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Supplementary Fig. 1 | Electrophoretic pattern of purified NIS. Lanes 1 and 3: molecular weight
markers; lane 2: NIS after affinity purification; lane 4: NIS after size exclusion chromatography. The gel
was stained with Coomassie Blue. Dotted rectangle is shown in Extended Data Fig.1.
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Supplementary Fig. 2 Alignment of NIS sequences from different species. a-helices are represented by
cylinders. Glycosylation sites are marked with a *; critical residues with inverted triangles; non-WT residues
found in IDD patients with diamonds; and the deletion A439-443 found in IDD patients with a crescent moon.
The alignment was done using Clustaw Omega and displayed using Jalview.



Supplementary Fig. 3 |Alignment of the inverted structural repeats. NIS has a LeuT fold with two 5-
helix bundle domains (TMSs 2-6 and 7-11) related by a pseudo-two-fold symmetry. The alignment
between the two repeats shows a root mean square deviation (RMSD) of 3.0 A.



Supplementary Fig. 4 | Structural alignment between NIS in grey, vSGLT (pdb accession code 3DH4)
in green (a), hSGLT1 (pdb accession code 7SLA) in wheat (b), and hSGLT2 (pdb accession code 7VSI) in
olive (c). *the stars in g, h, and i indicate the extra TMSs present in vSGLT, hSGLT1, and hSGLT2.
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Supplementary Fig. 5 NIS mutant proteins are properly targeted to the plasma membrane. HEK cells
transfected with an empty plasmid (i.e., not containing the cDNA of interest) and HEK cells transfected
with WT NIS or the indicated NIS mutants were incubated under nonpermeabilized conditions with an anti-
HA antibody that recognizes the extracellular N-terminus HA epitope and analyzed by flow cytometry.
The x axes show the intensity of the fluorescence of each single cell; the y axes the values of the side
scatter parameters. For each experiment, cells transfected with an empty plasmid were used as a

reference to identify the negative cells and determine the percentage of cells expressing WT NIS or the
respective mutants.
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Supplementary Fig. 6 Effect of single amino acid substitutions at position 67 on I- and ReO,~ transport. a. NIS-
mediated |- uptake at steady state. cDNA constructs coding for NIS mutants in which F67 is replaced with the residues
indicated were transfected into COS7 or HEK cells. I~ uptake by these NIS mutants was measured at 20 yM (white
bars) and 200 pM (gray bars) I at 140 mM Na* for 30 min with or without the NIS-specific inhibitor CIO, (values
obtained in the presence of CIO,;, which are < 10% of the values obtained in its absence, have already been
subtracted). Results are given as pmols of I- accumulated/ug DNA * s.e.m. Values represent averages of the results
from two or three different experiments, each of which was carried out in triplicate (n = 6-9). b and d. Kinetic analysis
of initial rates of I uptake (2-min time points) determined at 140 mM Na* and varying concentrations of I (b), and at
varying concentrations of Na* and 500 uM I- (d). ¢ and e. I K;, and Na* K,, values determined from b and d,
respectively. The error bars represent the standard deviation of the Michaelis Menten (b), and Hill equation (d)
analysis. f. NIS-mediated ReO, uptake at steady state. ReO, uptake by these NIS mutants was measured at 3 pM
(white bars) and 30 uM (gray bars) ReO, at 140 mM Na* for 30 min with or without the NIS-specific inhibitor CIO,
(values obtained in the presence of CIO,,, which are < 10% of the values obtained in its absence, have already been
subtracted). Results are given as pmols of I- accumulated/ug DNA * s.e.m. Values represent averages of the results
from two or three different experiments, each of which was carried out in triplicate. g and i. Kinetic analysis of initial
rates of ReO,  uptake (2-min time points) determined at 140 mM Na* and varying concentrations of ReO, (g), and at
varying concentrations of Na* and 100 uM ReQO, (i). h and j. ReO,~ and Na* Kj,s values determined from g and i,
respectively. The error bars represent the standard deviation of the Michaelis Menten (g), and Hill equation (i)
analysis.
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Supplementary Fig. 7 MD simulations. a. RMSD plot of the accumulated trajectories from 13 different MD
simulations of various lengths, showing the RMSDs between C-a atoms in the experimental and simulated
structures. In each of the thirteen runs, the structure was equilibrated using a different distribution of initial
velocities at a temperature of 310.15 K. The red dashed line indicates the approximate starting value of the
equilibrate structure used in each leg of the production stage. The time-series plot of the RMSDs clearly

Time step

Hydrophobicity

Partial charge

shows that they plateaued, indicating that there is no systematic change in the dynamic structure (left panel).

Histogram of the RMSD distribution (right panel). b. Cluster of tunnels identified in 1059 snapshots from the
MD simulations carried out with NIS-I-. A pathway analysis performed on 1059 snapshots from the MD
simulations with the NIS-I- structure sampled every 5 ns revealed a cluster of tunnels similar to the one in
the apo-NIS structure in 95 + 0.03% of the snapshots. The analysis was carried out as follows: the
snapshots were divided into 10 groups, the tunnels in each group were counted, and the average of the

counts computed with its standard deviation. c-e. section of the tunnel cluster taken respectively at 3.5 A (a),

5 A (b), and 10 A (c) from the position of the |- binding in the structure. We used CAVER Analyst 2.0 (BETA
2) with the default parameters, with the exception of a probe radius of 1.2 (A), a clustering threshold of 5.3
(A) , and a shell depth of 5 (A); the ions were excluded.
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Supplementary Fig. 8 F67 conformations open up the ion pocket toward the exit pathway.
Ramachandran plot of the chi1 and chi2 side chain dihedral angles of F67 visited during the MD
simulations with NIS-I-. The dihedral angles selected are the principal determinants of the position of the
side chain. The excursions of these dihedral angles (during the MD simulations) away from the
conformational basins corresponding to the cryoEM structure (green dot in basin 2) and toward
conformational basins (blue dot in basins 1) open up the exit path. In these histograms, the frequency of
a given conformational state is indicated by a rainbow gradient from deep purple (0 frequency) to red
(highest frequency).
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Supplementary Fig. 9 Alignment of the sequences of the members of the SLC5 family. The red inverted triangles
indicate the residues interact with Na1; the blue inverted triangles, the residues that interacts with Na2; and the green inverted
triangles, the residues whose side chains contribute to forming the canonical Na2 site. The alignment was done using Clustaw
Omega and displayed using Jalview.



Supplementary Fig. 10 Local densities in the Apo-NIS (top), NIS-I-(middle), and NIS-ReO, (bottom)
maps show that the Q72 side chain has a different conformation in each of the three structures.



Supplementary Fig. 11 Close-up of the NIS region containing the B-hydroxyl residues that form
the canonical Na2 site. S353 and T354, highlighted in green—in the NIS-I-(top) and NIS-ReO, (bottom)
structures.



Supplemental Information Table S1. Composition of, and production times for, the MD
simulation system.

Complex Atoms Lipids Number of ions Ligands Water Simulation
(DOPC) molecules time
I/Na* 161318 405 87 Na*and 92 CI' | 2Na* and 1I 32586 5390 ns
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