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THE BIGGER PICTURE Machine learning (ML) is widely used across dozens of scientific fields. However, a
common issue called ‘‘data leakage’’ can lead to errors in data analysis. We surveyed a variety of research
that uses ML and found that data leakage affects at least 294 studies across 17 fields, leading to overopti-
mistic findings. We classified these errors into eight different types. We propose a solution: model info
sheets that can be used to identify and prevent each of these eight types of leakage. We also tested the
reproducibility of ML in a specific field: predicting civil wars, where complex ML models were thought to
outperform traditional statistical models. Interestingly, when we corrected for data leakage, the supposed
superiority ofMLmodels disappeared: they did not perform any better than oldermethods. Our work serves
as a cautionary note against taking results in ML-based science at face value.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Machine-learning (ML) methods have gained prominence in the quantitative sciences. However, there
are many known methodological pitfalls, including data leakage, in ML-based science. We systematically
investigate reproducibility issues in ML-based science. Through a survey of literature in fields that
have adopted ML methods, we find 17 fields where leakage has been found, collectively affecting 294
papers and, in some cases, leading to wildly overoptimistic conclusions. Based on our survey, we intro-
duce a detailed taxonomy of eight types of leakage, ranging from textbook errors to open research prob-
lems. We propose that researchers test for each type of leakage by filling out model info sheets, which
we introduce. Finally, we conduct a reproducibility study of civil war prediction, where complex ML models
are believed to vastly outperform traditional statistical models such as logistic regression (LR). When
the errors are corrected, complex ML models do not perform substantively better than decades-old LR
models.
INTRODUCTION

There has been amarked shift toward the paradigm of predictive

modeling across quantitative science fields. This shift has been

facilitated by the widespread use of machine learning (ML)

methods. However, pitfalls in using ML methods have led to

exaggerated claims about their performance. Such errors can

lead to a feedback loop of overoptimism about the paradigm

of prediction, especially because non-replicable publications

tend to be cited more often than replicable ones.1 It is therefore

important to examine the reproducibility of findings in commu-

nities adopting ML methods.
This is an open access article und
Scope. We focus on reproducibility issues in ML-based sci-

ence, which involves making a scientific claim using the per-

formance of the ML model as evidence. There is a better-

known reproducibility crisis in research that uses traditional

statistical methods.2 We also situate our work in contrast

with other ML domains, such as methods research (creating

and improving widely applicable ML methods), ethics

research (studying the ethical implications of ML methods),

engineering applications (building or improving a product or

service), and modeling contests (improving predictive perfor-

mance on a fixed dataset created by an independent third

party). Investigating the validity of claims in all these areas is
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Figure 1. Survey of 22 papers that identify pitfalls in the adoption of ML methods across 17 fields, collectively affecting 294 papers

In each field, papers adoptingMLmethods suffer from data leakage. The column headings for types of data leakage, shown in bold, are based on our taxonomy of

data leakage.We also highlight other issues that are reported in the papers: (1) computational reproducibility (the lack of availability of code, data, and computing

environment to reproduce the exact results reported in the paper); (2) data quality (e.g., small size or large amounts of missing data); (3) metric choice (using

incorrect metrics for the task at hand, e.g., using accuracy for measuring model performance in the presence of heavy class imbalance); and (4) standard dataset

use, where issues are found despite the use of standard datasets in a field.16–37
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important, and there is ongoing work to address reproduc-

ibility issues in these domains.3–6

We define a research finding as reproducible if the code

and data used to obtain the finding are available and the data

are correctly analyzed.4,7,8 This is a broader definition than

computational reproducibility, when the results in a paper can

be replicated using the exact code and dataset provided by the

authors (see supplemental experimental procedures, section S1).

Leakage. Data leakage is a spurious relationship between the

independent variables and the target variable that arises as an

artifact of the data collection, sampling, or pre-processing strat-

egy. Because the spurious relationship will not be present in the

distribution about which scientific claims aremade, leakage usu-

ally leads to inflated estimates of model performance.

Data leakage has long been recognized as a leading cause of

errors in ML applications.9 In formative work on leakage, Kauf-

man et al.10 provide an overview of different types of error and

give several recommendations for mitigating these errors. Since

this paper was published, the ML community has investigated

leakage in several engineering applications and modeling com-

petitions.11–15 However, leakage occurring in ML-based science
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has not been comprehensively investigated. As a result, mitiga-

tions for data leakage in scientific applications of ML remain

understudied.

In this paper, we systematically investigate reproducibility is-

sues in ML-based science as a result of data leakage. Our

main contributions are as follows:

1. A survey and taxonomy of reproducibility issues caused

by leakage. We provide evidence for a growing reproducibility

crisis in ML-based science. Through a survey of literature in

research communities that adopted MLmethods, we find 22 pa-

pers across 17 fields where leakage has been found, collectively

affecting 294 papers (Figure 1). We highlight that data leakage

mitigation strategies developed for other ML applications, such

as modeling contests and engineering applications, often do

not translate toML-based science. Based on our survey, we pre-

sent a fine-grained taxonomy of eight types of leakage that range

from textbook errors to open research problems.

2.Model info sheets to detect and prevent leakage.Current

standards for reporting model performance in ML-based sci-

ence often fall short in addressing issues caused by leakage.

Specifically, checklists and model cards are one way to provide
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standard best practices for reporting details about ML

models.38–40 However, current efforts do not address issues

arising because of leakage. Further, most checklists currently

in use are not developed for ML-based science in general but

rather for specific scientific or research communities.4,38 As a

result, best practices for model reporting in ML-based science

are underspecified.

We introduce model info sheets to detect and prevent

leakage in ML-based science. They are inspired by the model

cards in Mitchell et al.40 Filling out a model info sheet requires

the researcher to provide precise arguments to justify that

models used for making scientific claims do not suffer from

leakage, by answering 21 questions based on our taxonomy

of leakage.

3. An empirical case study of leakage in civil war predic-

tion. For an in-depth look at the impact of reproducibility errors,

we undertake a reproducibility study in civil war prediction, a

subfield of political science where ML models are believed to

vastly outperform older statistical models such as logistic

regression (LR). We perform a systematic review to find papers

on civil war prediction and find that all papers in our review claim-

ing the superior performance of complex ML models compared

with KR models fail to reproduce because of data leakage.

Each of these papers was published in top political science

journals. Leakage affects complexMLmodels, as well as simpler

LR models. But when the errors caused by leakage are cor-

rected, ML models no longer perform substantively better than

decades-old LR models.

RESULTS

Evidence of a reproducibility crisis
Many scientific fields have adopted ML methods and the para-

digm of predictive modeling.41–46 We find at least three main

uses of ML models in scientific literature. First, models that are

better at prediction are thought to enable an improved under-

standing of scientific phenomena.47 Second, especially when

used in medical fields, models with higher predictive accuracy

can aid in research and development of better diagnostic tools.48

Finally, ML-based methods have also been used to investigate

the inherent predictability of phenomena, especially for predict-

ing social outcomes.49 The increased adoption of MLmethods in

science motivates our investigation of reproducibility issues in

ML-based science.

Data leakage causes irreproducible results

Researchers in many communities have already documented

reproducibility failures in ML-based science within their fields.

Here we conduct a cross-disciplinary analysis by building on

these individual reviews. This enables us to highlight the scale

and scope of the crisis, identify common patterns, and make

progress toward a solution.

When searching for past literature that documents reproduc-

ibility failures in ML-based science, we found that different

fields often use different terms to describe pitfalls and errors.

This makes it difficult to conduct a systematic search to find

papers with errors. Therefore, we do not present our results

as a systematic meta-review of leakage from a coherent sam-

ple of papers but rather as a lower bound of reproducibility is-

sues in ML-based science. In addition, most reviews look only
at the content of the papers and not the code and data pro-

vided with the papers to check for errors. This leads to un-

der-counting the number of affected papers, because the

code might have errors that are not apparent from reading

the papers.

We find 22 papers from 17 fields that outline errors in

ML-based science in their field, collectively affecting 294 papers.

A prominent finding that emerges is that data leakage is a pitfall

in every single case. Our findings present a worrying trend for the

reproducibility of ML-based science.

Note that leakage is one of many causes of irreproducible re-

sults. Other factors, such as the lack of available code and data,

can also lead to irreproducibility, and there are several studies

investigating these shortcomings.50,51 We discuss our choice

of terminology in detail in the supplemental experimental pro-

cedures (section S1).

The results from our survey are presented in Figure 1. Columns

in bold represent different types of leakage. The last four col-

umns represent other common trends in the papers we study.

For systematic reviews, we report the number of papers re-

viewed. Each paper in our survey highlights issues with leakage,

with six papers highlighting the presence of multiple types of

leakage in their field.

Data leakage mitigations for other ML applications do

not apply to scientific research

Most previous research and writing on data leakage has focused

on mitigating data leakage in engineering settings or predictive

modeling competitions.10–12 However, the taxonomy of data

leakage outlined in this body of work does not address all types

of leakage that we identify in our survey. In particular, we find that

leakage can result from a difference between the distribution of

the test set and the distribution of scientific interest. Robustness

to distribution shift is an area of ongoing research in MLmethods

and is as such an open problem.52 In addition, these settings are

very different from scientific research, and mitigations for data

leakage in modeling competitions, as well as engineering appli-

cations of ML, often do not translate into strategies for mitigating

data leakage in ML-based science.

Leakage in modeling competitions. In predictive modeling

competitions, dataset creation and model evaluation are left to

impartial third parties who have the expertise and incentives to

avoid errors. Within this framework, none of the participants

have access to the held-out evaluation set before the competi-

tion ends. In contrast, in most ML-based science, the researcher

has access to the entire dataset while creating the ML models.

Leakage often occurs because of the researcher having access

to the entire dataset during the modeling process.

Leakage in engineering applications. Leakage in real-world ap-

plications has led to exaggerated performance estimates, even

in consequential settings such as child maltreatment predic-

tion.53 One of the most common recommendations for detecting

and mitigating leakage is to deploy the ML model at a limited

scale in production. This advice is applicable only to engineering

applications of ML, where the end goal is not to gain insights

about a particular process but rather to serve as a component

in a product. Often, a rough idea of model performance is

enough to decide whether a model is good enough to be de-

ployed in a product. Contrarily, ML-based science involves mak-

ing a scientific claim using the performance of the ML model as
Patterns 4, 100804, September 8, 2023 3
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evidence. In addition, engineering applications of ML often oper-

ate in a rapidly changing context and have access to large data-

sets, so small differences in performances are often not as

important, whereas scientific claims are sensitive to small perfor-

mance differences between ML models.

Why do we call it a reproducibility crisis?

We say that ML-based science is suffering from a reproducibility

crisis for two related reasons. First, our results show that repro-

ducibility failures in ML-based science are systemic. In nearly

every scientific field that has carried out a systematic study of

reproducibility issues, papers are plagued by common pitfalls.

In many systematic reviews, a majority of the papers reviewed

suffer from these pitfalls. Similar problems are likely to arise in

many fields that are adopting ML methods. Second, despite

the urgency of addressing reproducibility failures, there are no

systemic solutions that have been deployed for these failures.

Scientific communities are discovering the same failure modes

across disciplines but have yet to converge on best practices

for avoiding reproducibility failures.

Calling attention to and addressing these widespread failures

is vital to maintaining public confidence in ML-based science.

At the same time, the use of ML methods is still in its infancy

in many scientific fields. Addressing reproducibility failures

pre-emptively in such fields can correct a lot of scientific

research that would otherwise be flawed.

Toward a solution: A taxonomy of data leakage
We now provide our taxonomy of data leakage errors in ML-

based science. Such a taxonomy can enable a better under-

standing of why leakage occurs and inform potential solutions.

Our taxonomy is comprehensive and addresses data leakage

arising during the data collection, pre-processing, modeling,

and evaluation steps. In particular, our taxonomy addresses all

cases of data leakage that we found in our survey (Figure 1).

Some of the categories in our taxonomy, e.g., sampling bias

[L3.3], were not considered types of leakage in prior work, but

they have the same cause as other categories of leakage:

spurious correlations between the outcome variables and the

features. They also have the same effect: they lead to overesti-

mates of model performance.

[L1] Lack of clean separation of training and test dataset. If

the training dataset is not separated from the test dataset during

all pre-processing, modeling, and evaluation steps, the model

has access to information in the test set before its performance

is evaluated. Because the model has access to information from

the test set at training time, the model learns relationships be-

tween the predictors and the outcome that would not be avail-

able in additional data drawn from the distribution of interest.

The performance of the model on these data therefore does

not reflect how well the model would perform on a new test set

drawn from the same distribution of data. This can happen in

several ways, such as:

[L1.1] No test set. Using the same dataset for training and

testing the model is a textbook example of overfitting, which

leads to overoptimistic performance estimates.54

[L1.2] Pre-processing on training and test set. Using the

entire dataset for any pre-processing steps, such as imputation

or over/under sampling, results in leakage. For instance, using

oversampling before splitting the data into training and test
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sets leads to an imperfect separation between the training and

test sets because data generated using oversampling from the

training set will also be present in the test set.

[L1.3] Feature selection on training and test set. Feature

selection on the entire dataset results in using information about

which feature performs well on the test set to make a decision

about which features should be included in the model.

[L1.4] Duplicates in datasets. If a dataset with duplicates is

used for the purposes of training and evaluating an ML model,

the same data could exist in the training set and the test set.

[L2] Model uses features that are not legitimate. If the

model has access to features that should not be legitimately

available for use in the modeling exercise, this could result in

leakage. One instance when this can happen is if a feature is a

proxy for the outcome variable.10 For example, Filho et al.55

find that a recent study included the use of anti-hypertensive

drugs as a feature for predicting hypertension. Such a feature

could lead to leakage because the model would not have access

to this information when predicting the health outcome for a new

patient. Further, if the fact that a patient uses anti-hypertensive

drugs is already known at prediction time, the prediction of hy-

pertension becomes a trivial task.

The judgment of whether the use of a given feature is legiti-

mate for a modeling task requires domain knowledge and can

be highly problem specific. As a result, we do not provide sub-

categories for this sort of leakage. Instead, we suggest that re-

searchers clearly specify which features are suitable for a

modeling task and justify their choice using domain expertise.

[L3] Test set is not drawn from the distribution of scientific

interest. The distribution of data on which the performance of an

ML model is evaluated differs from the distribution of data about

which the scientific claims are made. The performance of the

model on the test set does not correspond to its performance

on data drawn from the distribution of scientific interest.

[L3.1] Temporal leakage.When anMLmodel is used tomake

predictions about a future outcome of interest, the test set

should not contain any data from a date before the training set.

If the test set contains data from before the training set, the

model is built using data ‘‘from the future’’ that it should not

have access to during training and can cause leakage.

[L3.2] Nonindependence between training and test sam-

ples.Nonindependence between training and test samples con-

stitutes leakage, unless the scientific claim is about a distribution

that has the same dependence structure. In the extreme (but un-

fortunately common) case, training and test samples come from

the same people or units. For example, Oner et al.56 find that a

recent study on histopathology uses different observations of

the same patient in the training and test sets. In this case, the sci-

entific claim is being made about the ability to predict gene mu-

tations in new patients; however, it is evaluated on data from old

patients (i.e., data from patients in the training set), leading to a

mismatch between the test set distribution and the scientific

claim. Similarly, for predicting protein function, the family of the

protein can lead to dependencies if proteins from the same fam-

ily are split across the training and test sets.57 The train-test split

should account for the dependencies in the data to ensure cor-

rect performance evaluation. Methods such as ‘‘block cross-

validation’’ can partition the dataset strategically so that the per-

formance evaluation does not suffer from data leakage and
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overoptimism.58,59 Handling nonindependence between the

training and test sets in general (i.e., without any assumptions

about independence in the data) is a hard problem, because

we might not know the underlying dependency structure of the

task in many cases.60

[L3.3] Sampling bias in test distribution. Sampling bias in

the choice of test dataset can lead to data leakage. One example

of sampling bias is spatial bias, which refers to choosing the test

data from a geographic location but making claims about model

performance in other geographic locations. Another example is

selection bias, which entails choosing a non-representative sub-

set of the dataset for evaluation. For example, Bone et al.61 high-

light that in a study on predicting autism using ML models,

excluding the data corresponding to borderline cases of autism

leads to leakage because the test set is no longer representative

of the general population about which claims are made. In addi-

tion, borderline cases of autism are often the trickiest to diag-

nose, so excluding them from the evaluation set is likely to

lead to overoptimistic results. Cases of leakage caused by sam-

pling bias can often be subtle. For example, Zech et al.62 find that

models for pneumonia prediction trained on images from one

hospital do not generalize to images from another hospital

because of subtle differences in how images are generated in

each hospital.

A model may have leakage when the distribution about which

the scientific claim is made does not match the distribution from

which the evaluation set is drawn. ML models may also suffer

from a related but distinct limitation: the lack of generalization

when we try to apply a result about one population to another

similar but distinct population. Several issues with the general-

ization of ML models operating under a distribution shift have

been highlighted in ML methods research, such as fragility to-

ward adversarial examples,63 image distortion and texture,64

and overinterpretation.65 Robustness to distribution shift is an

ongoing area of work in ML methods research. Even slight shifts

in the target distribution can cause performance estimates to

change drastically.66 Despite ongoing work to create ML

methods that are robust to distribution shift, best practices to

deal with distribution shift currently include testing the ML

models on the data from the distribution we want to make claims

about.52 In ML-based science, where the aim is to create gener-

alizable knowledge, we should take results that claim to gener-

alize to a different population from the one models were evalu-

ated on with caution.

Other issues identified in our survey

Computational reproducibility issues. Computational reproduc-

ibility of a finding refers to sharing the complete code and data

needed to reproduce the findings reported in a paper exactly.

This is important to enable external researchers to reproduce re-

sults and verify their correctness. Five papers in our survey out-

lined the lack of computational reproducibility in their field.

Data quality issues. Access to good-quality data is essential for

creating ML models.67,68 Issues with the quality of the dataset

could affect the results of ML-based science. Ten papers in

our survey highlighted data quality issues such as not addressing

missing values in the data, the small size of datasets compared

with the number of predictors, and the outcome variable being a

poor proxy for the phenomenon being studied.
Metric choice issues. A mismatch between the metric used to

evaluate performance and the scientific problem of interest leads

to issues with performance claims. For example, using accuracy

as the evaluation metric with a heavily imbalanced dataset leads

to overoptimistic results, because the model can get a high ac-

curacy score by always predicting the majority class. Four pa-

pers in our survey highlighted metric choice issues.

Use of standard datasets. Reproducibility issues arose despite

the use of standard, widely used datasets, often because of the

lack of standard modeling and evaluation procedures such as

fixing the train-test split and evaluation metric for the dataset.

Seven papers in our survey highlighted that issues arose despite

the use of standard datasets.

Model info sheets for detecting and preventing leakage
Our taxonomy of data leakage highlights several failure modes

that are prevalent in ML-based science. To detect cases of

leakage, we provide a template for a model info sheet to accom-

pany scientific claims using predictive modeling as a supple-

mental document (supplemental experimental procedures, sec-

tion S4). The template consists of 21 questions that elicit precise

arguments needed to justify the absence of leakage.

Prior work on model cards and reporting standards

Our proposal is inspired by prior work on model cards and

checklists, which we now review. Mitchell et al.40 introduced

model cards for reporting details about ML models, with a focus

on precisely reporting the intended use cases of ML models.

They also addressed fairness and transparency concerns: they

require that the performance of ML models on different groups

of users (e.g., on the basis of race, gender, and age) is reported

and documented transparently. Thesemodel cards complement

the datasheets introduced by Gebru et al.69 to document details

about datasets in a standard format.

The use of checklists has also been impactful in improving re-

porting practices in the few fields that have adopted them.70

Although checklists and model cards provide concrete best

practices for reporting standards,38–40,71 current efforts do not

address pitfalls arising because of leakage. Further, even though

several scientific fields, especially those related to medicine,

have adopted checklists to improve reporting standards, most

checklists are developed for specific scientific or research com-

munities instead of ML-based science in general.

Scientific arguments to surface and prevent leakage

When ML models are used to make scientific claims, it is not

enough to simply separate the training and test sets and report

performance metrics on the test set. Unlike research in ML

methods, where a model’s performance on a hypothetical task

(i.e., one that is not linked to a specific scientific claim) is still of

interest to the researcher in some cases,72 in ML-based science,

claims about a model’s performance need to be connected to

scientific claims using explicit arguments. The burden of proof

for ensuring the correctness of these arguments is on the

researcher making the scientific claims.73

In our model info sheet, we ask researchers to answer 21

questions. These questions help them present three arguments

that are essential for determining that scientific results that use

ML methods do not suffer from data leakage. Note that most

ML-based science papers do not present any of the three
Patterns 4, 100804, September 8, 2023 5
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arguments, although they sometimes partially address the first

argument (clean train-test separation) by reporting out-of-sam-

ple prediction performance. The arguments below are based

on our taxonomy of data leakage issues and inform themain sec-

tions of the model info sheet.

[L1] Clean train-test separation. The researcher needs to

argue why the test set does not interact with training data during

any of the pre-processing, modeling, or evaluation steps to

ensure a clean train-test separation.

[L2] Each feature in the model is legitimate. The researcher

needs to argue why each feature used in their model is legiti-

mate, i.e., a claim made using each feature is of scientific inter-

est. Note that some models might use hundreds of features. In

such cases, it is even more important to reason about the cor-

rectness of the features used, because the incorrect use of a

single feature in the model can cause leakage. That said, the

same argument for why a feature is legitimate can often apply

to a whole set of features. For example, for a study using indi-

viduals’ location history as a feature vector, the use of the entire

vector can be justified together. Note that we do not ask for the

researcher to list each feature used in their model; rather, we

ask that the justification provided for the legitimacy of the fea-

tures used in their model should cover every feature used in

their model.

[L3] Test set is drawn from the distribution of scientific in-

terest. If the distribution about which the scientific claims are

made is different from the one on which the model is tested,

then any claims about the performance of an ML model on the

evaluation step fall short. The researcher needs to justify that

the test set is drawn from the distribution of scientific interest

and there is no selection or sampling bias in the data collection

process. This step can help clarify the distribution regardingwhich

scientific claims are being made and detect temporal leakage.

Model info sheets and our theory of change

Model info sheets can influence research practices in two

ways: first, researchers who introduce a scientific model

alongside a paper can use model info sheets to detect and

prevent leakage in their models. These info sheets can be

included as supplementary materials with their paper for

transparently reporting details about their models. In scientific

fields where the use of ML methods is not yet widespread,

using transparent reporting practices at an early stage

could enable easier adoption and more trust in ML methods.

This would also help assuage reviewer concerns about

reproducibility.

Second, journal submission guidelines could encourage or

require authors to fill out model info sheets if a paper does

not transparently report how the model was created. In this

case, model info sheets can be used to start a conversation

between authors and reviewers about the details of the

models introduced in a paper. Current peer-review practices

often do not require the authors to disclose any code or

data during the review process.74 Even if the code and data

are available to reviewers, reproducing results and spotting

errors in code is a time-consuming process that often cannot

be carried out under current peer-review practices. Model info

sheets offer a middle ground: they could enable a closer scru-

tiny of methods without making the process onerous for

reviewers.
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Limitations of model info sheets

Although model info sheets can enable the detection of all types

of leakage we identify in our survey, they suffer from limitations

owing to the lack of computational reproducibility of results in

scientific research, incorrect claims made in model info sheets,

and the lack of expertise of authors and reviewers.

First, the claims made in model info sheets cannot be verified

in the absence of computational reproducibility. That is, unless

the code, data, and computing environment required to repro-

duce the results in a paper are made available, there is no way

to ascertain whether model info sheets are filled out correctly.

Ensuring the computational reproducibility of results therefore

remains an important goal for improving scientific research

standards.

Second, incorrect claims made in model info sheets might

provide false assurances to reviewers about the correctness of

the claims made in a paper. However, by requiring authors to

precisely state details about their modeling process, model

info sheets enable incorrect claims to be challenged more

directly than in status quo, where details about themodeling pro-

cess are often left undisclosed.

Filling out and evaluating model info sheets requires some

expertise in ML. In fields where both authors and reviewers

lack any ML expertise, subtle cases of leakage might slip under

the radar despite the use of model info sheets. In such cases, we

hope that model info sheets released publicly along with papers

will enable discourse within scientific communities on the short-

comings of scientific models.

Finally, we acknowledge that our understanding of leakage

may evolve, and model info sheets may need to evolve with it.

To that end, we have versioned model info sheets, and plan to

update them as we continue to better understand leakage in

ML-based science.

A case study of civil war prediction
To understand the impact of data leakage, we undertake a repro-

ducibility study in a field where ML models are believed to vastly

outperform older statistical models such as LR for predictive

modeling: civil war prediction.

Over the last few years, this field has switched to predictive

modeling using complex ML models such as Random Forests

and Adaboost instead of LR (see Figure 2), with several papers

claiming near-perfect performance of these models for civil

war prediction.75–78 The goal of these papers is to predict civil

war in a region and time period using features such as GDP,

poverty rates, whether it is a democracy, etc. This is in contrast

with the field’s earlier focus on understanding and explaining

past conflicts. Table S6 gives an overview of the training data

used for the papers we considered. For a detailed overview of

the recent turn to predictive modeling in this field, see Bara.79

Although the literature we reviewed in our survey highlighted

the pitfalls in adopting ML methods (Figure 1), we go further

than most previous research to investigate whether the claims

made in the reviewed studies survive once the errors are

corrected.

Systematic search of predictive modeling literature in

civil war research

We conducted a systematic search to find relevant literature

(detailed in supplemental experimental procedures, section



Figure 2. The sharp increase in civil war papers that use ML

methods in the last few years

The number of political science papers containing the terms ‘‘civil war’’ and

‘‘machine learning’’ in the dimensions database of academic research.104
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S2.1). This yielded 124 papers. We narrowed this list to the 12

papers that focused on predicting civil war, evaluated perfor-

mance using a train-test split, and shared the complete code

and data. For these 12, we attempted to identify errors and

reproducibility issues from the text and by reviewing the code

provided with the papers. When we identified errors, we re-

analyzed the data with the errors corrected.

Finding 1: Data leakage causes irreproducible results. We pre-

sent our results in Figure 3. We found errors in 4 of the 12 pa-

pers—exactly the 4 papers that claimed superior performance

of complex ML models over baseline LR models for predicting

civil war. Each paper suffered from different forms of leakage.

All 4 papers were published in top-10 journals in the fields of

political science and international relations.80 When the errors

are corrected, complex ML models perform no better than

baseline LR models in each case except Wang,77 where the dif-

ference between the area under the curve (AUC) of the complex

ML models and LR models drops from 0.14 to 0.01. This is

despite the fact that the LR models were not trained to optimize

predictive accuracy: they were conceived as explanatory

models to understand past conflicts instead of predicting future

ones.47,81,82

We test our model info sheets on the four civil war prediction

papers with errors and find that they would detect each type of

leakage we identified in these papers (supplemental experi-

mental procedures, section S3). Note that leakage affects both

simple and complex models for civil war prediction. However,

because of higher model capacity, complex ML models tend

to over-fit to spurious correlations more easily in this case (sup-

plemental experimental procedures, section S2.2).

Beyond reproducibility, our results show that complex ML

models are not substantively better at civil war prediction than

decades-old LR models. This is consistent with similar sobering

findings in other tasks involving predicting social outcomes,

such as children’s life outcomes49 and recidivism.83 Although

prior work has found that some fields will benefit from the use

of ML methods,84 our findings suggest the need for tempering

the optimism about predictive modeling in the field of civil war

prediction and question the use of ML models in this field. We

provide a detailed overview of our methodology for correcting

the errors and show that our results hold under several robust-

ness checks in the supplemental experimental procedures, sec-

tion S2.
Finding 2: No significance testing or uncertainty quantification.

We found that 9 of the 12 papers for which complete code

and data were available included no significance tests

or uncertainty quantification for classifier performance com-

parison (Table S6). Especially when sample sizes are small,

significance testing and uncertainty quantification are impor-

tant steps toward reproducibility.48,85 As an illustration,

we examine this issue in detail in the case of Blair and Sam-

banis86 because their test dataset has a particularly small

number of instances of civil war onset (only 11). They propose

a model of civil war onset that uses theoretically informed fea-

tures and report that it outperforms other baseline models of

civil war onset using the AUC metric on an out-of-sample da-

taset. We find that the performance of their model is not

significantly better than other baseline models for civil war

prediction (Z = 0.64, 1.09, 0.42, and 0.67; p = 0.26, 0.14,

0.34, and 0.25 for a one-tailed significance test comparing

the smoothed AUC performance of the model proposed

in the paper—the escalation model—with other baseline

models reported in their paper—quad, goldstein, cameo,

and average, respectively). We implement the comparison

test for smoothed receiver operating characteristic curves

detailed by Robin et al.87 Note that we do not correct for mul-

tiple comparisons; such a correction would further reduce the

significance of the results. Further, all models have large con-

fidence intervals for their out-of-sample performance. For

instance, while the smoothed AUC performance reported by

the authors is 0.85, the 95% confidence interval calculated

using bootstrapped test set re-sampling is 0.66–0.95.

Lack of standard reporting practices for ML-based

science

Our hypothesis for why leakage is prevalent is that current stan-

dards for reporting model performance in ML-based science

often fall short in addressing leakage. Specifically, checklists

andmodel cards are one way to provide standard best practices

for reporting details about ML models.38–40 However, current ef-

forts do not address issues arising because of leakage. Further,

most checklists currently in use are not developed for ML-based

science in general but rather for specific scientific or research

communities.4,38 As a result, best practices for model reporting

in ML-based science are underspecified.

DISCUSSION

Beyond leakage: Perspectives on enhancing the
reproducibility of ML-based science
We found a number of other reproducibility issues in our survey

not limited to leakage. Here, we present five diagnoses for repro-

ducibility failures in fields adopting ML methods. Each of our di-

agnoses is paired with a recommendation to address it.

[D1] Lack of understanding of the limits to prediction.

Recent research for predicting social outcomes has shown

that even with complex models and large datasets, there are

strong limits to predictive performance.49,83 However, results

such as the better-than-human performance of ML models in

perception tasks such as image classification88,89 give the

impression of ML models surpassing human performance

across tasks, which can confuse researchers about the perfor-

mance they should realistically expect from ML models.
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Paper Muchlinski et al. Colaresi and Mahmood Wang Kaufman et al.

Claim Random Forests model 
drastically outperforms Logistic 
regression models 

Random Forests models drastically 
outperform Logistic regression 
model 

Adaboost and Gradient Boosted 
Trees (GBT) drastically outperform 
other models 

Adaboost outperforms other models

Error [L1.2] Pre-proc. on train-test
(Incorrect imputation)

[L1.2] Pre-proc. on train-test
(Incorrect reuse of an imputed 
dataset)

[L1.2] Pre-proc. on train-test.
(Incorrect reuse of an imputed dataset)
[L3.1] Temporal leakage (k-fold cross 
validation with temporal data)

[L2] Illegitimate features (Data 
leakage due to proxy variables)
[L3.1] Temporal leakage (k-fold 
cross validation with temporal data)

Impact Random Forests perform no 
better than Logistic Regression

Random Forests perform no better 
than Logistic Regression

Difference in AUC between Adaboost 
and Logistic Regression drops from 
0.14 to 0.01

Adaboost no longer outperforms 
Logistic Regression.
None of the models outperform a 
baseline model that predicts the 
outcome of the previous year

Discussion Impact of the incorrect 
imputation is severe since 95% 
of the out-of-sample dataset is 
missing and is filled in using the 
incorrect imputation method

Re-use the dataset provided by 
Muchlinski et al., which uses an 
incorrect imputation method

Re-use the dataset provided by 
Muchlinski et al., which uses an 
incorrect imputation method

Use several proxy variables for 
the outcome as predictors (e.g., 
colwars, cowwars, sdwars, all 
proxies for civil war), leading to 
near perfect accuracy

0.5

0.6

0.7

0.8

0.9

1.0

Reported results
(AUC)

Corrected results
(AUC)

Reported results
(AUC)

Corrected results
(AUC)

Reported results
(AUC)

Corrected results
(AUC)

Reported results
(Accuracy)

Corrected results
(Accuracy)

Logistic Regression 1
Logistic Regression 2
Logistic Regression 3
Random Forests

Logistic Regression
Random Forests 1
Random Forests 2

AdaBoost
GBT
Logistic Regression 1
Logistic Regression 2
Logistic Regression 3
Random Forests

AdaBoost
Extratrees
Lasso
Logistic Regression
Random Forest
SVM

Figure 3. A comparison of reported and corrected results in civil war prediction papers published in top political science journals

The main findings of each of these papers are invalid due to various forms of data leakage: Muchlinski et al.75 impute the training and test data together, Colaresi

and Mahmood76 and Wang77 incorrectly reuse an imputed dataset, and Kaufman et al.78 use proxies for the target variable that cause data leakage. When we

correct these errors, complex ML models (such as Adaboost and Random Forests) do not perform substantively better than decades-old logistic regression

models for civil war prediction in each case. Each column in the table outlines the impact of leakage on the results of a paper. The figure above each column shows

the difference in performance that results from fixing leakage.
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[R1] Understand and communicate limits to prediction. A

research agenda that investigates the efficacy of ML models in

tasks across scientific fields would increase our understanding

of the limits to prediction. This can alleviate the overoptimism

that arises from confusing progress in one task (e.g., image clas-

sification) with another (e.g., predicting social outcomes). If we

can identify upper bounds on the predictive accuracy of tasks

(i.e., lower bound of the Bayes Error Rate for a task), then once

the achievable accuracy has been reached, we can avoid a futile

effort to increase it further and can apply increased skepticism

toward results that claim to violate known bounds.

[D2] Hype, overoptimism, and publication biases. The hype

about commercial AI applications can spill over into ML-based

science, leading to overoptimism about their performance.

Non-replicable findings are cited more than replicable ones,1

which can result in feedback loops of overoptimism inML-based

science. Besides, publication biases that have been docu-

mented in several scientific fields90,91 can also affect ML-based

science.92,93

[R2] Treat results from ML-based science as tentative.

When overoptimism is prevalent in a field, it is important to

engage with results emerging from the field critically. Until repro-

ducibility issues in ML-based science are widely addressed and

resolved, results from this body of work should be treated with

caution. Researchers, journal editors, and policymakers who

use scientific research to inform real-world policy decisions
8 Patterns 4, 100804, September 8, 2023
should look beyond headline performance numbers when as-

sessing papers.

[D3] Inadequate expertise. The rapid adoption of ML

methods in a scientific field can lead to errors. These can be

caused by the lack of expertise of domain experts in using ML

methods and vice versa.

[R3] Interdisciplinary collaborations and communication of

best practices. Literature in the ML community should address

the different failure modes that arise during the modeling process.

Researcherswith expertise inMLmethods should clearly commu-

nicate best practices in deploying ML for scientific research.94

Having an interdisciplinary team consisting of researchers with

domain expertise and ML expertise can avoid errors.

[D4] Lack of standardization. Several applied ML fields, such

as engineering applications andmodeling contests, have adopted

practices such as standardized train-test splits, evaluation met-

rics, and modeling tasks to ensure the validity of the modeling

and evaluation process.95,96 However, these have not yet been

adopted widely in ML-based science. This leads to subtle errors

in the modeling process that can be hard to detect.

[R4] Adopt the common task framework when possible.

The common task framework allows us to compare the perfor-

mance of competing ML models using an agreed-upon training

dataset and evaluation metrics, a secret holdout dataset, and a

public leaderboard.97,98 Dataset creation and model evaluation

are left to impartial third parties who have the expertise and
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incentives to avoid errors. However, one undesirable outcome

that has been observed in communities that have adopted the

common task framework is a singular focus on optimizing a

particular accuracy metric to the exclusion of other scientific

and normatively desirable properties of models.67,85,99

[D5] Lack of computational reproducibility. The lack of

computational reproducibility hinders verification of results by in-

dependent researchers. Although computational reproducibility

does not mean that the code is error free, it can make the pro-

cess of finding errors easier, because researchers attempting

to reproduce results do not have to spend time getting the

code to run.

[R5] Ensure computational reproducibility. Platforms such

as CodeOcean,100 a cloud computing platform that replicates

the exact computational environment used to create the original

results, can be used to ensure the long-term reproducibility of

results. We follow several academic journals and researchers

in recommending that future research in fields using ML

methods should use similar methods to ensure computational

reproducibility.74,101

Conclusions
The attractiveness of adoptingMLmethods in scientific research

is in part due to the widespread availability of off-the-shelf tools

to create models without expertise in ML methods.102 However,

this laissez-faire approach leads to common pitfalls spreading to

all scientific fields that use ML. So far, each research community

has independently rediscovered these pitfalls. Without funda-

mental changes to research and reporting practices, we risk

losing public trust because of the severity and prevalence of

the reproducibility crisis across disciplines. Our paper is a call

for interdisciplinary efforts to address the crisis by developing

and driving the adoption of best practices for ML-based science.

Model info sheets for detecting and preventing leakage are a first

step in that direction.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Sayash Kapoor (sayashk@princeton.edu).

Materials availability

This study did not generate new materials.

Data and code availability

The code and data required to reproduce our case study on civil war prediction

have been uploaded to a CodeOcean capsule (CodeOcean: https://doi.org/

10.24433/CO.4899453.v1).103 The supplemental experimental procedures

(section S2) contains a detailed description of our methods and results from

additional robustness checks.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100804.
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Supplementary Information: Leakage and the Reproducibility
Crisis in ML-based Science

Supplemental Experimental Procedures.

Overview of the Appendix. In Section S1, we justify our choice of the word reproducibility. In Sec-
tion S2, we provide a detailed description of the methods we used to select papers for our review of civil war
prediction and fix reproducibility issues in the papers with errors. In Section S3, we show how model info
sheets address each type of leakage identified in our survey. In Section S4, we include a template for the
model info sheets.

We include a list of all 124 papers that we considered for our literature review on civil war prediction as
supplementary documents with this submission.

S1 Why do we call these reproducibility issues?

We acknowledge that there isn’t consensus about the term reproducibility, and there have been a number
of recent attempts to define the term and create consensus1. One possible definition is computational
reproducibility—when the results in a paper can be replicated using the exact code and dataset provided by
the authors2. We argue that this definition is too narrow because even cases of outright bugs in the code
would not be considered irreproducible under this definition. Therefore we advocate for a standard where
bugs and other errors in data analysis that change or challenge a paper’s findings constitute irreproducibility.

The goal of predictive modeling is to estimate (and improve) the accuracy of predictions that one might
make in a real-world scenario. This is true regardless of the specific research question one wishes to study
by building a predictive model. In practice one sets up the data analysis to mimic this real-world scenario
as closely as possible. There are limits to how well we can do this and consequently, there is always
methodological debate on some issues, but there are also some clear rules. If an analysis choice can be shown
to lead to incorrect estimates of predictive accuracy, there is usually consensus in the ML community that
it is an error. For example, violating the train-test split (or the learn-predict separation) is an error because
the test set is intended to provide an accurate estimate of ‘out-of-sample’ performance—model performance
on a dataset that was not used for training3. Thus, to define what is an error, we look to this consensus in
the ML community (e.g. in textbooks) and o↵er our own arguments when necessary.

S2 Materials and Methods: Reproducibility issues in civil war

prediction

Di↵erent researchers might have di↵erent aims when comparing the performance on civil war prediction —
determining the absolute performance, or comparing the relative performance of di↵erent models of civil
war prediction. Whether the aim is to determine the relative or absolute performance of models of civil war
prediction, data leakage causes a deeper issue in the findings of each of the 4 papers with errors that leads
to inaccurate estimates of both relative and absolute out-of-sample performance.

In correcting the papers with errors4–7, our aim is to report out-of-sample performance of the various
models of civil war prediction after correcting the data leakage, while keeping all other factors as close to
the original implementation as possible. Fixing the errors allows a more accurate estimate of out-of-sample
performance.



At the same time, we caution that just because our corrected results o↵er a more accurate estimate
of out-of-sample performance doesn’t mean that we endorse all other methodological choices made in the
papers. For example, to correct the results reported by Muchlinski et al.4, we use imputation on an out-of-
sample dataset that has 95% missing values. While an imputation model created only using the training data
avoids data leakage, it does not mean that using a dataset with 95% missing values to measure out-of-sample
performance is desirable.

S2.1 Paper selection for review

To find relevant papers on civil war prediction for our review, we used the search results from a dataset
of academic literature8 for papers with the terms ‘civil’ AND ‘war’ AND (‘prediction’ OR ‘predicting’ OR
‘forecast’) in their title or abstract, as well as papers that were cited in a recent review of the field9. To
keep the number of papers tractable, we limited ourselves to those that were published in the last 5 years,
specifically, papers published between 1st January 2016 and 14th May 2021. This yielded 124 papers. We
narrowed this list to the 15 papers that were focused on predicting civil war and evaluated performance
using a train-test split. Of the 15 papers that meet our inclusion criteria, 12 share the complete code and
data. For these 12, we attempted to identify errors and reproducibility issues from the text and through
reviewing the code provided with the papers. When we identified errors, we re-analyzed the data with the
errors corrected. We now address the reproducibility issues we found in each paper in detail.

S2.2 Muchlinski et al.
4

Imputation is commonly used to fill in missing values in datasets10. Imputing the training and test datasets
together refers to using data from the training as well as the test datasets to create an imputation model that
fills in all missing values in the dataset. This is an erroneous imputation method for the predictive modeling
paradigm, since it can lead to data leakage, which results in incorrect, over-optimistic performance claims.
This pitfall is well known in the predictive modeling community — discussed in ML textbooks3, blogs11 and
popular online forums12.

Muchlinski et al.4 claim that a Random Forests model vastly outperforms logistic regression models in
terms of out-of-sample performance using the AUC metric13. However, since they impute the training and
test datasets together, their results su↵er from data leakage. The impact of leakage is especially severe
because of the level of missingness in their out-of-sample test dataset: over 95% of the values are missing
(which is not reported in the paper), and 70 of the 90 variables used in their model are missing for all
instances in the out-of-sample test set.1 When their imputation method is corrected, their Random Forests
model performs no better than the logistic regression models that they compared against.

We focus on reproducing the out-of-sample results reported by Muchlinski et al.4. Table S1 provides
the comparisons between the results reported in Muchlinski et al.4, our reproductions of their reported
(incorrect) results, as well as the corrected version of their results. Muchlinski et al.4 received two critiques
of the methods used in their paper6,14. 2. In response, they published a reply with clarifications and revised
code addressing both critiques16. We use the revised version of their code. We find that the error in their
imputation methods exists in the revised code as well as the original code, and was not identified by the
previous critiques. Muchlinski et al.4 re-use the dataset from Hegre and Sambanis17 when training their
models, and provide a separate out-of-sample test set for evaluation. To address missing values, they use
a Random Forests based imputation method in R called rfImpute. However, the training and test sets are
imputed together, which leads to a data leakage. This results in overoptimistic performance claims. Below,
we detail the steps we take to correct their results, provide a visualization of the data leakage, and provide
a simulation showcasing how the data leakage can result in overoptimistic claims of performance.

Correcting the data imputation. To correct this error, we use the mice package in R which uses
multiple imputation for imputing missing data. This is because the mice package allows us to specify which
rows in the dataset are a part of the test set and it does not use those rows for creating the imputation

1
While leakage is particularly serious in predictive modeling, a dataset with 95% of values missing is problematic even for

explanatory modeling.
2
Hofman et al.

15
also outline the shortcomings in the initial code released by Muchlinski et al.

4
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model, whereas rfImpute — the original method used to impute the missing data in the original results by
Muchlinski et al.4 — does not have this feature. The authors imputed the training set together with the
out-of-sample test set using rfImpute, which led to data leakage. Table S1 provides the comparisons between
the results reported in Muchlinski et al.4, our reproductions of their reported (incorrect) results, as well as
the corrected version of their results.

Using multiple imputation fills in missing values without regarding the underlying variable’s original dis-
tribution. For example, using multiple imputation fills in di↵erent missing values for the variable representing
the percentage of rough terrain in a country in di↵erent years18, whereas this particular variable (percentage
of rough terrain) is constant over time. However, when multiple imputation is used with a train-test split,
there is still no leakage between the training and test sets, since the imputation model only uses data from
the training set to fill in missing values in the test set.

Why can’t we use rfImpute in the corrected results? Instead of using the mice package, another
way to impute the data correctly, i.e., without data leakage, would be to run the imputation using rfImpute
on the training and test data separately — creating two separate imputation models — one for the training
data and one for the test data. We could not use this imputation method because 70 of the 90 variables used
in Muchlinski et al.4’s model as features do not have any values in the out-of-sample test data provided —
i.e. they are missing for all observations in the out-of-sample dataset — and rfImpute requires at least some
values for each variable to not be missing. In other words, the mice package allows us to train an imputation
model on the training set and use it to fill in missing values in the test set.

Subtle di↵erences between explanatory and predictive modeling. In the explanatory modeling
paradigm, the aim is to draw inferences from data, as opposed to optimizing and evaluating out-of-sample
predictive performance. In this case, data imputation would be considered a part of the data pre-processing
step, even though it is still important to keep in mind the various assumptions being made in this process
Schafer19. Contrarily, in the predictive modeling paradigm, the imputation is a part of the modeling step3

because the aim of the modeling exercise is to validate performance on an out-of-sample test set, which the
model does not have access to during the training. In this case, imputing the training and test datasets
together leads to leaking information from the test set to the training set and thus the performance evaluation
on the purportedly “out-of-sample” test set would be an over-estimate.

What is the precise mechanism by which the leakage occurs in Muchlinski et al.4? When
Muchlinski et al.4 impute the missing values in the out-of-sample test set, the imputation model has access
to the entire training data as well as the labels of the target variables in the test data — they also include
the target variable in the list of variables which the imputation model treats as independent variables
when carrying out the imputation. The model therefore uses correlations between the target variable and
independent variables in the training dataset and uses them to fill in the missing values in the test dataset
— i.e. the model uses the labels of the target variables in the test data and correlations from the training
data to fill in missing values. This leads to the test dataset having similar correlations between the target
and independent variables as the ones present in the training data. Further, the missing data is filled in in
such a way that it favors ML models such as Random Forests over logistic regression models, as we show in
the visualization below.

Visualizing the leakage. We can visually observe an instance of data leakage in Figure S1. We focus on
the distribution of the feature agexp, which represents the proportion of agricultural exports in the GDP of
a country. We choose this feature because in the Muchlinski et al. paper, this feature had the highest gini
index for the random forests model — which means that it was an important feature for the model. While
we only visualize one feature here, similar results hold across multiple features used in the model. Below,
we reconstruct the process by which the data leakage was generated — following the exact steps Muchlinski
et al.4 used to create and evaluate the dataset:

• Figure S1a represents the distribution of the agexp variable for war and peace data points in the original
dataset by Hegre and Sambanis17, ignoring missing values.
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(c) Distribution of the agexp variable for peace
and war data points only for the data points
that were added during imputation (i.e. the
data points that were missing in the original
dataset)
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(d) Distribution of the agexp variable for peace
and war data points for the out-of-sample test
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Figure S1: Distribution of the agexp variable for peace and war data points for di↵erent imputation steps in
Muchlinski et al.4. Note that the distribution of peace instances in the test set (D) has a peak that is close
to the distribution in the imputed training set (B, C) — which allows the random forests model to learn
the small range of values where peace data points are concentrated. While we report results for the agexp
variable, similar trends appear across independent variables in the dataset.



• Figure S1b shows the same distribution after including the imputed values of agexp. In particular, we
see two peaks in the dataset for war and peace data points alike, one due to war instances and one due
to peace instances.

• If we look only at the data points that were imputed using the rfImpute method (Figure S1c), we
see that the distribution of the imputed data points for war and peace are completely separated, in
contrast to the original distribution where there was a significant overlap between the distributions.

• Finally, Figure S1d shows the e↵ect of imputing this already-imputed dataset with the out-of-sample
test set — we see that the out-of-sample dataset only has the peak for peace datapoints, whereas the
distribution for war is almost uniform.

Further, the random forests model can learn the peak for the agexp variable in the peace instances from
the training dataset after imputation, since the peak for the training and test sets is similar. It can distinguish
between war and peace datapoints much more easily compared to a logistic regression model that only uses
one parameter per feature — logistic regression models are monotonic functions of the independent variables
and therefore cannot learn that a variable only lies within a small range for a given label. This highlights the
reason behind Random Forests outperforming logistic regression in this setting — imputing the training and
test datasets together leads to variable values being artifically concentrated within a very small range for
both the training and test datasets — and further, being neatly separated across war and peace instances.
The impact of the imputation becomes even clearer when we consider that the out-of-sample test dataset
provided by Muchlinski et al.4 has over 95% of the data missing, and 70 out of 90 variables are missing for
all instances in the out-of-sample dataset.

A simulation showcasing the impact of missingness on performance estimates in the presence of
leakage. We can observe a visual example of how data leakage a↵ects performance evaluation in Figure S2.
We describe the simulation below:

• there are two variables — the target variable onset and the independent variable gdp.

• onset is a binary variable. gdp is drawn from a normal distribution and depends on onset as follows:

gdp = N(0, 1) + onset.

• We generate 1000 samples with onset=0 and 1000 samples with onset=1 to create the dataset.

• We randomly split the data into training (50%) and test (50%) sets, and create a random forests model
that is trained on the training set and evaluated on the test set.

• To observe the impact of imputing the training and test sets together, we randomly delete a certain
percentage of values of gdp, and impute it using the imputation method used in Muchlinski et al.4.

• We vary the proportion of missing values from 0% to 95% in increments of 5% and plot the accuracy
of the random forests classifier on the test set.

• We run the entire process 100 times and report the mean and 95% CI of the accuracy in Figure S2;
the 95% CI is too small to be seen in the Figure.

We find that imputing the training and test sets together leads to an increasing improvement in the
purportedly “out-of-sample” accuracy of the model. Estimates of model performance in this case are arti-
ficially high. This example also highlights the impact of the high percentage of missing values — since the
out-of-sample test set used by Muchlinski et al.4 contains over 95% missing values, the impact of imputing
the training and test sets together is very high.



Figure S2: Results of a simulation that showcase how imputing the training and test sets together leads to
overoptimistic estimates of model performance. The 95% Confidence Intervals are too small to be seen.

Algorithm Reported Reported results (reproduced) Corrected results
Fearon and Laitin 0.69 0.78 0.54
Collier and Hoe✏er 0.90 0.83 0.57
Hegre and Sambanis 0.83 0.82 0.68
Muchlinski et al. 0.94 0.95 0.64

Table S1: Original and corrected results in Muchlinski et al.4. While there are di↵erences between the
reported results and our reproduction of the reported results, especially for the Fearon and Laitin as well as
the Collier and Hoe✏er models, the relative order of the model performance for both results is the same.

S2.3 Colaresi and Mahmood
5

Colaresi and Mahmood5 report that ML models vastly outperform logistic regression for predicting civil war
onset. However, they re-use the imputed version of the dataset in Hegre and Sambanis17 which is provided
by Muchlinski et al.4. They use the imputed dataset both for training and testing via a train-test split;
they do not use the out-of-sample test set provided by Muchlinski et al. This means that the results in
Colaresi and Mahmood5 are subject to exactly the same pitfall as in Muchlinski et al.4, albeit with a slightly
di↵erent dataset. Correcting the imputation method dramatically reduces the performance of the ML models
proposed.

We focus on reproducing the final round of results reported in the paper Colaresi and Mahmood5, which
consists of a comparison of 3 models of civil war onset — the Random Forests model proposed in Muchlinski
et al.4, the Random Forests model proposed in Colaresi and Mahmood5 as well as the logistic regression
model proposed in Fearon and Laitin20. Their dataset has 17.4% values missing, and the test set has 19%
values missing. The proportion of missing values in individual variables can be even higher — for example,
the agexp, which represents the proportion of agricultural exports in the GDP of a country, is missing for
54.3% of the rows in the test set. In our corrected results, we use the original dataset from Hegre and
Sambanis17 and impute the training and test data separately using the rfImpute function. The test set
consists of data from the years after 1988. One of the independent variables, milper, is missing for all
instances in the test set of Colaresi and Mahmood5 so we exclude this variable from our models. Table S2
provides the comparisons between the results reported in Colaresi and Mahmood5, our reproductions of their



Algorithm Reported Reported results (reproduced) Corrected results
Fearon and Laitin 0.77 0.77 0.79
Muchlinski et al. 0.89 0.89 0.73

Colaresi and Mahmood 0.91 0.91 0.75

Table S2: Original results from Colaresi and Mahmood5 and our corrected results.

reported (incorrect) results, as well as the corrected version of their results.
Colaresi and Mahmood5 and Wang6 reuse the dataset released by Muchlinski et al.4. This is the imputed

version of the dataset released by Hegre and Sambanis17. However, for 777 rows in the imputed dataset
released by Muchlinski et al.4, the original dataset by Hegre and Sambanis17 has a missing target variable
(i.e. the variable representing civil war onset is missing) whereas the imputed version of the dataset (i.e.
the dataset released by Muchlinski et al.4) has a value of peace for the target variable representing civil war
onset. Since Muchlinski et al.4 do not share the code that they use for imputing the Hegre and Sambanis17

dataset, it is unclear how the missing values in the target variable were imputed in the dataset, especially
since the imputation method they use — rfImpute — requires non-missing values in the target variable.
Still, the number of instances of civil war onset (i.e. instances where the variable representing civil war onset
has the value war) in the Hegre and Sambanis17 dataset as well as the Muchlinski et al.4 dataset are the
same.

S2.4 Wang
6

Similar to Colaresi and Mahmood5, Wang6 report that ML models vastly outperform logistic regression
for predicting civil war onset. However, they too re-use the imputed version of the dataset in Hegre and
Sambanis17 provided by Muchlinski et al.4. They use the imputed dataset both for training and testing via
k-fold cross-validation; they do not use the out-of-sample test set provided by Muchlinski et al. Correcting
the imputation method dramatically reduces the performance of the ML models proposed.

We focus on reproducing the results of the nested cross-validation implementation reported by Wang6.
Wang6 reuses the imputed dataset provided by Muchlinski et al.4, instead of using the original dataset
provided by Hegre and Sambanis17 and imputing the training and test sets separately. The dataset has
17.4% values missing. The proportion of missing values in individual variables can be even higher — for
example, the agexp, which represents the proportion of agricultural exports in the GDP of a country, is
missing for 49.8% of the rows in the data set. In our corrected results, we use the original dataset from
Hegre and Sambanis17 and impute the training and test data separately using the rfImpute function within
each cross validation fold. This ensures that there is no data leakage between the training and test sets in
each fold. Table S3 provides the comparisons between the results reported in Wang6, our reproductions of
their reported (incorrect) results, as well as the corrected version of their results.

We also conduct an additional robustness analysis in which we use a separate out-of-sample test set
instead of k�fold cross validation, since using k�fold cross validation with temporal data can also lead to
leakage across the train-test split. To maintain comparability between the original and corrected results by
testing on the same instances of civil war, we continue to use k�fold cross-validation in the corrected results
in Figure 2. We report the results after making this change in Table S3. We use the same train-test split as
Colaresi and Mahmood5 — year < 1988 as training data and the rest as test data — for the out-of-sample
test set. The test set consists of data from the years after 1988. One of the independent variables, milper,
is missing for all instances in the test set of Colaresi and Mahmood5 so we exclude this variable from our
models.

Note that the imputation method that should be used depends on the exact model deployment scenario,
and should mimic it as closely as possible for accurate performance estimates. For example, in some model
deployment settings samples for prediction come in one at a time and in some cases they come in batches. In
the former setting, imputing the entire test set together may result in overoptimistic performance evaluations
as well, since the deployed model doesn’t have access to a batch of samples. Our results may thus o↵er an
upper bound on the performance of civil war prediction models in the case of Colaresi and Mahmood5 and
Wang6.



Algorithm Reported Reported (reproduced) k-fold CV (corrected) Out-of-sample (corrected)
Fearon and Laitin 0.76 0.76 0.77 0.78
Collier and Hoe✏er 0.78 0.78 0.72 0.77
Hegre and Sambanis 0.80 0.80 0.81 0.80
Muchlinski et al. 0.92 0.92 0.78 0.73

AdaBoost 0.94* 0.94 0.82 0.77
GBT 0.94* 0.94 0.81 0.75

Table S3: Original and corrected results in the Wang6. We find that using an out-of-sample test set further
favors logistic regression models over ML models. The metric for all results is AUC. *These results were
not reported using nested cross-validation in Wang6. In our reproduction of these reported results, we use
nested cross-validation, which ensures that we do not get over-estimates of performance.

S2.5 Kaufman, Kraft, and Sen
7

We focus on reproducing the results on civil war prediction in Kaufman, Kraft, and Sen7. There are several
issues in the paper’s results. We outline each issue below and provide a comparison of various scenarios in
Table S4 that highlight the precise cause of the performance di↵erence between the original and corrected
results, and visualize the robustness of our corrected results. We find that even though there are several
issues in Kaufman, Kraft, and Sen7, the main di↵erence in performance between the original results they
report and our corrected results is due to data leakage.

Data leakage due to proxy variables. The dataset used by Kaufman, Kraft, and Sen7 has several
variables that, if used as independent variables in models of civil war prediction, could cause data leakage,
since they are proxies of the outcome variable. Table S5 lists the variables in the Fearon and Laitin20 dataset
that cause leakage. The first 4 rows outline variables that could be a↵ected by civil wars, as outlined in
Fearon and Laitin20. Therefore, following Fearon and Laitin20, we use lagged versions of these variables in
our correction. The other variables in Table S5 are either direct proxies of outcomes of interest or are missing
for all instances for civil war.

Parameter selection for the Lasso model. Kaufman, Kraft, and Sen7 use an incorrect parameter
selection technique when creating their Lasso model that leads to the model always predicting peace (i.e. all
coe�cients of the variables in the model are always zero). We correct this using a standard technique for
parameter selection. Instead of choosing model parameters such that the model always predicts peace, we
use the cv.glmnet function in R to choose a suitable value for model parameters based on the training data.

Using k�fold cross-validation with temporal data. k�fold cross-validation shu✏es the dataset be-
fore it is divided into training and test datasets. When the dataset contains temporal data, the training
dataset could contain data from a later date than the test dataset because of being shu✏ed. To maintain
comparability between the original and corrected results by testing on the same instances of civil war, we
continue to use k�fold cross-validation in the corrected results in Figure 2. To evaluate out-of-sample per-
formance without using cross-validation, we use a separate train-test split instead of k�fold cross-validation
and report the di↵erence in results for this scenario in the row Corrected (out-of-sample) in Table S4. We
find that there is no substantial di↵erence between the results when using the out-of-sample test set and
k�fold cross-validation — in each case, none of the models outperforms a baseline that predicts the outcome
of the previous year. We use the same train-test split as Colaresi and Mahmood5 — year < 1988 as training
data and the rest as test data.

Replacing missing values with zeros. Kaufman, Kraft, and Sen7 replace missing values in their dataset
with zeros, instead of imputing the missing data or removing the rows with missing values. This is a
methodologically unsound way of dealing with missing data: for example, the models would not be able to
discern whether a variable has a value of zero because of missing data or because it was the true value of the
variable for that instance. This risks getting underestimates of performance, as opposed to overoptimistic



performance claims. As a robustness check, we impute the training and test data separately in each cross-
validation fold using the rfImpute function in R and report the results in the Corrected (imputation) row of
Table S4. We find that the choice of imputation method does not cause a di↵erence in performance, perhaps
because only 0.6% of the values of variables are missing in the dataset.

Choice of cut-o↵s for calculating accuracy. Instead of calculating model cuto↵s based on the best
cuto↵ in the training set, Kaufman et al. use the distribution of model scores to decide the cuto↵s for
calculating accuracy. We include robustness results when we change the cuto↵ selection procedure to choosing
the best cuto↵s for the training set in the Corrected (cuto↵ choice) row of Table S5. We find that the choice
of cuto↵ does not impact the main claim — the performance of the best model is still worse than a baseline
that predicts the outcome of the previous year.

Weak Baseline. Kaufman, Kraft, and Sen7 compare their results against a baseline model that always
predicts peace. We find that a baseline that predicts war if the outcome of the target variable was civil
war in the previous year and predicts peace otherwise is a stronger baseline (Accuracy: 97.5% vs. 86.1%;
�2=633.7, p = 7.836e-140 using McNemar’s test as detailed in Dietterich21), and report results against this
stronger baseline in Table S4.

Confusion about the target variable. Kaufman, Kraft, and Sen7 use ongoing civil war instead of civil
war onset as the target variable in their models. While their abstract mentions that the prediction task they
attempt is civil war onset prediction, they switch to using the term civil war incidence in later sections,
without formally defining this term. To attempt to determine what they mean by this term, we looked at
the papers they cite; one of them has the term civil war incidence in the title Collier and Hoe✏er22, and
defines civil war incidence as ‘observations [that] experienced a start of a civil war’. At the same time, in the
introduction, they state that they are ‘predicting whether civil war occurs in a country in a given year’ —
which refers to ongoing civil war instead of civil war onset. This might confuse a reader about the specific
prediction task they undertake.

Scenario ADT RF SVM ERF Lasso LR Baseline Stronger Baseline
Reported 0.990 0.989 0.983 0.990 0.862 0.987 0.861 0.000

Reported (reproduction) 0.990 0.990 0.983 0.989 0.861 0.987 0.861 0.000
Corrected 0.974 0.959 0.974 0.957 0.975 0.972 0.861 0.975

Corrected (out-of-sample) 0.966 0.936 0.962 0.927 0.966 0.963 0.796 0.966
Corrected (imputation) 0.974 0.959 0.974 0.957 0.975 0.975 0.861 0.975
Corrected (cuto↵ choice) 0.974 0.972 0.966 0.967 0.975 0.971 0.861 0.975

Table S4: Results for the various scenarios in Kaufman, Kraft, and Sen7. We report results up to 3 significant
figures in this table because the small di↵erence in performance between AdaBoost and logistic regression
that is ascribed signifance in Kaufman, Kraft, and Sen7 can only be observed in the third decimal point. The
first 2 values of ‘Stronger Baseline’ are reported as 0 because this baseline was not included in the results of
Kaufman, Kraft, and Sen7.

S2.6 Blair and Sambanis
23

Blair and Sambanis23 state that their escalation model outperforms other models across a variety of settings.
However, they do not test the performance evaluations to see if the di↵erence is statistically significant. We
find that there is no significant di↵erence between the smoothed AUC values of the escalation model’s
performance and other models they compare it to when we use a test for significance. Further, we provide
a visualization of the 95% confidence intervals of specificities and sensitivities in the smoothed ROC curve
they report for their model (escalation) as well as for a baseline model (cameo) — and find that the 95%
confidence intervals are large (see Figure S3).



Variable name Reason for leakage Variable definition in data documentation
pop a↵ected by target variable population; in 1000s
lpop a↵ected by target variable log of population

polity2 a↵ected by target variable revised polity score
gdpen a↵ected by target variable gdp/pop based on pwt5.6; wdi2001;cow energy data
onset codes civil war onset 1 for civil war onset

ethonset codes civil war onset 1 if onset = 1 and ethwar ⇠= 0
durest NA if onset = 0 estimated war duration
aim NA if onset = 0 1 = rebels aim at center; 3 = aim at exit or autonomy; 2 = mixed or ambig.
ended NA if onset = 0 war ends = 1; 0 = ongoing
ethwar NA if onset = 0 0 = not ethnic; 1 = ambig/mixed; 2 = ethnic

emponset codes civil war onset onset coded for data with empires
sdwars codes ongoing civil war Number of Sambanis/Doyle civ wars in progress
sdonset codes civil war onset onset of Sambanis/Doyle war
colwars codes ongoing civil war Number of Collier/Hoe✏er wars in progress
colonset codes civil war onset onset of Collier/Hoe✏er war
cowwars codes ongoing civil war Number of COW civ wars in progress
cowonset codes civil war onset onset of COW civ war

Table S5: This table highlights the variables included as independent variables in Kaufman, Kraft, and Sen7

which cause a data leakage. In the original use of the dataset, Fearon and Laitin20 include lagged versions of
the first 4 variables in the list as independent variables in their model to avoid leakage. Following their use
of lagged versions of these variables, we do the same in our correction to avoid leakage. The other variables
are proxies for the outcomes of interest and hence we remove them from the models to avoid data leakage.

Uncertainty quantification, p-values and Z-values for tests of statistical significance.

• We report p-values and Z values for a one-tailed significance test comparing the smoothed AUC perfor-
mance of the escalation model with other baseline models reported in their paper — quad, goldstein,
cameo and average respectively. Note that we do not correct for multiple comparisons; such a cor-
rection would further reduce the significance of the results. We implement the comparison test for
smoothed ROC curves detailed in Robin et al.24.

– 1 month forecasts: Z = 0.64, 1.09, 0.42, 0.67; p = 0.26, 0.14, 0.34, 0.25

– 6 months forecasts: Z = 0.41, 0.08, 0.70, 0.69; p = 0.34, 0.47, 0.24, 0.25

• The 95% confidence intervals for the 1 month models are:

– escalation: 0.66-0.95

– quad : 0.63-0.95

– goldstein: 0.62-0.93

– cameo: 0.65-0.95

– average: 0.65-0.95

• The 95% confidence intervals for the 6 month models are:

– escalation: 0.64-0.93

– quad : 0.60-0.90

– goldstein: 0.68-0.93

– cameo: 0.58-0.92

– average: 0.60-0.92

While a small p-value is used to reject the null hypothesis (in this case — that the out-of-sample per-
formance does not di↵er between the models being compared), a singular focus on a test for statistical
significance at a pre-defined threshold can be harmful (see, for example Imbens25). Blair and Sambanis do
report performance evaluations for a variety of di↵erent model specifications. However, the purpose of such



robustness checks is to determine whether model performance sensitive to the parameter choices; it is unclear
whether it helps deal with issues arising from sampling variance. At any rate, Blair and Sambanis’s results
turn out to be highly sensitive to another modeling choice: the fact that they compute the AUC metric
on the smoothed ROC curve instead of the empirical curve that their model produces. Smoothing refers
to a transformation of the ROC curve to make the predicted probabilities for the war and peace instances
normally distributed instead of using the empirical ROC curve (see Robin et al.24). This issue was pointed
out by Beger, Morgan, and Ward26 and completely changes their original results; Blair and Sambanis27

discuss it in their rebuttal.

S2.7 Overview of papers in Table S6

Table S6 provides the list of 12 papers included in our review, showing information about whether they report
confidence intervals, conduct tests of statistical significance when comparing classifier performance, which
metrics they report, the number of rows and the number of positive instances (i.e. instances of war/conflict)
in the test set, and whether their main claim relies on out-of-sample evaluation of classifier performance. We
detail information about the numbers we report in Table S6 below.

• Hegre et al.28: We report the number of rows and number of positive instances of civil war incidence
for the dates between 2001 and 2013 in the UCDP dataset, i.e. all years for which out-of-sample
estimates are provided. We report the out-of-sample AUC performance di↵erence for the Major conflict
setting. Out-of-sample evaluation results are not included in the main text of the paper, hence we report
that the paper’s main claim does not rely on out-of-sample evaluations.

• Muchlinski et al.4: We report the number of rows and number of positive instances of civil war
onset for the dates after 2000 in the out-of-sample dataset provided by Muchlinski et al. We report
the out-of-sample AUC performance di↵erence between the Random Forests and the best logistic
regression setting. Out-of-sample evaluation results are used to justify the performance improvement
of using Random Forests models, hence we report that the paper’s main claim relies on out-of-sample
evaluations.

• Chiba and Gleditsch29: We report the total number of instances and the number of positive instances
of governmental onsets in the years 2013-14 (the test set dates). We report the di↵erence between the
territorial onset AUC’s reported in the paper. Note that while Chiba and Gleditsch29 do report small
number of data points that are used in one of their settings, they do not address how to estimate
variance or perform tests of statistical significance. Out-of-sample evaluation results are not used as
the main evidence of better performance in the main text of the paper, hence we report that the paper’s
main claim does not rely on out-of-sample evaluations.

• Colaresi and Mahmood5: We report the number of rows and onsets of civil war after the year
1988 (the test set dates). We report the out-of-sample AUC di↵erence between the two random forests
models compared in the paper. Out-of-sample evaluation results are used to justify the performance
improvement of using an iterative method for model improvement, hence we report that the paper’s
main claim relies on out-of-sample evaluations.

• Hirose, Imai, and Lyall30: We report the number of locations included in the out-of-sample results.
Since the paper does not attempt binary classification, we do not report the number of positive instances
in this case. We report the out-of-sample performance gain of adding relative ISAF support to the
baseline model in the IED attack setting of the paper. Out-of-sample evaluation results are used as
important evidence of better model performance in the main text of the paper, hence we report that
the paper’s main claim relies on out-of-sample evaluations.

• Schutte31: We report the number of rows in the entire dataset, since the paper uses k-fold cross
validation and therefore all instances are used for testing. Since the paper does not attempt binary
classification, we do not report the number of positive instances in this case. We report the out-
of-sample normalized MAE di↵erence between the population model and the best performing model
compared in the paper. Out-of-sample evaluation results are used as important evidence of better



(a) Visualizing the 95% confidence intervals of the
specificities for the 1 month forecast in the smoothed
ROC curve reported in Blair and Sambanis23.

(b) Visualizing the 95% confidence intervals of the
sensitivities for the 1 month forecast in the smoothed
ROC curve reported in Blair and Sambanis23.

(c) Visualizing the 95% confidence intervals of the
specificities for the 6 month forecast in the smoothed
ROC curve reported in Blair and Sambanis23.

(d) Visualizing the 95% confidence intervals of the
sensitivities for the 6 month forecast in the smoothed
ROC curve reported in Blair and Sambanis23.

Figure S3: The wide confidence intervals for sensitivities and specificities reported in Blair and Sambanis.
Here, we visualize the escalation and cameo models for the 1 month and 6 month forecast in the base
specification (reported in Figure 1 of their paper).

model performance in the main text of the paper, hence we report that the paper’s main claim relies
on out-of-sample evaluations.

• Hegre, Hultman, and Nyg̊ard32: We report the number of rows and number of positive instances
of civil war incidence for the dates between 2001 and 2013 in the UCDP dataset, i.e. all years for which
out-of-sample estimates are provided. We report the out-of-sample AUC performance di↵erence for



the Major conflict setting. Out-of-sample evaluation results are not used as the primary evidence of
better model performance in the main text of the paper, hence we report that the paper’s main claim
does not rely on out-of-sample evaluations.

• Hegre et al.33: We report the number instances with state based conflict in the ViEWS Monthly
Outcomes at PRIO-Grid Level data between 2015 and 2017 — the years for which the out-of-sample
results are reported in the paper. We report the out-of-sample AUC performance di↵erence for the
state-based conflict setting. Out-of-sample evaluation results are used as the primary evidence of better
model performance in the main text of the paper, hence we report that the paper’s main claim relies
on out-of-sample evaluations.

• Kaufman, Kraft, and Sen7: We report the total number of rows and all instances of civil war
incidence in the dataset used by Kaufman et al., since they use k-fold cross validation and therefore all
instances are used for testing. We report the out-of-sample accuracy di↵erence between the Adaboost
and logistic regression settings. Out-of-sample evaluation results are used as the primary evidence of
better model performance in the main text of the paper, hence we report that the paper’s main claim
relies on out-of-sample evaluations.

• Wang6: We report the total number of rows and onsets of civil war used in the dataset used by Wang
since they use k-fold cross validation and therefore all instances are used for testing. We report the
out-of-sample AUC performance di↵erence between the Adaboost and logistic regression models. Out-
of-sample evaluation results are used as the primary evidence of better model performance in the main
text of the paper, hence we report that the paper’s main claim relies on out-of-sample evaluations.

• Blair and Sambanis23: We report the number of rows and onsets of civil war after the year 2007
(the test set dates). We report the out-of-sample AUC performance di↵erence between the escalation
and cameo models for the one-month base setting. Out-of-sample evaluation results are used as the
primary evidence of better model performance in the main text of the paper, hence we report that the
paper’s main claim relies on out-of-sample evaluations.

• Hegre, Nyg̊ard, and Landsverk34: We report the number of rows and number of positive instances
for civil war onset the dates between 2001 and 2018, i.e. all years for which out-of-sample estimates are
provided. We don’t report the out-of-sample performance di↵erence because the paper does not perform
comparisons between models. Out-of-sample evaluation results are used as the primary evidence of
model performance in the main text of the paper, hence we report that the paper’s main claim relies
on out-of-sample evaluations.

S3 Model info sheets can detect and prevent leakage in ML-based

science

We include a template for model info sheets in the next section (Section S4). Here, we detail how model
info sheets would address each type of leakage that we found in our survey, as well as the types of leakage
we found in our case study of civil war prediction.

• L1.1 No test set. Model info sheets require an explanation of how the train and test set is split
during all steps in the modeling process (Q9-17 of model info sheets).

• L1.2 Pre-processing on training and test set. Details of how the train and test set are separated
during the preprocessing selection step need to be included in the model info sheet (Q12-13). In our
civil war prediction case study, this would address leakage due to incorrect imputation4–6.

• L1.3 Feature selection on training and test set. Details of how the train and test set are separated
during the feature selection step need to be included in the model info sheet (Q14-15).

• L1.4 Duplicates in datasets. Model info sheets require details of whether there are duplicates in
the dataset, and if so, how they are handled (Q10).



Paper CI?
Stat. sig
test?

Metric(s)
Num. rows
in test set

Num. positive
test set instances

Main Claim
OOS?

OOS performance
delta

Hegre et al.28 No No AUC, Brier score 2197 321 No 0.006
Muchlinski et al.4 No No AUC, F1 score 896 19 Yes 0.04
Chiba and Gleditsch29 No No AUC, Brier score 4176 15 No 0.03
Colaresi and Mahmood5 No No AUC, Precision, Recall 1778 29 Yes 0.02
Hirose, Imai, and Lyall30 No * MAE, RMSE 14,606 — Yes 0.16
Schutte31 No No MAE 3744 — Yes 0.09
Hegre, Hultman, and Nyg̊ard32 No No AUC 2197 321 No 0.02

Hegre et al.33 No No
AUC, Brier score, AUPR, Accuracy,
F1 score, cost-based threshold

384,372 1848 Yes 0.01

Kaufman, Kraft, and Sen7 No No Accuracy 6610 918 Yes 0.03
Wang6 Yes No AUC, Precision, Recall 6363 116 Yes 0.12
Blair and Sambanis23 No No AUC, Precision, Recall 15,744 11 Yes 0.03
Hegre, Nyg̊ard, and Landsverk34 Yes No AUC, AUPR, TPR/FPR 3042 79 Yes —

Table S6: A list of papers for which code and dataset were available, showing information about whether they
report confidence intervals, conduct tests of statistical significance when comparing classifier performance,
which metrics they report, the number of rows and the number of positive instances (i.e. instances of
war or conflict or onset thereof) in the test set, and whether their main claim relies on out-of-sample
evaluation of classifier performance. AUC = Area Under ROC, MAE = Mean Absolute Error, RMSE =
Root Mean Squared Error, AUPR = Area Under Precision-Recall Curve, TPR = True Positive Rate, FPR =
False Positive Rate, OOS performance delta = the performance di↵erence for the most salient performance
comparison reported in the paper (details in Section S2.7). *Hirose et al. state that the out-of-sample
performance is significantly better in the Supplement of their paper, but we could not find the figure they
cite as evidence of this claim in their Supplement.

• L2 Model uses features that are not legitimate. For each feature used in the model, researchers
need to argue why the feature is legitimate to be used for the modeling task at hand (Q21). This
addresses the leakage due to the use of proxy variables in Kaufman, Kraft, and Sen7.

• L3.1 Temporal leakage. In case the claim is about predicting future outcomes of interest based on
ML methods, researchers need to provide an explanation for why the time windows used in the training
and test set are separate, and why data in the test set is always a later timestamp compared to the
data in the training set (Q20). This addresses the temporal leakage in Wang, Kaufman, Kraft, and
Sen6,7.

• L3.2 Dependencies in training and test data. Researchers need to reason about the dependencies
that may exist in their dataset and outline how dependencies across training and test sets are addressed
(Q11).

• L3.3 Sampling bias in test distribution. Researchers need to reason about the presence of selection
bias in their dataset and outline how the rows included for data analysis were selected, and how the
test set matches the distribution about which the scientific claims are made (Q18-19).
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S4  Model Info Sheets Template 
 
 
About model info sheets 
 
Completing this model info sheet requires the researcher to provide precise arguments 
to justify that predictive models used for making scientific claims do not suffer from 
leakage. It is inspired by the model cards introduced by Mitchell et al.1 
 
Model info sheets are intended to accompany the paper or report that introduces the 
model: for instance, as an appendix or supplemental material. For feedback or 
questions, contact: sayashk@princeton.edu 
 
The model info sheet starts on the next page. After filling it out, save it starting from that 
page. To cite the paper that introduces the model info sheets, use the bibliography file 
available at reproducible.cs.princeton.edu/citation.bib 
 
  

 
1 Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, 
Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. "Model cards for model reporting." 
In Proceedings of the conference on fairness, accountability, and transparency, 2019. 

mailto:sayashk@princeton.edu
https://reproducible.cs.princeton.edu/citation.bib
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Model Info Sheet 
 
 
 
Section 1: Information about paper or report 
 
 
1) Author(s): Names of the authors of the paper or report 
 
 
 
2) Title of the paper or report which introduces the model 
 
 
 
3) DOI or permanent link to the paper or report (for example, link to arxiv.org webpage) 
 
 
 
4) License: Under which license(s) are the data and/or model shared? 
 
 
 
5) Email address of the corresponding author 
 
 
 
 
Section 2: Scientific claim(s) of interest 
 
 
6) Does your paper make a generalizable claim based on the ML model? If yes, what is 
the scientific claim? For example, “Our ML model can be used to diagnose Covid-19 
using chest radiographs of adult patients”.  
 
If there are multiple claims, list each claim in a new line, along with a claim number. 
 
 
 
7) Is the scientific claim made about a distribution or population from which you can 
sample? If yes: (a) what is the population or distribution about which the scientific claim 
is being made? (b) What is the sample used for the study? For example, “(a) 
Population: adult patients with symptoms of Covid-19. (b) Sample: We use a random 
sample of adult patients who present at a U.S. based hospital between April 2020 and 
June 2020”.  
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If there are multiple scientific claims, list your answer for each claim in a new line, 
corresponding to their claim number in Q6.  
 
Note: A difference between the population and the set from which the sample is drawn 
could highlight potential generalizability failures, which are related to but distinct from 
leakage. 
 
 
 
8) Does the scientific claim only apply to certain subsets of the distribution mentioned in 
Q6? For example, “Our model works on chest radiographs of U.S.-based adult patients 
and might not generalize to radiographs taken in other places or using different 
machines.”  
 
If there are multiple claims, list your answer for each claim in a new line, corresponding 
to their claim number in Q6. 
 
 
 
 
 
Section 3: Train-test split is maintained across all steps in creating the model 
 
 
9) Train-test split type: How was the dataset split into train and test sets? (For example, 
cross-validation; separate train and test sets).  
 
 
 
 
 
 
 
10) Are there duplicates in the dataset? If yes, explain how duplicates are handled to 
ensure the train-test split. 
 
 
 
 
 
 
 
 
11) In case the dataset has dependencies (e.g., multiple rows of data from the same 
patient), describe how the dependencies were addressed (for example, using block-
cross validation). 

If your model does not have a separate test set, it could suffer from 
leakage due to overfitting 

If duplicates from the training set are included in the test set, your 
model could suffer from leakage. The higher the percentage of 

duplicates in the test set, the more severe the leakage. 
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12) List all the pre-processing steps used in creating your model. For example, imputing 
missing data, normalizing feature values, selecting a subset of rows from the dataset for 
building the model. 
 
 
 
13) How was the train-test split observed during each pre-processing step? If 
applicable, use a separate line for each step mentioned in Q12.  
 
 
 
 
 
 
 
14) List all the modeling steps used in creating your model. For example, feature 
selection, parameter tuning, model selection. 
 
 
 
15) How was the train-test split observed during each modeling step? If applicable, use 
a separate line for each step mentioned in Q14.  
 
 
 
 
 
 
 
16) List all the evaluation steps used in evaluating model performance. For example, 
cross-validation, out-of-sample testing. 
 
 
 
17) How was the train-test split observed during each evaluation step? If applicable, use 
a separate line for each step mentioned in Q16. 
 

If dependencies across the train-test split are not addressed, your 
model could suffer from leakage. The higher the number of rows in 

the test set with dependencies, the more severe the leakage. 
 

If the train-test split is not maintained during all pre-processing steps, 
your model could suffer from leakage. 

If the train-test split is not maintained during all modeling steps, your 
model could suffer from leakage. 

If the train-test split is not maintained during all evaluation steps, your 
model could suffer from leakage. 
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Section 4: Test set is drawn from the distribution of scientific interest. 
 
 
18) Why is your test set representative of the population or distribution about which you 
are making your scientific claims? 
 
 
 
 
 
 
 
19) Explain the process for selecting the test set and why this does not introduce 
selection bias in the learning process. 
 
 
 
 
 
 
 
 
20) In case your model is used to predict a future outcome of interest using past data, 
detail how data in the training set is always from a date earlier than the data in the test 
set. 
 
 
 
 
 
 
 
Section 5: Each feature used in the model is legitimate for the task 
 
 
21) List the features used in the model, alongside an argument for their legitimacy. A 
legitimate feature is one that would be available when the model is used in the real 
world and is not a proxy of the outcome being predicted. You can also include this list in 
an appendix and reference the relevant section of your Appendix here.  
 

If the test set distribution is different from the scientific claim of 
interest (listed in Q7), your model could suffer from leakage. 

Selection bias (for example, only choosing data from a given 
geographic location but expecting your model’s performance to 

generalize to all locations) can lead to leakage. 

In predictions about future outcomes of interest, using data from the 
future to predict in the training set the past in the test set is a form of 
leakage. Data in the training set should always have timestamps of 

an earlier time than those in the test set to avoid leakage. 
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For example, “Patient age: We include this feature in our ML model for hypertension 
diagnosis since patient age is easily available in a clinical setting”.   
 
An example of a feature that should not be included (for illustration only; you do not 
need to include these in your model info sheet): “Anti-hypertensive drugs: We do not 
include the use of anti-hypertensive drugs as a feature in our ML model for hypertension 
diagnosis since that information is only available after diagnosis and would not be 
available when a new patient presents with symptoms of hypertension.”  
 
Note: You do not need to list each feature used in your model here. However, you must 
provide an argument for the legitimacy of each feature included in your model to ensure 
that your model does not suffer from leakage due to illegitimate features. For example, 
“our model only uses data from the previous year as features. For instance, to predict 
civil war in 2017, we only use lagged features from the year 2016. Since these features 
are always available in advance of when we want to make predictions using our model, 
none of these features can lead to leakage.”  
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