductions of their reported
(incorrect) results, as well as the corrected version of their results. Muchlinski et al.4 received two critiques
of the methods used in their paper6,14. 2. In response, they published a reply with clarifications and revised
code addressing both critiques16. We use the revised version of their code. We find that the error in their
imputation methods exists in the revised code as well as the original code, and was not identified by the
previous critiques. Muchlinski et al.4 re-use the dataset from Hegre and Sambanis17 when training their
models, and provide a separate out-of-sample test set for evaluation. To address missing values, they use
a Random Forests based imputation method in R called rfImpute. However, the training and test sets are
imputed together, which leads to a data leakage. This results in overoptimistic performance claims. Below,
we detail the steps we take to correct their results, provide a visualization of the data leakage, and provide
a simulation showcasing how the data leakage can result in overoptimistic claims of performance.

Correcting the data imputation. To correct this error, we use the mice package in R which uses
multiple imputation for imputing missing data. This is because the mice package allows us to specify which
rows in the dataset are a part of the test set and it does not use those rows for creating the imputation

1
While leakage is particularly serious in predictive modeling, a dataset with 95% of values missing is problematic even for

explanatory modeling.
2
Hofman et al.

15
also outline the shortcomings in the initial code released by Muchlinski et al.

4
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model, whereas rfImpute — the original method used to impute the missing data in the original results by
Muchlinski et al.4 — does not have this feature. The authors imputed the training set together with the
out-of-sample test set using rfImpute, which led to data leakage. Table S1 provides the comparisons between
the results reported in Muchlinski et al.4, our reproductions of their reported (incorrect) results, as well as
the corrected version of their results.

Using multiple imputation fills in missing values without regarding the underlying variable’s original dis-
tribution. For example, using multiple imputation fills in di↵erent missing values for the variable representing
the percentage of rough terrain in a country in di↵erent years18, whereas this particular variable (percentage
of rough terrain) is constant over time. However, when multiple imputation is used with a train-test split,
there is still no leakage between the training and test sets, since the imputation model only uses data from
the training set to fill in missing values in the test set.

Why can’t we use rfImpute in the corrected results? Instead of using the mice package, another
way to impute the data correctly, i.e., without data leakage, would be to run the imputation using rfImpute
on the training and test data separately — creating two separate imputation models — one for the training
data and one for the test data. We could not use this imputation method because 70 of the 90 variables used
in Muchlinski et al.4’s model as features do not have any values in the out-of-sample test data provided —
i.e. they are missing for all observations in the out-of-sample dataset — and rfImpute requires at least some
values for each variable to not be missing. In other words, the mice package allows us to train an imputation
model on the training set and use it to fill in missing values in the test set.

Subtle di↵erences between explanatory and predictive modeling. In the explanatory modeling
paradigm, the aim is to draw inferences from data, as opposed to optimizing and evaluating out-of-sample
predictive performance. In this case, data imputation would be considered a part of the data pre-processing
step, even though it is still important to keep in mind the various assumptions being made in this process
Schafer19. Contrarily, in the predictive modeling paradigm, the imputation is a part of the modeling step3

because the aim of the modeling exercise is to validate performance on an out-of-sample test set, which the
model does not have access to during the training. In this case, imputing the training and test datasets
together leads to leaking information from the test set to the training set and thus the performance evaluation
on the purportedly “out-of-sample” test set would be an over-estimate.

What is the precise mechanism by which the leakage occurs in Muchlinski et al.4? When
Muchlinski et al.4 impute the missing values in the out-of-sample test set, the imputation model has access
to the entire training data as well as the labels of the target variables in the test data — they also include
the target variable in the list of variables which the imputation model treats as independent variables
when carrying out the imputation. The model therefore uses correlations between the target variable and
independent variables in the training dataset and uses them to fill in the missing values in the test dataset
— i.e. the model uses the labels of the target variables in the test data and correlations from the training
data to fill in missing values. This leads to the test dataset having similar correlations between the target
and independent variables as the ones present in the training data. Further, the missing data is filled in in
such a way that it favors ML models such as Random Forests over logistic regression models, as we show in
the visualization below.

Visualizing the leakage. We can visually observe an instance of data leakage in Figure S1. We focus on
the distribution of the feature agexp, which represents the proportion of agricultural exports in the GDP of
a country. We choose this feature because in the Muchlinski et al. paper, this feature had the highest gini
index for the random forests model — which means that it was an important feature for the model. While
we only visualize one feature here, similar results hold across multiple features used in the model. Below,
we reconstruct the process by which the data leakage was generated — following the exact steps Muchlinski
et al.4 used to create and evaluate the dataset:

• Figure S1a represents the distribution of the agexp variable for war and peace data points in the original
dataset by Hegre and Sambanis17, ignoring missing values.
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(a) Distribution of the agexp variable for peace
and war data points for the original Hegre et
al. dataset, ignoring missing values
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(b) Distribution of the agexp variable for peace
and war data points for the imputed Hegre et
al. dataset used by Muchlinski et al. for train-
ing
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(c) Distribution of the agexp variable for peace
and war data points only for the data points
that were added during imputation (i.e. the
data points that were missing in the original
dataset)
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(d) Distribution of the agexp variable for peace
and war data points for the out-of-sample test
set

Figure S1: Distribution of the agexp variable for peace and war data points for di↵erent imputation steps in
Muchlinski et al.4. Note that the distribution of peace instances in the test set (D) has a peak that is close
to the distribution in the imputed training set (B, C) — which allows the random forests model to learn
the small range of values where peace data points are concentrated. While we report results for the agexp
variable, similar trends appear across independent variables in the dataset.



• Figure S1b shows the same distribution after including the imputed values of agexp. In particular, we
see two peaks in the dataset for war and peace data points alike, one due to war instances and one due
to peace instances.

• If we look only at the data points that were imputed using the rfImpute method (Figure S1c), we
see that the distribution of the imputed data points for war and peace are completely separated, in
contrast to the original distribution where there was a significant overlap between the distributions.

• Finally, Figure S1d shows the e↵ect of imputing this already-imputed dataset with the out-of-sample
test set — we see that the out-of-sample dataset only has the peak for peace datapoints, whereas the
distribution for war is almost uniform.

Further, the random forests model can learn the peak for the agexp variable in the peace instances from
the training dataset after imputation, since the peak for the training and test sets is similar. It can distinguish
between war and peace datapoints much more easily compared to a logistic regression model that only uses
one parameter per feature — logistic regression models are monotonic functions of the independent variables
and therefore cannot learn that a variable only lies within a small range for a given label. This highlights the
reason behind Random Forests outperforming logistic regression in this setting — imputing the training and
test datasets together leads to variable values being artifically concentrated within a very small range for
both the training and test datasets — and further, being neatly separated across war and peace instances.
The impact of the imputation becomes even clearer when we consider that the out-of-sample test dataset
provided by Muchlinski et al.4 has over 95% of the data missing, and 70 out of 90 variables are missing for
all instances in the out-of-sample dataset.

A simulation showcasing the impact of missingness on performance estimates in the presence of
leakage. We can observe a visual example of how data leakage a↵ects performance evaluation in Figure S2.
We describe the simulation below:

• there are two variables — the target variable onset and the independent variable gdp.

• onset is a binary variable. gdp is drawn from a normal distribution and depends on onset as follows:

gdp = N(0, 1) + onset.

• We generate 1000 samples with onset=0 and 1000 samples with onset=1 to create the dataset.

• We randomly split the data into training (50%) and test (50%) sets, and create a random forests model
that is trained on the training set and evaluated on the test set.

• To observe the impact of imputing the training and test sets together, we randomly delete a certain
percentage of values of gdp, and impute it using the imputation method used in Muchlinski et al.4.

• We vary the proportion of missing values from 0% to 95% in increments of 5% and plot the accuracy
of the random forests classifier on the test set.

• We run the entire process 100 times and report the mean and 95% CI of the accuracy in Figure S2;
the 95% CI is too small to be seen in the Figure.

We find that imputing the training and test sets together leads to an increasing improvement in the
purportedly “out-of-sample” accuracy of the model. Estimates of model performance in this case are arti-
ficially high. This example also highlights the impact of the high percentage of missing values — since the
out-of-sample test set used by Muchlinski et al.4 contains over 95% missing values, the impact of imputing
the training and test sets together is very high.



Figure S2: Results of a simulation that showcase how imputing the training and test sets together leads to
overoptimistic estimates of model performance. The 95% Confidence Intervals are too small to be seen.

Algorithm Reported Reported results (reproduced) Corrected results
Fearon and Laitin 0.69 0.78 0.54
Collier and Hoe✏er 0.90 0.83 0.57
Hegre and Sambanis 0.83 0.82 0.68
Muchlinski et al. 0.94 0.95 0.64

Table S1: Original and corrected results in Muchlinski et al.4. While there are di↵erences between the
reported results and our reproduction of the reported results, especially for the Fearon and Laitin as well as
the Collier and Hoe✏er models, the relative order of the model performance for both results is the same.

S2.3 Colaresi and Mahmood
5

Colaresi and Mahmood5 report that ML models vastly outperform logistic regression for predicting civil war
onset. However, they re-use the imputed version of the dataset in Hegre and Sambanis17 which is provided
by Muchlinski et al.4. They use the imputed dataset both for training and testing via a train-test split;
they do not use the out-of-sample test set provided by Muchlinski et al. This means that the results in
Colaresi and Mahmood5 are subject to exactly the same pitfall as in Muchlinski et al.4, albeit with a slightly
di↵erent dataset. Correcting the imputation method dramatically reduces the performance of the ML models
proposed.

We focus on reproducing the final round of results reported in the paper Colaresi and Mahmood5, which
consists of a comparison of 3 models of civil war onset — the Random Forests model proposed in Muchlinski
et al.4, the Random Forests model proposed in Colaresi and Mahmood5 as well as the logistic regression
model proposed in Fearon and Laitin20. Their dataset has 17.4% values missing, and the test set has 19%
values missing. The proportion of missing values in individual variables can be even higher — for example,
the agexp, which represents the proportion of agricultural exports in the GDP of a country, is missing for
54.3% of the rows in the test set. In our corrected results, we use the original dataset from Hegre and
Sambanis17 and impute the training and test data separately using the rfImpute function. The test set
consists of data from the years after 1988. One of the independent variables, milper, is missing for all
instances in the test set of Colaresi and Mahmood5 so we exclude this variable from our models. Table S2
provides the comparisons between the results reported in Colaresi and Mahmood5, our reproductions of their



Algorithm Reported Reported results (reproduced) Corrected results
Fearon and Laitin 0.77 0.77 0.79
Muchlinski et al. 0.89 0.89 0.73

Colaresi and Mahmood 0.91 0.91 0.75

Table S2: Original results from Colaresi and Mahmood5 and our corrected results.

reported (incorrect) results, as well as the corrected version of their results.
Colaresi and Mahmood5 and Wang6 reuse the dataset released by Muchlinski et al.4. This is the imputed

version of the dataset released by Hegre and Sambanis17. However, for 777 rows in the imputed dataset
released by Muchlinski et al.4, the original dataset by Hegre and Sambanis17 has a missing target variable
(i.e. the variable representing civil war onset is missing) whereas the imputed version of the dataset (i.e.
the dataset released by Muchlinski et al.4) has a value of peace for the target variable representing civil war
onset. Since Muchlinski et al.4 do not share the code that they use for imputing the Hegre and Sambanis17

dataset, it is unclear how the missing values in the target variable were imputed in the dataset, especially
since the imputation method they use — rfImpute — requires non-missing values in the target variable.
Still, the number of instances of civil war onset (i.e. instances where the variable representing civil war onset
has the value war) in the Hegre and Sambanis17 dataset as well as the Muchlinski et al.4 dataset are the
same.

S2.4 Wang
6

Similar to Colaresi and Mahmood5, Wang6 report that ML models vastly outperform logistic regression
for predicting civil war onset. However, they too re-use the imputed version of the dataset in Hegre and
Sambanis17 provided by Muchlinski et al.4. They use the imputed dataset both for training and testing via
k-fold cross-validation; they do not use the out-of-sample test set provided by Muchlinski et al. Correcting
the imputation method dramatically reduces the performance of the ML models proposed.

We focus on reproducing the results of the nested cross-validation implementation reported by Wang6.
Wang6 reuses the imputed dataset provided by Muchlinski et al.4, instead of using the original dataset
provided by Hegre and Sambanis17 and imputing the training and test sets separately. The dataset has
17.4% values missing. The proportion of missing values in individual variables can be even higher — for
example, the agexp, which represents the proportion of agricultural exports in the GDP of a country, is
missing for 49.8% of the rows in the data set. In our corrected results, we use the original dataset from
Hegre and Sambanis17 and impute the training and test data separately using the rfImpute function within
each cross validation fold. This ensures that there is no data leakage between the training and test sets in
each fold. Table S3 provides the comparisons between the results reported in Wang6, our reproductions of
their reported (incorrect) results, as well as the corrected version of their results.

We also conduct an additional robustness analysis in which we use a separate out-of-sample test set
instead of k�fold cross validation, since using k�fold cross validation with temporal data can also lead to
leakage across the train-test split. To maintain comparability between the original and corrected results by
testing on the same instances of civil war, we continue to use k�fold cross-validation in the corrected results
in Figure 2. We report the results after making this change in Table S3. We use the same train-test split as
Colaresi and Mahmood5 — year < 1988 as training data and the rest as test data — for the out-of-sample
test set. The test set consists of data from the years after 1988. One of the independent variables, milper,
is missing for all instances in the test set of Colaresi and Mahmood5 so we exclude this variable from our
models.

Note that the imputation method that should be used depends on the exact model deployment scenario,
and should mimic it as closely as possible for accurate performance estimates. For example, in some model
deployment settings samples for prediction come in one at a time and in some cases they come in batches. In
the former setting, imputing the entire test set together may result in overoptimistic performance evaluations
as well, since the deployed model doesn’t have access to a batch of samples. Our results may thus o↵er an
upper bound on the performance of civil war prediction models in the case of Colaresi and Mahmood5 and
Wang6.



Algorithm Reported Reported (reproduced) k-fold CV (corrected) Out-of-sample (corrected)
Fearon and Laitin 0.76 0.76 0.77 0.78
Collier and Hoe✏er 0.78 0.78 0.72 0.77
Hegre and Sambanis 0.80 0.80 0.81 0.80
Muchlinski et al. 0.92 0.92 0.78 0.73

AdaBoost 0.94* 0.94 0.82 0.77
GBT 0.94* 0.94 0.81 0.75

Table S3: Original and corrected results in the Wang6. We find that using an out-of-sample test set further
favors logistic regression models over ML models. The metric for all results is AUC. *These results were
not reported using nested cross-validation in Wang6. In our reproduction of these reported results, we use
nested cross-validation, which ensures that we do not get over-estimates of performance.

S2.5 Kaufman, Kraft, and Sen
7

We focus on reproducing the results on civil war prediction in Kaufman, Kraft, and Sen7. There are several
issues in the paper’s results. We outline each issue below and provide a comparison of various scenarios in
Table S4 that highlight the precise cause of the performance di↵erence between the original and corrected
results, and visualize the robustness of our corrected results. We find that even though there are several
issues in Kaufman, Kraft, and Sen7, the main di↵erence in performance between the original results they
report and our corrected results is due to data leakage.

Data leakage due to proxy variables. The dataset used by Kaufman, Kraft, and Sen7 has several
variables that, if used as independent variables in models of civil war prediction, could cause data leakage,
since they are proxies of the outcome variable. Table S5 lists the variables in the Fearon and Laitin20 dataset
that cause leakage. The first 4 rows outline variables that could be a↵ected by civil wars, as outlined in
Fearon and Laitin20. Therefore, following Fearon and Laitin20, we use lagged versions of these variables in
our correction. The other variables in Table S5 are either direct proxies of outcomes of interest or are missing
for all instances for civil war.

Parameter selection for the Lasso model. Kaufman, Kraft, and Sen7 use an incorrect parameter
selection technique when creating their Lasso model that leads to the model always predicting peace (i.e. all
coe�cients of the variables in the model are always zero). We correct this using a standard technique for
parameter selection. Instead of choosing model parameters such that the model always predicts peace, we
use the cv.glmnet function in R to choose a suitable value for model parameters based on the training data.

Using k�fold cross-validation with temporal data. k�fold cross-validation shu✏es the dataset be-
fore it is divided into training and test datasets. When the dataset contains temporal data, the training
dataset could contain data from a later date than the test dataset because of being shu✏ed. To maintain
comparability between the original and corrected results by testing on the same instances of civil war, we
continue to use k�fold cross-validation in the corrected results in Figure 2. To evaluate out-of-sample per-
formance without using cross-validation, we use a separate train-test split instead of k�fold cross-validation
and report the di↵erence in results for this scenario in the row Corrected (out-of-sample) in Table S4. We
find that there is no substantial di↵erence between the results when using the out-of-sample test set and
k�fold cross-validation — in each case, none of the models outperforms a baseline that predicts the outcome
of the previous year. We use the same train-test split as Colaresi and Mahmood5 — year < 1988 as training
data and the rest as test data.

Replacing missing values with zeros. Kaufman, Kraft, and Sen7 replace missing values in their dataset
with zeros, instead of imputing the missing data or removing the rows with missing values. This is a
methodologically unsound way of dealing with missing data: for example, the models would not be able to
discern whether a variable has a value of zero because of missing data or because it was the true value of the
variable for that instance. This risks getting underestimates of performance, as opposed to overoptimistic



performance claims. As a robustness check, we impute the training and test data separately in each cross-
validation fold using the rfImpute function in R and report the results in the Corrected (imputation) row of
Table S4. We find that the choice of imputation method does not cause a di↵erence in performance, perhaps
because only 0.6% of the values of variables are missing in the dataset.

Choice of cut-o↵s for calculating accuracy. Instead of calculating model cuto↵s based on the best
cuto↵ in the training set, Kaufman et al. use the distribution of model scores to decide the cuto↵s for
calculating accuracy. We include robustness results when we change the cuto↵ selection procedure to choosing
the best cuto↵s for the training set in the Corrected (cuto↵ choice) row of Table S5. We find that the choice
of cuto↵ does not impact the main claim — the performance of the best model is still worse than a baseline
that predicts the outcome of the previous year.

Weak Baseline. Kaufman, Kraft, and Sen7 compare their results against a baseline model that always
predicts peace. We find that a baseline that predicts war if the outcome of the target variable was civil
war in the previous year and predicts peace otherwise is a stronger baseline (Accuracy: 97.5% vs. 86.1%;
�2=633.7, p = 7.836e-140 using McNemar’s test as detailed in Dietterich21), and report results against this
stronger baseline in Table S4.

Confusion about the target variable. Kaufman, Kraft, and Sen7 use ongoing civil war instead of civil
war onset as the target variable in their models. While their abstract mentions that the prediction task they
attempt is civil war onset prediction, they switch to using the term civil war incidence in later sections,
without formally defining this term. To attempt to determine what they mean by this term, we looked at
the papers they cite; one of them has the term civil war incidence in the title Collier and Hoe✏er22, and
defines civil war incidence as ‘observations [that] experienced a start of a civil war’. At the same time, in the
introduction, they state that they are ‘predicting whether civil war occurs in a country in a given year’ —
which refers to ongoing civil war instead of civil war onset. This might confuse a reader about the specific
prediction task they undertake.

Scenario ADT RF SVM ERF Lasso LR Baseline Stronger Baseline
Reported 0.990 0.989 0.983 0.990 0.862 0.987 0.861 0.000

Reported (reproduction) 0.990 0.990 0.983 0.989 0.861 0.987 0.861 0.000
Corrected 0.974 0.959 0.974 0.957 0.975 0.972 0.861 0.975

Corrected (out-of-sample) 0.966 0.936 0.962 0.927 0.966 0.963 0.796 0.966
Corrected (imputation) 0.974 0.959 0.974 0.957 0.975 0.975 0.861 0.975
Corrected (cuto↵ choice) 0.974 0.972 0.966 0.967 0.975 0.971 0.861 0.975

Table S4: Results for the various scenarios in Kaufman, Kraft, and Sen7. We report results up to 3 significant
figures in this table because the small di↵erence in performance between AdaBoost and logistic regression
that is ascribed signifance in Kaufman, Kraft, and Sen7 can only be observed in the third decimal point. The
first 2 values of ‘Stronger Baseline’ are reported as 0 because this baseline was not included in the results of
Kaufman, Kraft, and Sen7.

S2.6 Blair and Sambanis
23

Blair and Sambanis23 state that their escalation model outperforms other models across a variety of settings.
However, they do not test the performance evaluations to see if the di↵erence is statistically significant. We
find that there is no significant di↵erence between the smoothed AUC values of the escalation model’s
performance and other models they compare it to when we use a test for significance. Further, we provide
a visualization of the 95% confidence intervals of specificities and sensitivities in the smoothed ROC curve
they report for their model (escalation) as well as for a baseline model (cameo) — and find that the 95%
confidence intervals are large (see Figure S3).



Variable name Reason for leakage Variable definition in data documentation
pop a↵ected by target variable population; in 1000s
lpop a↵ected by target variable log of population

polity2 a↵ected by target variable revised polity score
gdpen a↵ected by target variable gdp/pop based on pwt5.6; wdi2001;cow energy data
onset codes civil war onset 1 for civil war onset

ethonset codes civil war onset 1 if onset = 1 and ethwar ⇠= 0
durest NA if onset = 0 estimated war duration
aim NA if onset = 0 1 = rebels aim at center; 3 = aim at exit or autonomy; 2 = mixed or ambig.
ended NA if onset = 0 war ends = 1; 0 = ongoing
ethwar NA if onset = 0 0 = not ethnic; 1 = ambig/mixed; 2 = ethnic

emponset codes civil war onset onset coded for data with empires
sdwars codes ongoing civil war Number of Sambanis/Doyle civ wars in progress
sdonset codes civil war onset onset of Sambanis/Doyle war
colwars codes ongoing civil war Number of Collier/Hoe✏er wars in progress
colonset codes civil war onset onset of Collier/Hoe✏er war
cowwars codes ongoing civil war Number of COW civ wars in progress
cowonset codes civil war onset onset of COW civ war

Table S5: This table highlights the variables included as independent variables in Kaufman, Kraft, and Sen7

which cause a data leakage. In the original use of the dataset, Fearon and Laitin20 include lagged versions of
the first 4 variables in the list as independent variables in their model to avoid leakage. Following their use
of lagged versions of these variables, we do the same in our correction to avoid leakage. The other variables
are proxies for the outcomes of interest and hence we remove them from the models to avoid data leakage.

Uncertainty quantification, p-values and Z-values for tests of statistical significance.

• We report p-values and Z values for a one-tailed significance test comparing the smoothed AUC perfor-
mance of the escalation model with other baseline models reported in their paper — quad, goldstein,
cameo and average respectively. Note that we do not correct for multiple comparisons; such a cor-
rection would further reduce the significance of the results. We implement the comparison test for
smoothed ROC curves detailed in Robin et al.24.

– 1 month forecasts: Z = 0.64, 1.09, 0.42, 0.67; p = 0.26, 0.14, 0.34, 0.25

– 6 months forecasts: Z = 0.41, 0.08, 0.70, 0.69; p = 0.34, 0.47, 0.24, 0.25

• The 95% confidence intervals for the 1 month models are:

– escalation: 0.66-0.95

– quad : 0.63-0.95

– goldstein: 0.62-0.93

– cameo: 0.65-0.95

– average: 0.65-0.95

• The 95% confidence intervals for the 6 month models are:

– escalation: 0.64-0.93

– quad : 0.60-0.90

– goldstein: 0.68-0.93

– cameo: 0.58-0.92

– average: 0.60-0.92

While a small p-value is used to reject the null hypothesis (in this case — that the out-of-sample per-
formance does not di↵er between the models being compared), a singular focus on a test for statistical
significance at a pre-defined threshold can be harmful (see, for example Imbens25). Blair and Sambanis do
report performance evaluations for a variety of di↵erent model specifications. However, the purpose of such



robustness checks is to determine whether model performance sensitive to the parameter choices; it is unclear
whether it helps deal with issues arising from sampling variance. At any rate, Blair and Sambanis’s results
turn out to be highly sensitive to another modeling choice: the fact that they compute the AUC metric
on the smoothed ROC curve instead of the empirical curve that their model produces. Smoothing refers
to a transformation of the ROC curve to make the predicted probabilities for the war and peace instances
normally distributed instead of using the empirical ROC curve (see Robin et al.24). This issue was pointed
out by Beger, Morgan, and Ward26 and completely changes their original results; Blair and Sambanis27

discuss it in their rebuttal.

S2.7 Overview of papers in Table S6

Table S6 provides the list of 12 papers included in our review, showing information about whether they report
confidence intervals, conduct tests of statistical significance when comparing classifier performance, which
metrics they report, the number of rows and the number of positive instances (i.e. instances of war/conflict)
in the test set, and whether their main claim relies on out-of-sample evaluation of classifier performance. We
detail information about the numbers we report in Table S6 below.

• Hegre et al.28: We report the number of rows and number of positive instances of civil war incidence
for the dates between 2001 and 2013 in the UCDP dataset, i.e. all years for which out-of-sample
estimates are provided. We report the out-of-sample AUC performance di↵erence for the Major conflict
setting. Out-of-sample evaluation results are not included in the main text of the paper, hence we report
that the paper’s main claim does not rely on out-of-sample evaluations.

• Muchlinski et al.4: We report the number of rows and number of positive instances of civil war
onset for the dates after 2000 in the out-of-sample dataset provided by Muchlinski et al. We report
the out-of-sample AUC performance di↵erence between the Random Forests and the best logistic
regression setting. Out-of-sample evaluation results are used to justify the performance improvement
of using Random Forests models, hence we report that the paper’s main claim relies on out-of-sample
evaluations.

• Chiba and Gleditsch29: We report the total number of instances and the number of positive instances
of governmental onsets in the years 2013-14 (the test set dates). We report the di↵erence between the
territorial onset AUC’s reported in the paper. Note that while Chiba and Gleditsch29 do report small
number of data points that are used in one of their settings, they do not address how to estimate
variance or perform tests of statistical significance. Out-of-sample evaluation results are not used as
the main evidence of better performance in the main text of the paper, hence we report that the paper’s
main claim does not rely on out-of-sample evaluations.

• Colaresi and Mahmood5: We report the number of rows and onsets of civil war after the year
1988 (the test set dates). We report the out-of-sample AUC di↵erence between the two random forests
models compared in the paper. Out-of-sample evaluation results are used to justify the performance
improvement of using an iterative method for model improvement, hence we report that the paper’s
main claim relies on out-of-sample evaluations.

• Hirose, Imai, and Lyall30: We report the number of locations included in the out-of-sample results.
Since the paper does not attempt binary classification, we do not report the number of positive instances
in this case. We report the out-of-sample performance gain of adding relative ISAF support to the
baseline model in the IED attack setting of the paper. Out-of-sample evaluation results are used as
important evidence of better model performance in the main text of the paper, hence we report that
the paper’s main claim relies on out-of-sample evaluations.

• Schutte31: We report the number of rows in the entire dataset, since the paper uses k-fold cross
validation and therefore all instances are used for testing. Since the paper does not attempt binary
classification, we do not report the number of positive instances in this case. We report the out-
of-sample normalized MAE di↵erence between the population model and the best performing model
compared in the paper. Out-of-sample evaluation results are used as important evidence of better



(a) Visualizing the 95% confidence intervals of the
specificities for the 1 month forecast in the smoothed
ROC curve reported in Blair and Sambanis23.

(b) Visualizing the 95% confidence intervals of the
sensitivities for the 1 month forecast in the smoothed
ROC curve reported in Blair and Sambanis23.

(c) Visualizing the 95% confidence intervals of the
specificities for the 6 month forecast in the smoothed
ROC curve reported in Blair and Sambanis23.

(d) Visualizing the 95% confidence intervals of the
sensitivities for the 6 month forecast in the smoothed
ROC curve reported in Blair and Sambanis23.

Figure S3: The wide confidence intervals for sensitivities and specificities reported in Blair and Sambanis.
Here, we visualize the escalation and cameo models for the 1 month and 6 month forecast in the base
specification (reported in Figure 1 of their paper).

model performance in the main text of the paper, hence we report that the paper’s main claim relies
on out-of-sample evaluations.

• Hegre, Hultman, and Nyg̊ard32: We report the number of rows and number of positive instances
of civil war incidence for the dates between 2001 and 2013 in the UCDP dataset, i.e. all years for which
out-of-sample estimates are provided. We report the out-of-sample AUC performance di↵erence for



the Major conflict setting. Out-of-sample evaluation results are not used as the primary evidence of
better model performance in the main text of the paper, hence we report that the paper’s main claim
does not rely on out-of-sample evaluations.

• Hegre et al.33: We report the number instances with state based conflict in the ViEWS Monthly
Outcomes at PRIO-Grid Level data between 2015 and 2017 — the years for which the out-of-sample
results are reported in the paper. We report the out-of-sample AUC performance di↵erence for the
state-based conflict setting. Out-of-sample evaluation results are used as the primary evidence of better
model performance in the main text of the paper, hence we report that the paper’s main claim relies
on out-of-sample evaluations.

• Kaufman, Kraft, and Sen7: We report the total number of rows and all instances of civil war
incidence in the dataset used by Kaufman et al., since they use k-fold cross validation and therefore all
instances are used for testing. We report the out-of-sample accuracy di↵erence between the Adaboost
and logistic regression settings. Out-of-sample evaluation results are used as the primary evidence of
better model performance in the main text of the paper, hence we report that the paper’s main claim
relies on out-of-sample evaluations.

• Wang6: We report the total number of rows and onsets of civil war used in the dataset used by Wang
since they use k-fold cross validation and therefore all instances are used for testing. We report the
out-of-sample AUC performance di↵erence between the Adaboost and logistic regression models. Out-
of-sample evaluation results are used as the primary evidence of better model performance in the main
text of the paper, hence we report that the paper’s main claim relies on out-of-sample evaluations.

• Blair and Sambanis23: We report the number of rows and onsets of civil war after the year 2007
(the test set dates). We report the out-of-sample AUC performance di↵erence between the escalation
and cameo models for the one-month base setting. Out-of-sample evaluation results are used as the
primary evidence of better model performance in the main text of the paper, hence we report that the
paper’s main claim relies on out-of-sample evaluations.

• Hegre, Nyg̊ard, and Landsverk34: We report the number of rows and number of positive instances
for civil war onset the dates between 2001 and 2018, i.e. all years for which out-of-sample estimates are
provided. We don’t report the out-of-sample performance di↵erence because the paper does not perform
comparisons between models. Out-of-sample evaluation results are used as the primary evidence of
model performance in the main text of the paper, hence we report that the paper’s main claim relies
on out-of-sample evaluations.

S3 Model info sheets can detect and prevent leakage in ML-based

science

We include a template for model info sheets in the next section (Section S4). Here, we detail how model
info sheets would address each type of leakage that we found in our survey, as well as the types of leakage
we found in our case study of civil war prediction.

• L1.1 No test set. Model info sheets require an explanation of how the train and test set is split
during all steps in the modeling process (Q9-17 of model info sheets).

• L1.2 Pre-processing on training and test set. Details of how the train and test set are separated
during the preprocessing selection step need to be included in the model info sheet (Q12-13). In our
civil war prediction case study, this would address leakage due to incorrect imputation4–6.

• L1.3 Feature selection on training and test set. Details of how the train and test set are separated
during the feature selection step need to be included in the model info sheet (Q14-15).

• L1.4 Duplicates in datasets. Model info sheets require details of whether there are duplicates in
the dataset, and if so, how they are handled (Q10).



Paper CI?
Stat. sig
test?

Metric(s)
Num. rows
in test set

Num. positive
test set instances

Main Claim
OOS?

OOS performance
delta

Hegre et al.28 No No AUC, Brier score 2197 321 No 0.006
Muchlinski et al.4 No No AUC, F1 score 896 19 Yes 0.04
Chiba and Gleditsch29 No No AUC, Brier score 4176 15 No 0.03
Colaresi and Mahmood5 No No AUC, Precision, Recall 1778 29 Yes 0.02
Hirose, Imai, and Lyall30 No * MAE, RMSE 14,606 — Yes 0.16
Schutte31 No No MAE 3744 — Yes 0.09
Hegre, Hultman, and Nyg̊ard32 No No AUC 2197 321 No 0.02

Hegre et al.33 No No
AUC, Brier score, AUPR, Accuracy,
F1 score, cost-based threshold

384,372 1848 Yes 0.01

Kaufman, Kraft, and Sen7 No No Accuracy 6610 918 Yes 0.03
Wang6 Yes No AUC, Precision, Recall 6363 116 Yes 0.12
Blair and Sambanis23 No No AUC, Precision, Recall 15,744 11 Yes 0.03
Hegre, Nyg̊ard, and Landsverk34 Yes No AUC, AUPR, TPR/FPR 3042 79 Yes —

Table S6: A list of papers for which code and dataset were available, showing information about whether they
report confidence intervals, conduct tests of statistical significance when comparing classifier performance,
which metrics they report, the number of rows and the number of positive instances (i.e. instances of
war or conflict or onset thereof) in the test set, and whether their main claim relies on out-of-sample
evaluation of classifier performance. AUC = Area Under ROC, MAE = Mean Absolute Error, RMSE =
Root Mean Squared Error, AUPR = Area Under Precision-Recall Curve, TPR = True Positive Rate, FPR =
False Positive Rate, OOS performance delta = the performance di↵erence for the most salient performance
comparison reported in the paper (details in Section S2.7). *Hirose et al. state that the out-of-sample
performance is significantly better in the Supplement of their paper, but we could not find the figure they
cite as evidence of this claim in their Supplement.

• L2 Model uses features that are not legitimate. For each feature used in the model, researchers
need to argue why the feature is legitimate to be used for the modeling task at hand (Q21). This
addresses the leakage due to the use of proxy variables in Kaufman, Kraft, and Sen7.

• L3.1 Temporal leakage. In case the claim is about predicting future outcomes of interest based on
ML methods, researchers need to provide an explanation for why the time windows used in the training
and test set are separate, and why data in the test set is always a later timestamp compared to the
data in the training set (Q20). This addresses the temporal leakage in Wang, Kaufman, Kraft, and
Sen6,7.

• L3.2 Dependencies in training and test data. Researchers need to reason about the dependencies
that may exist in their dataset and outline how dependencies across training and test sets are addressed
(Q11).

• L3.3 Sampling bias in test distribution. Researchers need to reason about the presence of selection
bias in their dataset and outline how the rows included for data analysis were selected, and how the
test set matches the distribution about which the scientific claims are made (Q18-19).
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S4  Model Info Sheets Template 
 
 
About model info sheets 
 
Completing this model info sheet requires the researcher to provide precise arguments 
to justify that predictive models used for making scientific claims do not suffer from 
leakage. It is inspired by the model cards introduced by Mitchell et al.1 
 
Model info sheets are intended to accompany the paper or report that introduces the 
model: for instance, as an appendix or supplemental material. For feedback or 
questions, contact: sayashk@princeton.edu 
 
The model info sheet starts on the next page. After filling it out, save it starting from that 
page. To cite the paper that introduces the model info sheets, use the bibliography file 
available at reproducible.cs.princeton.edu/citation.bib 
 
  

 
1 Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, 
Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. "Model cards for model reporting." 
In Proceedings of the conference on fairness, accountability, and transparency, 2019. 

mailto:sayashk@princeton.edu
https://reproducible.cs.princeton.edu/citation.bib
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Model Info Sheet 
 
 
 
Section 1: Information about paper or report 
 
 
1) Author(s): Names of the authors of the paper or report 
 
 
 
2) Title of the paper or report which introduces the model 
 
 
 
3) DOI or permanent link to the paper or report (for example, link to arxiv.org webpage) 
 
 
 
4) License: Under which license(s) are the data and/or model shared? 
 
 
 
5) Email address of the corresponding author 
 
 
 
 
Section 2: Scientific claim(s) of interest 
 
 
6) Does your paper make a generalizable claim based on the ML model? If yes, what is 
the scientific claim? For example, “Our ML model can be used to diagnose Covid-19 
using chest radiographs of adult patients”.  
 
If there are multiple claims, list each claim in a new line, along with a claim number. 
 
 
 
7) Is the scientific claim made about a distribution or population from which you can 
sample? If yes: (a) what is the population or distribution about which the scientific claim 
is being made? (b) What is the sample used for the study? For example, “(a) 
Population: adult patients with symptoms of Covid-19. (b) Sample: We use a random 
sample of adult patients who present at a U.S. based hospital between April 2020 and 
June 2020”.  
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If there are multiple scientific claims, list your answer for each claim in a new line, 
corresponding to their claim number in Q6.  
 
Note: A difference between the population and the set from which the sample is drawn 
could highlight potential generalizability failures, which are related to but distinct from 
leakage. 
 
 
 
8) Does the scientific claim only apply to certain subsets of the distribution mentioned in 
Q6? For example, “Our model works on chest radiographs of U.S.-based adult patients 
and might not generalize to radiographs taken in other places or using different 
machines.”  
 
If there are multiple claims, list your answer for each claim in a new line, corresponding 
to their claim number in Q6. 
 
 
 
 
 
Section 3: Train-test split is maintained across all steps in creating the model 
 
 
9) Train-test split type: How was the dataset split into train and test sets? (For example, 
cross-validation; separate train and test sets).  
 
 
 
 
 
 
 
10) Are there duplicates in the dataset? If yes, explain how duplicates are handled to 
ensure the train-test split. 
 
 
 
 
 
 
 
 
11) In case the dataset has dependencies (e.g., multiple rows of data from the same 
patient), describe how the dependencies were addressed (for example, using block-
cross validation). 

If your model does not have a separate test set, it could suffer from 
leakage due to overfitting 

If duplicates from the training set are included in the test set, your 
model could suffer from leakage. The higher the percentage of 

duplicates in the test set, the more severe the leakage. 
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12) List all the pre-processing steps used in creating your model. For example, imputing 
missing data, normalizing feature values, selecting a subset of rows from the dataset for 
building the model. 
 
 
 
13) How was the train-test split observed during each pre-processing step? If 
applicable, use a separate line for each step mentioned in Q12.  
 
 
 
 
 
 
 
14) List all the modeling steps used in creating your model. For example, feature 
selection, parameter tuning, model selection. 
 
 
 
15) How was the train-test split observed during each modeling step? If applicable, use 
a separate line for each step mentioned in Q14.  
 
 
 
 
 
 
 
16) List all the evaluation steps used in evaluating model performance. For example, 
cross-validation, out-of-sample testing. 
 
 
 
17) How was the train-test split observed during each evaluation step? If applicable, use 
a separate line for each step mentioned in Q16. 
 

If dependencies across the train-test split are not addressed, your 
model could suffer from leakage. The higher the number of rows in 

the test set with dependencies, the more severe the leakage. 
 

If the train-test split is not maintained during all pre-processing steps, 
your model could suffer from leakage. 

If the train-test split is not maintained during all modeling steps, your 
model could suffer from leakage. 

If the train-test split is not maintained during all evaluation steps, your 
model could suffer from leakage. 
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Section 4: Test set is drawn from the distribution of scientific interest. 
 
 
18) Why is your test set representative of the population or distribution about which you 
are making your scientific claims? 
 
 
 
 
 
 
 
19) Explain the process for selecting the test set and why this does not introduce 
selection bias in the learning process. 
 
 
 
 
 
 
 
 
20) In case your model is used to predict a future outcome of interest using past data, 
detail how data in the training set is always from a date earlier than the data in the test 
set. 
 
 
 
 
 
 
 
Section 5: Each feature used in the model is legitimate for the task 
 
 
21) List the features used in the model, alongside an argument for their legitimacy. A 
legitimate feature is one that would be available when the model is used in the real 
world and is not a proxy of the outcome being predicted. You can also include this list in 
an appendix and reference the relevant section of your Appendix here.  
 

If the test set distribution is different from the scientific claim of 
interest (listed in Q7), your model could suffer from leakage. 

Selection bias (for example, only choosing data from a given 
geographic location but expecting your model’s performance to 

generalize to all locations) can lead to leakage. 

In predictions about future outcomes of interest, using data from the 
future to predict in the training set the past in the test set is a form of 
leakage. Data in the training set should always have timestamps of 

an earlier time than those in the test set to avoid leakage. 
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For example, “Patient age: We include this feature in our ML model for hypertension 
diagnosis since patient age is easily available in a clinical setting”.   
 
An example of a feature that should not be included (for illustration only; you do not 
need to include these in your model info sheet): “Anti-hypertensive drugs: We do not 
include the use of anti-hypertensive drugs as a feature in our ML model for hypertension 
diagnosis since that information is only available after diagnosis and would not be 
available when a new patient presents with symptoms of hypertension.”  
 
Note: You do not need to list each feature used in your model here. However, you must 
provide an argument for the legitimacy of each feature included in your model to ensure 
that your model does not suffer from leakage due to illegitimate features. For example, 
“our model only uses data from the previous year as features. For instance, to predict 
civil war in 2017, we only use lagged features from the year 2016. Since these features 
are always available in advance of when we want to make predictions using our model, 
none of these features can lead to leakage.”  
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