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S1 Details on the algorithms
We provide additional details on the restricted Boltzmann machines (RBMs) and on the clus-
tering procedure.

Our RBMs are trained with well-known optimizations1,2 and with the ”centering trick”.3,4

We build the ensemble of RBMs, with a fixed number of hidden units Nh, by training R different
realizations. Each realization is characterized by the RBM’s random state, which determines
the weights initialization and the data split into training (80%) and validation (20%) sets. Thus,
we obtain a set of RBMs differing for parameter values and slightly for analyzed datasets.
Each weight wij is initially drawn from a uniform distribution in the interval [−ℓ,+ℓ] with
ℓ = 2(Nh +Nv)

−1/2. Biases are initialized to zero.
The bipartite structure of the RBM allows storing the information within weights and biases

in many ways due to the invariance for permutation and sign reversal of hidden units. To
overcome this variability when comparing units, we isolate each hidden unit j in an RBM and
compare its weights wij , and those of its mirror image −wij , with those of all other hidden units
in the same RBM and other RBMs of the ensemble. Thus, for every pair of hidden units j,m,
we compute the minimum Euclidean distance among them or their mirror versions,

djm = min

√∑
i

|wij − wim|2,
√∑

i

|wij + wim|2

 . (S1)

We then feed the distance matrix djm to a popular density-based algorithm, DBSCAN,5,6 to
perform clustering. We focus on tuning two parameters: a radius around each data point (ϵ)
and the minimum number of samples (mins) within ϵ from a data point that would prevent its
labeling as noise, i.e., that would grant to put that point in a cluster.

For tuning ϵ and mins, we introduce a cost function C(ϵ,mins) whose minimum corre-
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Figure S1: Example of parameter tuning in DBSCAN for the start of α-helices. The ”Noise”
matrix represents the fraction of noise points (first term in (S2)). The ”Average” matrix repre-
sents the average group size divided by the total number of hidden units in the ensemble (second
term in (S2)). The ”Total” matrix is the sum of the previous two and coincides with the cost
function in (S2). The red points highlight the optimal region of the parameters.

sponds to the optimal parameter values,

C(ϵ,mins) =

[
1−

∑
g∈G

Ω(g)

RNh

]
+

[
⟨Ω(g)⟩g∈G
RNh

]
(S2)

where G := G(ϵ,mins) denotes the set of groups returned by DBSCAN and Ω(g) denotes the
number of hidden units in group g ∈ G. The first term in (S2) is the fraction of hidden units
that are cataloged as noise. Hence it penalizes configurations with high noise. The second
term is proportional to the average cluster size ⟨Ω(g)⟩g∈G and penalizes configurations with
all the hidden units merged in a single, giant cluster. In Figure S1 we show the results and
the intermediate steps of the parameter tuning at the start of α-helices. For the other cases,
the results are similar. The procedure returns an optimal region of parameters: we choose the
average points within this region as optimal parameters. In Table 1, we collect the optimal
hyperparameters of DBSCAN analysis for each dataset.

Table 1: Optimal hyperparameters of DBSCAN analysis.

Structure ϵ mins

Start of α-helices 0.69 19
End of α-helices 0.56 17
Start of β-sheets 0.76 19
End of β-sheets 0.72 17

The average RBM is then built as the average of weights wij and biases bj within each
group after aligning all its hidden units to minimize the distance from a reference one. For
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better overall visualization, since aliphatic amino acids (I, L, V) always yield a well-defined
pattern, we adopt the convention that their weights at position γ = 1 are positive. The visible
bias ai is instead independent of the grouping; hence, it is averaged among all the original
RBMs.

For each hidden unit j representing the average of units in a group, we analyze weights wij

to extract the similarity among amino acids. For this purpose, we split the array of weights wij

into 20 sub-vectors of length Γ (i.e., a row if wij is reshaped to a 20×Γ matrix), each one related
to a specific amino acid. To extract the most relevant linear combinations of coordinates in the
Γ-dimensional space of sub-vectors in a group, we perform a principal component analysis
(PCA)6 on them. The PCA ranks the most relevant and independent linear combinations of
coordinates in the Γ-dimensional space.

S2 STRIDE vs DSSP
It is important to notice that the location of a secondary structure’s starting/ending point in
proteins may depend on the algorithm chosen to detect them. In the main text, we show the
results obtained with the DSSP. In this section, for comparison, we show the weights of an
ensemble of RBMs trained with a database of α-helices obtained with the algorithm STRIDE7

(see Figures S2, S3). The patterns observed do not deviate significantly from those shown in the
main text for the DSSP (see Figures 4 and 5), indicating that the method based on the ensemble
RBMs is sufficiently robust with respect to possible (small) deviations in the assignment of the
extremities of secondary structures by different algorithms.

S3 Correlation matrices
Correlations between the occurrence of amino acids (say a, b) at different positions (1 ≤ i <
j ≤ Γ) require the computation and parallel visualization of many matrices (one for every i-j
pair). This, for example, is shown in Figure S4 for the start of α-helices. Each matrix element
is

Cij
ab = ⟨I(a, i)I(b, j)⟩ − ⟨I(a, i)⟩⟨I(b, j)⟩,

where I(a, i) = 1 if the amino acid at position i is a, and I(a, i) = 0 otherwise, and ⟨. . .⟩ is the
mean over the ensemble.

Of course, the correlations displayed in Figure S4 (and Figures S5, S6, and S7 for the other
portions of the secondary structure) provide useful information. However, interpreting these
results a priori, without the knowledge acquired by studying the RBMs’ weights, seems more
complicated.
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Figure S2: Results for the start of α-helices found with the algorithm STRIDE. See the legend
of Figure 4 in the main text for more details.

Figure S3: Results for the end of α-helices found with the algorithm STRIDE. See the legend
of Figure 4 in the main text for more details. Compare this to Figure 5 in the main text.

4



Figure S4: Covariance matrices Cij
ab for the empirical occurrence of amino acid a at position i

and amino acid b at position j > i. Each matrix is for a given i, j pair for the start of α-helices.
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Figure S5: As in Fig. S4 but for the end of α-helices.
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Figure S6: As in Fig. S4 but for the start of β-sheets.
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Figure S7: As in Fig. S4 but for the end of β-sheets.
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