Supporting Information for

Adsorption of Respiratory Syncytial Virus (RSV), Rhinovirus, SARS-CoV-2, and F+ bacteriophage MS2 RNA onto wastewater solids from raw wastewater

Laura Roldan-Hernandez¹ and Alexandria B. Boehm^{1*}

1. Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, 473 Via Ortega, Stanford, CA, USA 94305

* Author to whom correspondence should be addressed. Email: <u>aboehm@stanford.edu</u>, Tel: 650-724-9128

Number of pages: 10 Number of Tables: 5 Number of Figures: 5

Linear and Langmuir models

The Linear and Langmuir isotherm equations are defined as

Linear::
$$K_d = q_e/C_e$$
 (1)
Langmuir: $q_e = \frac{q_{max}K_L C_e}{1 + K_L C_e}$ (2)

where q_e is the equilibrium concentration of viral genomes in solids (cp/g), C_e is the equilibrium concentration of viral genomes in the liquid fraction of wastewater, q_{max} is the maximum adsorption capacity (cp/g), K_L is the Langmuir constant, and K_d is the distribution coefficient.

Additional details related to EMMI¹ guidelines

The average number of droplets per two merged wells was 40,476 (standard deviation = 3,184). The machine vendor reports the droplet size as 0.00085 μ L. Average number of copies per partition (λ) (standard deviation) for SARS-CoV-2 N gene was 0.027 (0.0008) and for BCoV was 0.238 (0.004). λ for other human viruses was similar to SARS-CoV-2.

Target	Sequence	Reference
	Forward primer: 5'-CATTACGTTTGGTGGACCCT-3'	
SARS-CoV-2	Reverse primer: 5'-CCTTGCCATGTTGAGTGAGA-3'	2
(N gene)	Probe: CGCGATCAAAACAACGTCGG (5' FAM/ZEN/3'	2
	IBFQ)	
	Forward primer: 5'- CTCCAGAATAYAGGCATGAYTCTCC-3'	
	Reverse primer: 5'- GCYCTYCTAATYACWGCTGTAAGAC-	
	3'	3
(N gene)	Probe: TAACCAAATTAGCAGCAGGAGATAGATCAG (5'	
	HEX/ZEN/3' IBFQ)	
	Forward primer: 5'-GCCYGCGTGGCKGCC-3'	
RV	Reverse primer: 5'-GAAACACGGACACCCAAAG-3'	3
	Probe: TCCTCCGGCCCCTGAATG (5' FAM/ZEN/3' IBFQ)	
	Forward: 5'-GTCCATACCTTAGATGCGTTAGC-3'	
MS2	Reverse: 5'-CCGTTAGCGAAGTTGCTTGG-3'	4.5
10152	Probe: ACGTCGCCAGTTCCGCCATTGTCG (5' FAM/ZEN/3'	
	IBFQ)	
BCoV	Forward primer: 5'-CTGGAAGTTGGTGGAGTT-3'	
	Reverse primer: 5'-ATTATCGGCCTAACATACATC-3'	6
control	Probe: CCTTCATATCTATACACATCAAGTTGTT (5'	-
control)	FAM/ZEN/3' IBFQ)	

Table S1: Primers and probes for RT-ddPCR assays

All probes contained fluorescent molecules and quenchers (5' FAM and or HEX/ZEN/3' IBFQ); FAM, 6-fluorescein amidite; HEX, hexachloro-fluorescein; ZEN, a proprietary internal quencher from Integrated DNA Technologies (Coralville, IA, USA); and IBFQ, Iowa Black FQ.

Table S2:	Thermal of	cvclina	conditions	for SARS	-CoV-2.	RSV. R	V. MS2.	and BCoV
		- j g	••••••		,		-,,	

Cycling Step	Temperature °C	Time	Number of Cycles
Reverse transcription	50	60 min	1
Enzyme activation	95	10 min	1
Denaturation	95	30 sec	40
Annealing/extension	SARS-CoV-2 and RSV:	1 min*	40
	59		
	RV: 61		
	MS2: 60		
	BCoV: 56		
Enzyme deactivation	98	10 min	1
Hold	4	Infinite	1

*Ramp rate set to 2°C/sec

Table S3: Served population and annual average daily flow (MGD) of wastewater treatment plants

Plant	Location	Approximate number of people served in the sewershed [†]	Annual Average daily flow (MGD)	Min and Max TSS reported in 2022 (mg/L)	Min and Max pH reported in 2022 [-]
Oceanside Water Pollution Control Plant (OS)	San Francisco	250,000	21.7	33–1,630	*
Southeast Water Pollution Control Plant (SE)	San Francisco	580,000	56.9	26–727	7.0–7.9
Silicon Valley Clean Water Wastewater Treatment Plant (SV)	Redwood City	199,000	12.4	160–400	7.0–7.6
Sunnyvale Water Pollution Control Plant (SU	Sunnyvale	161,021	12.6	164–376	6.4–7.2
San Jose-Santa Clara Regional Wastewater Facility (SJ)	San Jose	1,419,393	90.7	250–400	7.5–7.9
South County Regional Wastewater Treatment Plant (GI)	Gilroy	105,394	8.5	152–552	6.5–7.3

Notes:

⁺ Based on the most recent National Pollution Discharge Elimination System (NPDES) permit and U.S. Census Bureau, 2020 American Community Survey block data

* Wastewater treatment plant does not measure pH in raw influent

	Temp. (°C)	La	angmuir mod	Linear model		
Virus		K∟ (g·ml⁻¹)	q _{max} (cp·g⁻¹)	ARE	K _d (g·ml⁻¹)	ARE
	4	4.5x10 ⁻⁴	2.6x10 ⁷	0.52	7,460	0.45
SARS-COV-2	22	1.0x10 ⁻³	9.5x10 ⁷	0.94	46,044	3.83
RSV-A	4	6.2x10 ⁻⁴	2.6x10 ⁸	3.72	136,809	2.97
	22	2.6x10 ⁻³	2.5x10 ⁸	3.76	425,372	4.49
	4	3.3x10 ⁻⁴	2.3x10 ⁷	0.15	3,396	0.41
KV-B	22	4.0x10 ⁻⁶	1.6x10 ⁷	0.73	1,583	0.99
	4	4.1x10 ⁻⁵	6.1x10 ⁷	0.65	1,260	0.42
10152	22	3.3x10 ⁻⁵	1.1x10 ⁷	0.68	148	0.93

Table S4: Langmuir and Linear isotherm parameters for SARS-CoV-2, RSV-A, RV-B, and MS2 into wastewater solids and their respective average relative error (ARE).

Table S5: Background concentration of endogenous of SARS-CoV-2, RSV, RV, and F+ coliphage/MS2 in wastewater influent samples stored at 4°C and 22°C

Virus	4°C exp	eriment	22°C experiment		
	Conc. in liquid fraction (cp/ml)	Conc. in solid fraction (cp/g)	Conc. in liquid fraction (cp/ml)	Conc. in solid fraction (cp/g)	
SARS-CoV-2	0.50	13,451	0.33	93,752	
RSV	0.67	4,208	0.97	22,190	
RV	0.88	90,729	0.87	22,580	
F+ coliphage/ MS2	0.22	28,731	0.25	4,121	

Environmental Microbiology Minimum Information Checklist

Study: St	y cription can larch 2023 ed by: Alexandria Boehm	Environmental Sampling Decribed in methods section	Sample Treatment Performed No sample treatment performed	Sample Reduction Performed Centrifugation was used, as described in the methods	Nucleic Acid Extraction Methods provided in the paper.	Reverse Transcription Performed One Step RT-PCR	PCR Detection	Analysis Provided in methods
Cont Chec	rol :klist	Environmental Sampling	Sample Treatment	Sample Reduction	Nucleic Acid Extraction	Reverse Transcription	PCR Detection	
	Step performed							
	Step has control info # control replicates Control result reported Data handling reported				5 11	3 1	5 1	Negative Controls
	Control introduced Internal/External Independent/Parallel Step has control info # control replicates Control result reported Data Handling reported			Parstel	External · Independent · S	External Independent 3	External Independent 3	Positive Controls

Process Checklist

Figure S1. EMMI¹ checklist for reporting.

Figure S2: MS2 RNA concentration in liquid fraction at t=0,1,2,3,4,5, and 6 hours. Error bars represent the 68% confidence interval from the ddPCR. Background concentration: ND

Figure S3: MS2 RNA concentration in solid fraction at t=0,1,2,3,4,5, and 6 hours. Error bars represent the 68% confidence interval from the ddPCR. Background concentration ~ 3.6×10^4 gc/g dry.

Figure S4: Outline of wastewater treatment plant service area (sewersheds)

Figure S5: Partition coefficient (K_F) for SARS-CoV-2, RV, RV, and MS2 in wastewater influent samples stored at 4°C and 22°C. Standard errors (SE) were obtained from the linear regression of the Freundlich model in R (summary function).

References

- (1) Borchardt, M. A.; Boehm, A. B.; Salit, M.; Spencer, S. K.; Wigginton, K. R.; Noble, R. T. The Environmental Microbiology Minimum Information (EMMI) Guidelines: QPCR and DPCR Quality and Reporting for Environmental Microbiology. *Environ. Sci. Technol.* **2021**, acs.est.1c01767. https://doi.org/10.1021/acs.est.1c01767.
- (2) Wolfe, M. K.; Topol, A.; Knudson, A.; Simpson, A.; White, B.; Vugia, D. J.; Yu, A. T.; Li, L.; Balliet, M.; Stoddard, P.; Han, G. S.; Wigginton, K. R.; Boehm, A. B. High-Frequency, High-Throughput Quantification of SARS-CoV-2 RNA in Wastewater Settled Solids at Eight Publicly Owned Treatment Works in Northern California Shows Strong Association with COVID-19 Incidence. *mSystems* **2021**, 6 (5), e00829-21. https://doi.org/10.1128/mSystems.00829-21.
- (3) Boehm, A. B.; Hughes, B.; Duong, D.; Chan-Herur, V.; Buchman, A.; Wolfe, M. K.; White, B. J. Wastewater Concentrations of Human Influenza, Metapneumovirus, Parainfluenza, Respiratory Syncytial Virus, Rhinovirus, and Seasonal Coronavirus Nucleic-Acids during the COVID-19 Pandemic: A Surveillance Study. *The Lancet Microbe* **2023**, S266652472200386X. https://doi.org/10.1016/S2666-5247(22)00386-X.
- (4) Gendron, L.; Verreault, D.; Veillette, M.; Moineau, S.; Duchaine, C. Evaluation of Filters for the Sampling and Quantification of RNA Phage Aerosols. *Aerosol Science and Technology* **2010**, *44* (10), 893–901. https://doi.org/10.1080/02786826.2010.501351.
- (5) Turgeon, N.; Toulouse, M.-J.; Martel, B.; Moineau, S.; Duchaine, C. Comparison of Five Bacteriophages as Models for Viral Aerosol Studies. *Appl Environ Microbiol* **2014**, *80* (14), 4242– 4250. https://doi.org/10.1128/AEM.00767-14.
- (6) Decaro, N.; Elia, G.; Campolo, M.; Desario, C.; Mari, V.; Radogna, A.; Colaianni, M. L.; Cirone, F.; Tempesta, M.; Buonavoglia, C. Detection of Bovine Coronavirus Using a TaqMan-Based Real-Time RT-PCR Assay. *Journal of Virological Methods* **2008**, *151* (2), 167–171. https://doi.org/10.1016/j.jviromet.2008.05.016.