Title

Detection of Frog virus 3 by integrating RPA-CRISPR/Cas12a-SPM with deep learning Authors

Zhengyang Lei ^{a, b, †}, Lijin Lian ^{a, b, †}, Likun Zhang ^{a, b, †}, Changyue Liu ^{a, b}, Shiyao Zhai ^{a, b}, Xi Yuan ^{a, b}, Jiazhang Wei ^c, Hong Liu ^d, Ying Liu ^d, Zhicheng Du ^{a, b}, Ijaz Gul ^{a, b}, Haihui Zhang ^{a, b}, Zhifeng Qin ^e, Shaoling Zeng ^e, Peng Jia ^f, Ke Du ^g, Lin Deng ^h, Dongmei Yu^{i, *}, Qian He ^{a, b}, Peiwu Qin ^{a, b, *}

*Email: pwqin@sz.tsinghua.edu.cn. Address: Lishui Road 2199, Nanshan District, Shenzhen, China 518055. †This author contributed equally to this paper

Affiliations

^a Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China.

^b Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, 518055, China.

^c Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China.

^d Animal and Plant Inspection and Quarantine Technical Centre, Shenzhen Exit and Entry Inspection and Quarantine Bureau, Guangdong Province, 518045, China.

^e Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, Guangdong Province, 518033, China.

^fQuality and Standards Academy, Shenzhen Technology University, Shenzhen 518118, China.

^g Department of Chemical and Environmental Engineering, University of California, Riverside, 92521, United States.

h Shenzhen Bay Laboratory, Shenzhen, 518132, China.

ⁱ School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong, 264209, China.

 Table S1 Oligonucleotides used in this study.

FV3 MCP	5'-		
	ATGTCTTCTGTAACTGGTTCAGGTATCACAAGTGGTTTCATCGAC		
	TTGGCCACTTATGACAATCTTGAGAGAGCAATGTACGGGGGTTC		
	GGACGCCACCACGTACTTTGTCAAGGAGCACTACCCCGTGGGGT		
	GGTTCACCAAGCTGCCGTCTCTGGCTGCCAAGATGTCGGGTAACC		
	CGGCTTTCGGGCAGCAGTTTTCGGTCGGCGTTCCCAGGTCGGGGG		
	ATTACATCCTCAACGCC -3' (240bp)		
ISKNV MCP	5'-		
	ATGTCTGCAATCTCAGGTGCAAACGTAACCAGCGGGTTCATCGA		
	CATCTCCGCGTTTGATGCGATGGAGACCCACTTGTACGGCGGCG		
	ACAATGCCGTGACCTACTTTGCCCGTGAGACCGTGCGTAGTTCCT		
	GGTACAGCAAACTGCCCGTCACCCTGTCAAAACAGACTGGCCAT		
	GCCAATTTTGGGCAGGAGTTTAGTGTGACGGTGGCGAGGGGGGGG		
	CGACTACCTC -3' (231bp)		
RPA primer F1	ATGTCTTCTGTAACTGGTTCAGGTATCACAAG		
RPA primer F2	ATGTCTTCTGTAACTGGTTCAGGTATCACA		
RPA primer F3	TCTTCTGTAACTGGTTCAGGTATCACAAGTGGT		
RPA primer R1	GGCGTTGAGGATGTAATCCCCCGACCTGGG		
RPA primer R2	GGCGTTGAGGATGTAATCCCCCGACCTGGGAA		
RPA primer R3	CGTTGAGGATGTAATCCCCCGACCTGGGAACG		
FV3 MCP PCR-F	ATGTCTTCTGTAACTGGTTCA		
FV3 MCP PCR-R	GGCGTTGAGGATGTAATCCCC		
ISKNV MCP F	ATGTCTGCAATCTCAGGTGC		
ISKNV MCP R	GAGGTAGTCGCCGCCCCT		
MCP qPCR-F	GGTTCAGGTATCACAAGTGGT		
MCP qPCR-R	GCGTTGAGGATGTAATCCC		
LbCas12a crRNA-1	uaauuucuacuaaguguagauATCGACTTGGCCACTTATGACAA		
LbCas12a crRNA-2	uaauuucuacuaaguguagauTCAAGGAGCACTACCCCGTGGGG		
LbCas12a crRNA-3	uaauuucuacuaaguguagauGGGCAGCAGTTTTCGGTCGGCGT		
ssDNA reporter	/5TAMRA/TTATT/3BHQ2		

Pathogens	Host	Region	Refs
Tiger frog virus	Rana tigrina rugulosa	Guangdong, China	Unpublished
Soft-shelled turtle iridovirus	Trionyx Sinensis	Guangdong, China	Zhao et al. 2007
Bohle iridovirus	Emydura krefftii	Guangdong, China	Unpublished
Rana Grylio iridovirus	Rana Grylio	Guangdong, China	Unpublished

 Table S3 Deep learning models performance for binary classification.

Models Index	DenseNet-121	AlexNet	EfficientNet-B7
Accuracy	100.00%	100.00%	100.00%
Precision	100.00%	100.00%	100.00%
Recall	100.00%	100.00%	100.00%
F1 Score	100.00%	100.00%	100.00%
Inference Time	38ms	24ms	48ms

Table S4 Deep learning models performance for multiclass classification.

В

Models	DenseNet-121	AlexNet	EfficientNet-B7
Accuracy	97.50%	98.75%	97.50%
Precision	97.67%	98.85%	97.66%
Recall	97.50%	98.75%	97.50%
F1 Score	97.48%	98.75%	97.47%
Inference Time	31ms	15ms	41ms

Figure S1. Optimization of RPA primers and crRNA. (A) Agarose gel electrophoresis for purified target and control fragment. I-MCP: ISKNV MCP, F-MCP: FV3 MCP. (B) Result of agarose gel electrophoresis for evaluation of RPA efficiency. 1 nM purified target is used. 1[#] represents RPA primer F1 and RPA primer R1. The 4th pair of primers shows better amplification efficiency (RPA primer F2 and RPA primer R1). (C) The molecular weight of purified proteins for RPA is confirmed by SDS-PAGE.

Figure S2. Images of standard samples with SPM. (A) Detection of mixture beads with the diameter of 0.1 μ m, 0.2 μ m, 0.5 μ m, 1 μ m, and 4 μ m (TstraSpeck Fluorescent Microspheres Size Kit (T14792)). The excitation

wavelength and the emission wavelength are 560 nm and 580 nm, respectively. (B) The image of 4 μ m fluorescent beads. (C) The image of the potato's underground stem. (D) The image of the potato's stem tube

Figure S3. Standard curve of the proposed system and qPCR. (A) Concentration-signal intensity curve of DNA concentration and smartphone images. The standard samples with purified target DNA of 10 aM, 100 aM, 1fM, 10 fM, 1 pM, 100 pM, and control DNA of 100 pM are detected by crRNA-3 with RPA-CRISPR/Cas12a-smartphone microscopy. (B) Concentration-signal intensity curve of qPCR. The standard samples with purified target DNA of 1 aM, 10 aM, 100 aM, 1 fM, 10 fM, 10 pM, 100 pM, 1 nM, are detected by qPCR. The concentration of each clinical sample is estimated according to this calibration curve. (C) The correlation analysis of FV3 detection results obtained through RPA-CRISPR/Cas12a-SPM system and qPCR. The fluorescence signal intensity and Cq value of each sample are co-analyzed.

Figure S4. Evaluation of Deep learning models for classification of fluorescence images. **(A)** Evaluation of DenseNet-121 for binary classification. **(B)** Evaluation of AlexNet for binary classification. **(C)** Evaluation of efficienctNet-B7 for multiclass classification. **(D)** Evaluation of DenseNet-121 for multiclass classification.