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Spatial immune profiling of glioblastoma identifies an inflammatory, 

perivascular immune phenotype associated with longer survival  
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Note S1. Patients and methods. 

 

Patient tissue samples 

Formalin-fixed and paraffin-embedded tissue sections with confirmed diagnosis of an 

IDH wild-type glioblastoma according to the 2021 World Health Organization 

classification of central nervous system tumors [8] were utilized for GeoMx digital 

spatial immune profiling [9]. Sections were selected by a board-certified 

neuropathologist (JF) based on the presence of perivascular and perinecrotic 

compartments. Patients provided written informed consent for the use of their tissue 

samples and clinical data for research purposes. Matched primary and recurrent tissue 

samples were derived from the central nervous system tumor tissue bank Düsseldorf 

from a previous research project  that was approved by the Ethics Committee of the 

Medical Faculty at Heinrich Heine University Düsseldorf (study number 4940, [7]). 

Tissue samples of long-term surviving patients were derived from the EORTC 1419 

study, which was approved by the ethics board of the Canton of Zurich (study number 

KEK 2014-0555) and locally at each participating site [4].  

 

GeoMx Digital Spatial Profiling 

Formalin-fixed and paraffin-embedded tissue sections were co-incubated with 28 

antibodies labeled with photocleavable DNA bar codes for immune profiling (Table S1, 

Nanostring Inc, Seattle, WA, USA) and with three fluorescence-labelled antibodies to 

visualize tissue morphology, including murine anti-glial fibrillary acidic protein (GFAP, 

clone 5C10, Novus Biologicals, Littleton, CO, USA) for tumor cells, anti-Iba1 for 

myeloid cells (clone E4O4W, Cell Signaling Technology, Danvers, MA, USA) and anti-

CD31 for endothelial cells (clone JC/70A, Abcam, Cambridge, UK), as well as 4,6-
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Diamidin-2-phenylindol (DAPI) to stain cell nuclei through DNA intercalation (Thermo 

Fisher Scientific, Waltham, MA, USA).  

Slides were then scanned utilizing a GeoMx Digital Spatial Profiler (Nanostring Inc) 

and regions of interest selected remotely by a board-certified neuropathologist (JF). 

Subsequently, automated photocleavage and aspiration of DNA bar codes was 

performed sequentially for each region of interest. DNA bar codes were then quantified 

utilizing an nCounter Sprint Profiler (Nanostring Inc). DNA bar code counts were 

normalized to External RNA Control Consortium (ERCC) spike-in controls and 

housekeeping genes, and were corrected with respect to donor and batch. No per-

gene standardization was performed, except for the extra correction for CD45 

expression for each sample. Per tumor sample, spatial expression values were 

averaged between regions of interest for each histopathologic compartment, i.e. 

cellular tumor, perivascular and perinecrotic zones. 

 

RNA sequencing datasets 

The Ivy glioblastoma atlas project (GAP) spatial RNA sequencing core dataset, 

comprising 120 spatial transcriptomes from 10 patients with IDH wild-type glioblastoma 

[13] was utilized for gene ontology (GO) network analyses of differentially expressed 

immunity genesets (Figure 1c) and for the development of a spatial immunity classifier 

(Figure 1d). The spatial immunity classifier was then applied to bulk RNA sequencing 

datasets of IDH wild-type gliobastoma samples, including N=139 newly diagnosed 

glioblastomas from The Cancer Genome Atlas pan-cancer study [5] (Figure 1e), a 

merged dataset of N=72 recurrent glioblastomas [14] (Figure 1f, Figure S6a) as well 

as two smaller studies comprising N=36 [7] (Figure S6b) and N=29 [2] (Figure S6c) 

recurrent glioblastomas, respectively. 
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Geneset network analyses 

Geneset network analyses were conducted in the Ivy GAP dataset  to identify 

differentially expressed genesets in the perivascular zone versus cellular tumor and in 

the perinecrotic zone versus cellular tumor, respectively (Figure 1c [11, 12]). First, 

differential expression of GO genesets [1, 3] with a size < 200 genes was analyzed 

between two groups of interest. Genesets with a false discovery rate < 0.05 were then 

utilized for network discovery by depicting differentially expressed genesets as nodes 

that were connected by edges if they shared at least one gene. Genesets that were 

up-regulated in the perivascular or perinecrotic zone compared to cellular tumor were 

colored red, genesets that were down-regulated were colored blue, and genesets in 

which some genes were up- and others down-regulated were colored gray. Doublets 

and community-connecting edges were removed to split large clusters into smaller 

ones based on edge betweenness. Gene set names were split into individual words 

and counted to automatically construct cluster labels.  

 

Classification of spatial immunity gene expression patterns 

A random forest algorithm to discriminate spatial gene expression patterns based on 

N=72 pan-caner immunity-associated gene sets [13] was trained on N=80 randomly 

selected spatial RNAseq samples from the Ivy GAP dataset and was tested on N=40 

samples from the same dataset [12]. Weighted correlation network analysis delivered 

3 coexpression clusters of immune genesets characterizing the different glioma 

regions (eigengenesets). Clustering of all N=120 spatial RNAseq samples based on 

the expression of these eigengenesets revealed associations with the perivascular, 

perinecrotic and infiltration zone samples, whereas cellular tumor was characterized 

by lack of expression of these clusters (Figure S5). Eigengeneset clustering indicated 

overlap of the cellular tumor expression pattern with the other three patterns. The GO 
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terms constituting eigengeneset clusters were imputed to the CIBERSORT online tool 

to classify bulk RNAseq datasets (Figure S4). On note, the lack of genesets specific 

for classifying cellular tumor led to an intended focus on the relative distribution of 

perivascular, perinecrotic and infiltration zone immunity patterns. No further filtering 

methods were applied for this purpose.  

The CIBERSORT digital cytometry online classification tool [9] was also used for 

immune cell estimates in RNAseq datasets, including (i) the spatial gene expression 

dataset from Ivy GAP (Figure S3, [12]), (ii) the newly diagnosed glioblastoma bulk gene 

expression dataset from TCGA (Figure 4a, [5]) and a merged dataset of recurrent 

glioblastomas (Figure 4b, [14]). 

 

Survival analyses 

Survival analyses were performed in R using the coxph function from the survival 

package (Version 3.4.0). Scores from the random forest-based classifier were used to 

automatically devise a cutoff using the surv_cutpoint function from the survminer 

package (Version 0.4.9) and then used as input for the coxph function. For the newly 

diagnosed glioblastoma cohort [3], MGMT promoter methylation status was also used 

as input, whereas limited availability of MGMT promoter methylation status precluded 

respective adjustments in the recurrent glioblastoma cohorts [2, 7, 14]. 

 

Biostatistics tools 

All statistical analysis was performed using the R environment for statistical computing 

(R version 3.5.1, 2018-07-02) with Bioconductor [6] and dedicated packages. All 

analysis and this report is produced programatically using R markdown 

(https://CRAN.R-project.org/package=rmarkdown) in Rstudio (RStudio Inc, Boston, 

MA, USA), compliant with the principles of Reproducible Research [10].  
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Note S2. Funding sources. 
 
 
This study was funded by grants from the OPO foundation, the Desirée und Niels Yde 

foundation, Charlotte and Nelly Dornacher Foundation, the Swiss National Science 

Foundation (P2SKP3-158656) and Oncosuisse (KLS-4870-08-2019) to HGW, by a 

grant of the University of Zurich (UZH) Foundation to MW and by the Clinical Research 

Priority Program (CRPP) of the University of Zurich for the CRPP ImmunoCure to PR. 

The EORTC 1419 ETERNITY study was supported by a generous grant from the Brain 

Tumor Funders’ Collaborative (American Brain Tumor Association, Brain Tumour 

Foundation of Canada, James S. McDonnell Foundation, Childrens` Brain Tumor 

Foundation, The Sontag Foundation) and by the EORTC Brain Tumor Group. 
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Table S1. Digital spatial profiling antibody panel. 

 
CD45 Bone marrow derived cells 

CD3 T cells 

CD4 T helper cells 

CD8 Cytotoxic T cells 

CD45RO Memory T cells 

FoxP3 Regulatory T cells 

CD20 B cells 

CD56 NK cells 

CD68 Monocytes, macrophages 

CD44 Pro-inflammatory macrophages 

CD163 Immunosuppressive macrophages 

HLA-DR Antigen-presenting cells 

CD11c Antigen-presenting cells 

CD66b Hematopoietic stem cells 

GZMB cytotoxicity 

STAT3 (pY705) Pro-inflammatory signaling programs 

4-1BB Immune checkpoint 

B7-H3 Immune checkpoint 

B7-H4 Immune checkpoint 

ICOS Immune checkpoint 

IDO1 Immune checkpoint 

OX40L  Immune checkpoint 

PD1  Immune checkpoint 

PD-L1 Immune checkpoint 

STING Immune checkpoint 

VISTA Immune checkpoint 

S100B House keeping 

S6 House keeping 
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Table S2. Patient characteristics. 

 All patients 

(N=20) 

Paired 

samples 

cohort 

(N=10) 

Long-term 

survivors 

(N=10) 

p-value 

PSC vs LTS 

Age at diagnosis:  

Median (range) 

 

61 (14-72) 

 

62 (14-72) 

 

59 (49-68) 

 

.97 

Gender: N (%) 

  female 

  male 

 

6 (30) 

14 (70) 

 

3 (30) 

7 (70) 

 

3 (30) 

7 (70) 

 

 

1.00 

Extent of resection: N (%) 

  Gross total 

  Partial 

  No data 

 

15 (83) 

3 (17) 

2 

 

7 (78) 

2 (22) 

1 

 

8 (89) 

1 (11) 

1 

 

 

1.00 

MGMT promoter status: N 

(%) 

  Methylated 

  Unmethylated 

 

11 (55) 

9 (45) 

 

3 (30) 

7 (70) 

 

8 (80) 

2 (20) 

 

 

0.025 
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Figure S1. Overall survival of spatial immune profiling cohorts of patients with 

glioblastoma. PSC, paired sample cohort; LTS, long-term survivor cohort. 
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Figure S2. Abundance of CD8 and PD1 in paired primary and recurrent 

glioblastoma samples. Protein abundance was assessed by GeoMx digital spatial 

profiling in the PCS cohort. Normalized counts for each protein were averaged over 

regions of interest individually for each sample. 
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Figure S3. Spatial digital cytometry. a, immune cell type abundance in the Ivy GAP 

dataset [12] was estimated utilizing the CIBERSORT digital cytometry algorithm [9]. b, 

volcano plot depicting cell type abundance in the perivascular zone (PVZ) and 

perinecrotic zone (PNZ) relative to cellular tumor regions (CT). CD8, cytotoxic T cells; 

CD4 mem, memory T helper cells; CD4 foll, follicular T helper cells; B, B cells; NK, 

natural killer cells; Mon, monocytes; Mac M1, pro-inflammatory macrophages; Mac M2, 

immunosuppressive macrophages; DC, dendritic cells; PMN, polymorphonuclear 

leukocytes. 

 

 

40

Patient samples [spatial RNAseq]



 12 

 

Figure S4. Spatial immune classification of bulk tumor samples. Patients with 

newly diagnosed glioblastoma (a, N=139, Ref. [5]) and with recurrent glioblastoma (b, 

N=72, Ref. [14]) were clustered by abundance of a random-forest based spatial gene 

expression signature that was based on pan immune gene sets (Figure 1D, Ref. [13]). 

Spatial signatures and digital cytometry immune signatures were annotated utilizing 

the CIBERSORT classifying tool [9]. 
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Figure S5. Spatial eigengeneset signatures. A random forest immunity classifier 

was trained utilizing pan-cancer immunity genesets [13] in the Ivy GAP spatial RNAseq 

dataset [12]. Coexpression clusters of GO-terms characterizing the different glioma 

regions (eigengenesets) were employed to test all samples of the Ivy GAP dataset. a, 

principal component analysis plot based on the eigengeneset signature. b, 

eigengeneset signature of all samples based on geneset clusters. 
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Figure S6. Spatial immune profiling to predict patient survival. Survival of patients 

with recurrent glioblastoma following classification by Ivy GAP spatial immune profiles; 

CIBERSORT was utilized for classifier application and a cut-off of 0.5 was employed 

to define infiltration zone (IFZ) high vs low scores; the logrank test was utilized for 

curve comparison; datasets: a, ref. [14], N=72; b, ref. [7], N=36; c, ref. [2], N=29. 
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