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We thank the reviewers for their critical assessment of our work. In the following we
address their concerns point by point.

Reviewer 1

Reviewer Point 1.1 — The text has many grammatical and spelling errors, which
need to be addressed to be able to better appreciate the work presented. For instance, “di-
mension” and “distance” are misspelled on line 57 and the Figure 2 legend, respectively.

Reply: We thank the reviewer for this comment. The authors carefully read the entire
article, corrected the typos, and rewrote numerous sections and paragraphs to improve the
manuscript’s readability. In addition, a native English speaker assisted us in revising the
manuscript. In blue, the responses to the reviewer’s comments are added to the manuscript.

Reviewer Point 1.2 — The authors spend a considerably large amount of text on
the introduction which spans, 144 lines of text, over 2 pages even enumerating machine
learning guidelines from a previous study. I would recommend the introduction be con-
densed into more concise text which would make the transition to methods and results
smoother.

Reply: We thank the reviewer for pointing us to this structural point. The section has been
revised to be more concise.

Reviewer Point 1.3 — Why is a distance-based sub-sequence of k=2 optimal, why
not larger values? It seems like k=2 is capturing information already present in the
k-mers counts and would be interesting to hear the authors discuss their methodology for
selecting k=2.

Reply: We appreciate your noticing this. We believe that our explanation was unclear. To
eliminate the confusion, we add Figure 2 and also revised Fig 3 in the old manuscript to
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more accurately depict our distance-based profile. We added the following paragraph and
also edited Figure 3 to be more clear in the “Feature encoding” section of the manuscript;

The main drawback of k-mer representation is that when k increases, the feature vector
becomes extremely large and sparse, which can be memory-inefficient and can reduce the
performance of the model. In order to mitigate the issue of small repeat regions, it may
be advantageous to employ larger k-mer sizes. However, as the number of matching subse-
quences decreases, large k-mers become computationally infeasible and result in a significant
sparsity in the feature vector. In this study, we propose a novel distance-based representation
to partially address this issue. In the novel distance-based profiles, the distance between the
first and last nucleotide of the subsequence that we counted is k. The frequency of this sub-
sequence is then determined for each pair of nucleotides separated by k. Consequently, for
an mRNA sequence S and a distance k, the following 16-element feature vector is obtained:
Dk(S) = [w1, w2, ..., w16], where wi is the frequency of each distance-based sub-sequence
and X is a sub-sequence of size k. For any k, an illustration of all subsequences to count is
provided in Figure 2.

Fig. 2: For an mRNA sequence S and a distance k, we depict the 16-element feature
vector, where wi is the frequency of each distance-based subsequence and X denotes a
possible sub-sequences of size k.

It is obvious that for an mRNA sequence S with a length of m, X can be replaced with
a sub-sequence of nucleotides (A, G, C, and T) ranging from size 0 to m-2. As an example,
let’s consider S to be the mRNA with the sequence ACGCCGC with a length of 7, so X
can be a sub-sequence of maximum size 5. For example, in Figure 3, four distance-based
substructures of ACGCCGC are shown in three different colors. The two sub-sequences CGCC
and CCGC with distance 2 are shown in green, one sub-sequence GCCGC with distance 3 is
drawn in red, and one sub-sequence ACGCCGC with distance 5 is illustrated in black. Also,
if we want, for instance, to calculate w3 and w6 in this sequence, for w3 : AXG, we have one
sub-sequence ACG (k=1) and one sub-sequence ACGCCG (k=4), so the frequency of w3 is
2. For w6 : CXC, the sequence contains one sub-sequence CC (k=0), two sub-sequences
CGC (k=1), one sub-sequence CCGC (k=2), one sub-sequence CGCC (k=2), and one sub-
sequence CGCCGC (k=4), therefore the frequency of w6 is 6. In this work, we tested a wide
range of distances, and after many trials and errors, we found the best range for k to be
between 0 and 8. As a result, the length of the created feature vector is 9× 16 = 144.

Reviewer Point 1.4 — In Table 3 and 4, two benchmarks are performed, however,
the authors utilize two different metrics for evaluation. Table 3 is correlation based while
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Fig. 3: Illustrating distance-based profiles. Four distance-based substructures are shown
in three different colors for the mRNA sequence S=ACGCCGC. Two sub-sequences
CGCC and CCGC with k=2 are shown in green, one sub-sequence GCCGC with k=3
is depicted in red, and one sub-sequence ACGCCGC with k=5 is illustrated in black.
In addition, the figure depicts the possible subsequences of S between A and G (AXG)
and C and C (CXC).

Table 4 uses the standard multi-class accuracy metrics. This is slightly confusing because
they are all performing the same classification tasks, the metrics used should be the same
between benchmarks to enable better comparisons.

Reply: We thank the reviewer for their notice. Our methodology has been evaluated using
distinct datasets, as stated in the paper. The first method, known as Cefra-seq, uses a
real number to represent the amount of gene expression in each of the four compartments.
Therefore, Pearson and Spearman correlations were employed to assess the performance of
the models in this data set. The second dataset, compiled from the RNALocate database,
is among the most commonly used datasets for RNA localization. The element information
of this data set is a binary vector indicating whether a specific RNA is present at a given
location. Given that this data set considers five locations, the length of this binary vector
is also five. We use a classification method within this data set to predict the localization
of an RNA. This data set necessitates the classification metrics, precision, recall, f-score,
MCC, and ACC for comparing different classification methods. For better comprehension,
we added the following paragraph to the “Evaluation criteria” subsection and Table 3 in the
“Results” section of the manuscript;

As stated previously, we work with two datasets, and due to the differences in their
structures, we compare different metrics to evaluate the performance of the model on each
dataset. As described previously, the CeFra-Seq localization values are continuous. We
therefore consider correlation measurements when evaluating model performance similar to
[9] study. The initial measure is Pearson Correlation. Pearson Correlation is a method
for measuring the linear correlation between predicted and observed values. It has a value
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between 1 and -1, with +1 representing a total positive linear correlation, 0 representing no
linear correlation, and -1 representing a total negative linear correlation. In order to better
evaluate the performance of the model, we also consider the Spearman correlation between
predicted and experimental values to capture the order of locations to which an mRNA
belongs. In addition, we employ classification metrics in the RNALocate dataset because
localization information is discrete values similar to 12 study.

In Table 3, we have summarized all the metrics used to evaluate the performance of the
models on the two benchmarks.

Table 3: A summary of the localization information for two datasets and
metrics used to assess models performance.

Dataset Localization information Metrics
CefraSeq Normalized gene expression valuess Regression metrics: Pearson Cor. and Spearman Cor
RNALoc Single location Classification metrics: Precision, ACC, F-score, MCC

We use correlation measurements for CefraSeq, and classification metrics for RNALocate dataset.
Pearson Cor: Pearson Correlation; Spearman Cor: Spearman Correlation; ACC: Accuracy; MCC:
Matthews Correlation Coefficient.

Reviewer Point 1.5 — The authors state the advantages of their distance-based
sub-sequence profiles many times but do not directly quantify their benefits. It would
be informative for the authors to create a new model only using k-mers then they can
compare the accuracies of this model to the NN-RNALoc(noPPI) model to directly esti-
mate the effects of their new distance-based sub-sequence profiles. This would allow the
visualization of the increases in accuracy from k-mers, PPI and distance-based features.

Reply: We thank the reviewer very much for considering this claiming point. In Table 4,
we added the experiment using only k-mer frequencies and compared the results to the case
when the distance-based profiles are also included. We have updated the Table 4 and added
the following paragraphs in the “Result” section of the manuscript;

DNN-kMer is a multilayer perceptron-based predictor that extracts k-mer features from
sequences (1-mers to k-mers). In both data sets, the DNN-kMer model was trained on 1-mers
to 8-mers, and the best results were obtained when all 1-mer to 5-mer information was taken
into account. Therefore, DNN-5mer’s inputs are a 1364-dimensional (41+42+43+44+45)
vector. As a result, using 1-mers to 5-mers as features, we evaluate the performance of
NN-RNALoc and DNN-5mer. DNN-5mer has only two hidden layers with the same number
of neurons as the input vector. In the hidden layer, the Relu activation function is utilized.
Despite the fact that both NN-RNALoc and DNN-5mer have a simple architecture, DNN-
5mer performs significantly worse, with Pearson correlations of 0.63 in the Membrane, 0.55
in Insoluble, 0.42 in the Membrane, and 0.48 in the nucleus. Overall, NN-RNALoc achieves
a Pearson correlation approximately 35% higher than DNN-5mer. In addition, we ran NN-
RNALoc with only k-mer frequencies (for k from 1 to 5) to evaluate the effect of incorporating
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the distance-based profile into the model. As Table 4 represents, in this context (comparing
NN-RNALoc(no PPI) and NN-RNALoc(k-mer profile)) the Pearson correlations were 9%
lower in total, demonstrating the advantages of using distance-based profiles.

Table 4: Average Pearson correlations of 30 times 10-fold cross-validation in
each location of Cefra-Seq dataset obtained by different methods.

Location NN-RNALoc NN-RNALoc(no PPI) NN-RNALoc(k-mer profile) RNATracker fixed RNATracker full DNN-5mer
Cytosol 0.69 0.67 0.66 0.68 0.70 0.63
Insoluble 0.65 0.61 0.60 0.62 0.64 0.55
Membrane 0.54 0.52 0.47 0.47 0.54 0.42
Nuclear 0.55 0.52 0.50 0.49 0.54 0.48

NN-RNALoc (with employing PPI, k-mer and distance-based profiles);
NN-RNALoc(no PPI) (k-mer and distance-based profiles); NN-RNALoc(only k-mer);
RNATracker (fixed length mode); RNATracker full (full length mode); DNN-5mer
(1-mers to 5-mers)

Reviewer Point 1.6 — The utilization of novel features to improve classifier accuracy
is very interesting, however it would be equally intriguing to see why these features in-
crease accuracy. For example, what are the most informative distance-based subsequence
profiles for each subcellular location? Are some of these, or their respective k-mers en-
riched for RNA-binding motifs? In addition, are certain subcellular locations enriched
for certain protein-protein interactions? I would recommend adding a figure exploring
these questions.
Reply: First of all, thank you for considering this point, which paves the way for future
results in this field. We did the experiment in order to assess the importance of each k-mer
profile and added the following paragraphs and also Fig 5, Fig 6 and Fig 7 to the manuscript
for better clarification;

To evaluate the effect of incorporating PPI information into our model, the following
analysis was performed on both the CeFra-Seq and RNALocate datasets. We only utilize
5-mer and also distance-based sub-sequence information derived from mRNA sequences and
compare the results to the scenario in which PPI information is also incorporated into the
model. When the reduced PPI matrix is used in the model for the Cefra-se dataset, NN-
RNALoc achieves almost 11% higher Pearson correlation in total for all locations, as shown
in Table 4. We conduct the same analysis on the RNALocate dataset and human-related
transcripts too, utilizing only sequence-based information in the model. These results, which
are the same as those found in the first dataset, also show that when NN-RNALoc uses PPI
information in the second dataset, its performance totally improves with 10% increase in
MCC and 2% in accuracy.

Fig 5 and Fig 6 compile the results for a more precise comparison of the performance of
the NN-RNALoc algorithm with PPI information (NN-RNALoc) and without PPI information
(NN-RNALoc(no PPI)) besides other methods. Fig 5 displays the resulted average of Pearson
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Fig. 5: Comparison of Pearson correlations values of NN-RNALoc algorithm with other
methods for Cefra-Seq dataset.

correlation for the CeFra-Seq dataset for four locations, and Fig 6 shows the average of F-
score values for the five locations in the RNALocate dataset. According to Fig 5 and Fig 6,
considering PPI information improves the results for all locations in both datasets and has the
greatest influence on predicting the insoluble location in CeFra-Seq dataset and Endoplasmic
Reticulum location in the RNALocate dataset. To evaluate the impact of including distance-
based profiles in the model, we omit this information from the feature vector. As previously
discussed in the results and as shown in Table 4, Fig 5 and Fig 6, the poorer performance of
NN-RNALoc on both datasets when only k-mer frequencies (for k from 1 to 5) are used can
potentially demonstrate the impact of distance-based profiles. Finally, for a more detailed
evaluation and to determine the impact of each distance-based k-mer on the prediction of
mRNA location, the following experiment was conducted on the CeFra-Seq dataset. We
independently considered each distance-based profile for k ranging from 0 to 8. Fig 7 depicts
the average Pearson correlation in each of four locations when a single distance-based k-
mer profile was used. Using 8-mer distance-based profiles yields the highest correlation in
Cytosol, Insoluble, and Nuclear, which are represented by blue, orange, and green curves,
respectively, as shown in Fig 7. However, for Membrane, which is depicted by a red curve,
the highest correlation is obtained using a 4-mer distance-based profile, despite the fact that
the differences in Pearson correlations are negligible. Therefore, in order to find all possible
patterns in mRNA sequences, we decided to look at the combination of distance-based
profiles for all k-mers in the range of 0 to 8.
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Fig. 6: The average of F-score values for the five locations in the RNALocate dataset.

Fig. 7: Impact of each distance-based k-mer in each location. Pearson correlation ob-
tained by NN-RNALoc on CeFra-Seq dataset when employing each distance-based pro-
file for k in range 0 and 8, individually. Four locations are represented in four different
colors; blue: Cytosol, orange: Insoluble, green: Nuclear, red: Membrane.

Reviewer 2

Reviewer Point 2.1 — Authors proposed a deep learning framework for mRNA sub-
cellular locations prediction. Authors have proved that information of proteins assists
model to predict sub-cellular locations more precisely. The paper seems interesting and
will be helpful for biomedical researchers.
Reply: We thank the reviewer for his/her time and kind review.
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