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Figure S1: Establishment of PROCR+/ZEB1+/PDGFRα+ (PZP) cell lines from the healthy 

breast tissues of women of African ancestry. (a) Genetic ancestry mapping of breast tissue 

donors (KTB104, and KTB109181) using a 41-SNP panel. (b) PROCR+/EpCAM‒ cells are 

enriched in established PZP cell lines (n=3). (c) Quantitation of PROCR+/EpCAM‒ cells (n=3). (d) 

APC and PE isotypes control staining patterns of cell lines, as characterized by flow cytometry 

(n=3). These staining patterns were used to draw quadrants. (E) ZEB1 expression levels in various 

PROCR+/EpCAM‒ (KTB104*p=0.0065, KTB106*p<0.0001 and KTB109181*p=0.0009) cell 

lines compared to EpCAM+ (KTB34 and KTB39) luminal cell lines (n=3). Data analyzed using 

two-tailed t-test. (f) PROCR+/ZEB1+ (KTB104, KTB106 and KTB109181) cell lines express 

PDGFRα as determined by flow cytometry (n=3). (g) Quantitation of PDGFRα+ cells (n=3). (h) 

PDGFRα mRNA level in PROCR+/EpCAM ̶ cells compared to PROCR±/EpCAM+ cells. These 

results are from RNA-seq studies done in triplicate that involved seven epithelial cell lines, KTB40 

and KTB42 (*p=0.0003 and results have been published previously 1). Data analyzed using one-

way ANOVA. (i) PDGFRβ mRNA level in PROCR+/EpCAM- cells compared to 

PROCR±/EpCAM+ cells (KTB*p<0.0001; KTB42*p=0.0004). Data analyzed using two tailed t-

test.  **p<0.01, ***p<0.001, ****p<0.0001. All the data points are shown as mean ± SEM. Source 

data are provided as a Source Data file. 
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Figure S2: Additional cell surface marker profiles of PROCR+/ZEB1+ cells. (a) APC and PE 

isotypes control staining patterns of cell lines as characterized by flow cytometry (n=3). These 

staining patterns were used to draw quadrants. PZP cell lines were stained with CD49f and EpCAM 

antibodies to demonstrate lack of breast basal, luminal progenitor, and mature/differentiated cell 

population (n=3). (b) Phase contrast images representing the epithelial morphology of human 

telomerase gene (hTERT) immortalized breast epithelial cells (KTB34 and KTB39) and fibroblast-

like features of KTB40 and KTB42 (n=3). (c) PZP cell lines were stained with CD105 and CD26 

antibodies to determine whether PZP cells show phenotypic similarity to the lobular and 

interlobular human breast fibroblastic cells (n=3). (d) Quantification of CD105high/CD26̶ and 

CD105high/CD26low population of cells (n=3). (E) PZP cell lines were stained with CD90 and CD73 

antibodies to identify rare endogenous pluripotent somatic stem cells and potential mesenchymal 

stem cells (n=3). (f, g and h) Quantification of CD90low /CD73high, CD90med/CD73high, and 

CD90high/CD73high population of cells (n=3). (i) PZP cell lines were stained with CD44 and CD24 

antibodies to determine whether their phenotype overlaps with cancer stem cells (n=3). (j) 

Quantification of CD44high/CD24low population (n=3). (k) PZP cell lines were stained with CD10 

antibody to determine myoepithelial cell marker expression (n=3). (l) Quantification of CD10+ 

population (n=3). All the data points are shown as mean ± SEM. Source data are provided as a 

Source Data file. 
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Figure S3: PZP cells lack ALDH+ subpopulation. (a) ALDH+ subpopulation, as measured 

through ALDEFLUOR assay, in immortalized breast epithelial (KTB34 and KTB39) and PZP 

(KTB32, KTB40, KTB42, KTB53, KTB57, KTB59, KTB104, KTB106 and KTB109181) cell 

lines. (b) Quantification of ALDH+ cells (n=3). Data analyzed using two tailed t-test 

(KTB32*p=0.002, KTB40*p=0.001, KTB42*p=0.0017, KTB53*p=0.0012, KTB57*p=0.0009, 

KTB59*p=0.0006, KTB104*p=0.0016, KTB106*p=0.001 and KTB109181*p=0008 compared to 

epithelial cell lines). All the data points are shown as mean ± SEM. Source data are provided as a 

Source Data file. 

 

 



 10 

 



 11 

Figure S4: Genetic ancestry mapping of African American and non-Hispanic White breast 

tissue donors. (a) Genetic ancestry marker distribution patterns of donors whose Normal- Healthy 

breast tissues were used to generate TMA. (b) The bar plot of population structure from 

STRUCTURE Bayesian analysis with K=7. Each individual is represented by a vertical bar with 

colors representing the estimated proportion of ancestry. The reference populations are Africa 

(red), America (green), Europe (magenta), Central/South Asia (blue), East Asia (yellow), Middle 

East (Cyan), and Oceania (orange). Source data are provided as a Source Data file. 
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Figure S5: PROCR and PDGFRα expression patterns in breast epithelium and stroma of 

Normal-Healthy tissues. (a) PROCR expression was predominantly in stroma compared to breast 

epithelium (n=122). (b) Positivity of ZEB1 in relation to income levels of donors, <20 K (n=12), 

20-50 K (n=42), 50-100 K (n=65) and >100 K (n=73) in $. (c) H-score of ZEB1 in relation to 

income levels of donors, <20 K (n=12), 20-50 K (n=42), 50-100 K (n=65) and >100 K (n=73) in 

$. Box plot representing whiskers with min-max data points and median value. (d) PDGFRα 

expression in stroma and breast epithelium (n=124). ****p<0.0001 analyzed using two tailed t-

test. All the data points are shown as mean ± SEM. Source data are provided as a Source Data file. 
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Figure S6: ERα expression pattern in Normal-Healthy, NATs, and breast tumors. (a) 

Representative IHC of ERα in Normal-Healthy, NATs, and tumors of women of African and 

European ancestry. (b) Enlarged view of ERα expression in Normal-Healthy and tumor. (c) 

Differences in ERα expression (positivity and H-score) between Normal-Healthy of breast tissues 

of women of African and European ancestry. Data analyzed using Wilcoxon test (Two-sided). (d) 

Differences in ERα expression (positivity and H-score) between Normal-Healthy and NATs in 

women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (e) 

Differences in ERα expression (positivity and H-score) between NATs and tumors women of 

African and European ancestry.  Data analyzed using two-tailed Wilcoxon test. (Normal-Healthy- 

AA (n=25), EA (n=16); NAT -AA (n=22), EA (n=34); Tumor -AA (n=29), EA (n= 59)). Dot blots 

contain data from duplicate cores of NATs and tumors wherever available. All the data points are 

shown as mean ± SD. Source data are provided as a Source Data file. 
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Figure S7: GATA3 expression pattern in Normal-Healthy, NATs, and breast tumors. (a) 

Representative IHC of GATA3 in Normal-Healthy, NATs, and tumors of women of African, and 

European ancestry. (b) Enlarged view of GATA3 expression in Normal-Healthy and tumor. (c) 

Differences in GATA3 expression (positivity and H-score) between Normal-Healthy of women of 

African and European ancestry. Data analyzed using Wilcoxon test (Two-sided). (d) Differences 

in GATA3 expression (positivity and H-score) between Normal-Healthy and NATs in women of 

African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (e) Differences in 

GATA3 expression (positivity and H-score) between NATs and tumors in women of African and 

European ancestry. Data analyzed using two-tailed Wilcoxon test. (Normal-Healthy, AA (n=21), 

EA (n=16); NAT -AA (n=19), EA (n=29); Tumor -AA (n=23), EA (n= 58). Dot blots contain data 

from duplicate cores of NATs and tumors wherever available. All the data points are shown as 

mean ± SD. Source data are provided as a Source Data file. 
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Figure S8: FOXA1 expression pattern in Normal-Healthy, NATs, and breast tumors. (a) 

Representative IHC of FOXA1 in Normal-Healthy, NATs, and tumors of women of African, and 

European ancestry. (b) Enlarged view of FOXA1 expression in Normal-Healthy and tumor. (c) 

Differences in FOXA1 expression (positivity and H-score) between Normal-Healthy of women of 

African, and European ancestry. Data analyzed using Wilcoxon test (Two-sided). (d) Differences 

in FOXA1 expression (positivity*p=0.000079348 and H-score) between Normal-Healthy and 

NATs in women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. 

(e) Differences in FOXA1 expression (positivity and H-score) between NATs and tumors in 

women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (Normal-

Healthy, AA (n=29), EA (n=23); NAT -AA (n=22), EA (n=38); Tumor -AA (n=26), EA (n= 59). 

Dot blots contain data from duplicate cores of NATs and tumors wherever available. All the data 

points are shown as mean ± SD. Source data are provided as a Source Data file. 
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Figure S9: The effects of co-culture of PZP and luminal progenitor cell lines on expression 

of specific genes. (a) Relative mRNA level of IL-6 in KTB40, KTB42 and KTB-epithelial cell 

lines (n=3).  Data analyzed using two tailed t-test. (KTB40*p=0.0417; KTB42*p<0.0001) 

Expression of (b) IL-8 (n=3) (KTB34+32*p=0.0033, KTB34+40*p<0.0001; 

KTB34+42*p=0.0005; KTB39+32*p=0.0111; KTB39+40*p<0.0001; KTB39+42*p<0.0001), (c) 

DLL1 (n=3) (KTB34+32*p=0.0006, KTB34+40*p=0.0001; KTB34+42*p<0.0001; 

KTB39+32*p=0.0002; KTB39+40*p=0.0001; KTB39+42*p=0.0003),  

(d) F3 (n=3) (KTB34+32*p=0.0005, KTB34+40*p=0.0002; KTB34+42*p=0.0002; 

KTB39+32*p<0.0001; KTB39+40*p<0.0001; KTB39+42*p<0.0001), 

(e) NRG1 (n=3) (KTB34+32*p=0.04, KTB34+40*p=0.0038; KTB39+32*p=0.0440; 

KTB39+40*p=0.0158; KTB39+42*p=0.0137), 

(f) CMTM6 (n=3) (KTB34+32*p=0.0006, KTB34+40*p=0.0008; KTB34+42*p=0.0008; 

KTB39+32*p=0.0003; KTB39+40*p=0.0008; KTB39+42*p=0.0009), 

(g) MIF (n=3) (KTB34+32*p=0.0011, KTB34+40*p=0.0015; KTB34+42*p=0.0036; 

KTB39+32*p=0.0001; KTB39+40*p<0.0001; KTB39+42*p=0.0003),  

(h) MFGE8 (n=3) (KTB34+32*p=0.0005, KTB34+40*p=0.0012; KTB34+42*p=0.0009; 

KTB39+32*p=0.003; KTB39+40*p=0012; KTB39+42*p=0.0014), and  

(i) POSTN (n=3) (KTB34+32*p=0.0004, KTB34+40*p<0.0001; KTB34+42*p=0.0014; 

KTB39+32*p=0.0287; KTB39+40*p<0001; KTB39+42*p=0.0097) in PZP cell lines (KTB32, 

KTB40, and KTB42), luminal progenitor (epithelial cells; KTB34 and KTB39), and co-culture of 

PZP and luminal progenitor cell lines. Statistical significance (p values) was determined by 

comparing KTB32/40/42 (PZP cells), KTB34/KTB39 (epithelial cells), and respective co-cultured 
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PZP + epithelial cells as indicated in the figure. All the data points are shown as mean ± SEM. 

Source data are provided as a Source Data file. 
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Figure S10: The effects of PZP cells on trans-differentiation of epithelial cells (a) PZP KTB40 

and KTB42 cells were labelled with tomato-red using pCDH-EF1-Luc2-P2A-tdTomato lentivirus 

and sorted tomato-red positive cells by flow cytometry to generate stable cell lines. (n=1) (b) APC 

and FITC isotypes control staining patterns of cell lines is shown. These staining patterns were 

used to draw quadrants. (c) ALDEFLUOR staining patterns of KTB34, KTB39, and co-cultured 

KTB40/KTB42 and KTB34/KTB39 cell lines (n=3). Quantification of ALDH+ cells in Tom- cell 

epithelial cell population (n=3). (KTB40+34*p=0.0087; KTB40+39*p=0.034, KTB42+39*p= 

0.0192). (d) ALDEFLUOR staining patterns of KTB40, KTB42, and co-cultured KTB40/KTB42 

and KTB34/KTB39 cell lines. Only Tom+ PZP cells were analyzed (n=3). Quantification of 

ALDH+ cells among Tom+ population (n=3) (KTB42+34*p=0.0102). *p<0.05, **p<0.01). The 

data analyzed using two tailed t-test. All the data points are shown as mean ± SEM. Source data 

are provided as a Source Data file. 
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Figure S11: The effects of IL-6 neutralization on PZP cell-induced trans-differentiation of 

epithelial cells. (a) Treatment of co-cultured KTB34 and KTB40 cells with neutralizing IL-6R 

antibody showed a decrease in CD49f+/EpCAM-/low population compared to co-cultured IgG 

control (n=3). KTB39 and KTB42 co-cultured cells followed by neutralizing IL-6R antibody 

treatment showed a modest decrease in CD49f+/EpCAM-/low population (n=3). (b) Quantification 

of CD49f+/EpCAMhigh, CD49f+/EpCAMmed, and CD49f+/EpCAMlow populations in Tom- cell 

population (n=3). The effect of IL-6R antibody on trans-differentiation was significant (p=0.0121, 

two-way ANOVA). (c) Analysis of CD44+/EpCAMhigh and CD44+/EpCAMlow populations in 

KTB34, co-cultured KTB34 and KTB40, KTB39, and co-cultured KTB39 and KTB42 cells with 

IgG control and neutralizing IL-6R antibody treatment (n=3). (d) Quantification of 

CD44+/EpCAMhigh and CD44+/EpCAMlow subpopulations in Tom- KTB34 and KTB39 cells 

(n=3).  The data analyzed using two-way ANOVA, ****p<0.0001 for all. While the effects of PZP 

cells in altering CD44/EpCAM staining patterns of epithelial cells were significant (**p<0.0001 

by two-way ANOVA), the effects of IL-6R in reversing PZP-induced changes in epithelial cell 

CD44/EpCAM staining patterns were not significant. All the data points are shown as 

mean ± SEM. Source data are provided as a Source Data file. 
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Figure S12: The effects of IL-6 neutralization on CD24 and CD10 staining patterns of 

epithelial cells. (a) Analysis of CD24+/CD10high and CD24+/CD10low populations in KTB34, co-

cultured KTB34 and KTB40, KTB39, and co-cultured KTB39 and KTB42 cells with IgG control 

or neutralizing IL-6R antibody treatment (n=3). (b) Quantification of CD24+/CD10high 

(KTB34*p<0.0001; KTB40+34*p=0.0002; KTB39*p<0.0001; KTB42+39*p<0.0001) and 

CD24+/CD10low (KTB34*p=0.0002; KTB40+34*p=0.0018; KTB39*p<0.0001; 

KTB42+39*p<0.0001) populations in Tom- cell population (n=3). While the co-culture-induced 

changes in CD24 and CD10 staining patterns were significant (**p<0.0018, ***p<0.0002, 

****p<0.0001), the effects of IL-6R antibody in reversing these changes were not significant. The 

data analyzed using two-way ANOVA. All the data points are shown as mean ± SEM. Source data 

are provided as a Source Data file. 
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Figure S13: Generation of HRasG12V, SV40-T/t antigen and HRasG12V+ SV40-T/t antigen 

transformed PZP cell lines. (a) Western blotting was used to detect overexpression of mutant 

Ras in KTB32, KTB40, and KTB42 cell lines. (n=1) (b) Western blotting was used to detect 

overexpression of SV40-T/t antigens in KTB32, KTB40, and KTB42 cell lines. (n=1) (c) Western 

blotting was used to detect overexpression of mutant Ras and SV40-T/t antigens in double 

transformed KTB32, KTB40 and KTB42 cell lines. Empty vector pLKO containing cell line was 

used as a control cell line. β–actin was used as an internal control. (n=1) (d) Phase contrast images 

showing morphology of KTB32, KTB40, and KTB42 cell lines transformed with HRasG12V, SV40-

T/t antigens, and HRasG12V+ SV40-T/t antigen. (n=1).  
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Figure S14: Characterization of transformed cell lines and tumors. (a) APC and PE isotypes 

controls staining of cell lines (n=3). These staining patterns were used to draw quadrants. (b) CD44 

and CD24 staining patterns of immortalized and transformed PZP (KTB32, KTB40 and KTB42) 

cell lines (n=3). (c) IHC analyses of cytokeratins CK5/6, CK8, CK14, and CK19 in tumors 

developed from KTB42-HRasG12V transformed cells. Basal markers: CK5/6 and CK14, Luminal 

markers: CK8 and CK19 (n=5). (d) IHC analyses of cytokeratins CK8, CK14, and CK19 in tumors 

developed from the KTB42-HRasG12V+SV40-T/t antigen transformed cells (n=5). (e) GSEA 

analysis of genes differentially expressed in PZP cells compared to epithelial cells reveals 

enrichment of signaling networks in PZP cells similar to that of metaplastic carcinomas of the 

breast.  
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Figure S15: Characterization of tumors developed from PROCR+/EpCAM- KTB42 cells 

transformed with HRasG12V and SV40-T/t antigens. (a) PROCR+/EpCAM- cells were sorted 

from KTB42-HRasG12V+SV40-T/t transformed cells and injected into NSG mice that formed the 

tumors. Human cells were isolated from tumors by flow cytometry using CD298 marker to 

establish tumor-derived cell lines. Tumor-derived cell lines were characterized using cell surface 

markers (PROCR, EpCAM, CD49f, CD44, CD24, CD10, CD73, and CD90) by flow cytometry 

(n=3). (b) IHC analyses of PROCR and EpCAM in tumors developed from PROCR+/EpCAM- 

KTB42-HRasG12V+SV40-T/t transformed cells (n=6). (c) Tumor developed from 

PROCR+/EpCAM- KTB42-HRasG12V+SV40-T/t transformed cells did not show lung metastasis 

(n=6). H&E staining shows tumor phenotype. (d) Single cell was sorted from PROCR+/EpCAM- 

population of KTB42-HRasG12V+SV40-T/t transformed cells and plated into 96 well plate. Clone 

D4 from single cell was established and characterized for PROCR and EpCAM markers. (e) IHC 

analyses of tumors (n=5) derived from clone D4 cells for PROCR and EpCAM. (f) H&E staining 

shows tumor phenotype (n=5).  
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Figure S16: Gating Strategy for flow cytometry analysis (a-f) Forward and side scatter plots of 

figures represented in main text.  
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Table S1: Histopathological features of tumors used in the TMA. 

 AA EA 

ER+/PR+ 20 68 

ER+/PR- 3 12 

ER-/PR+ 0 3 

ER+/PR+/HER2+ 3 16 

ER+/HER2+ 3 6 

HER2+ 6 7 

TNBC 8 11 

NA 6 13 

Node+ 16 20 

Grade 1 1 10 

Grade 2 11 69 

Grade 3 23 36 

Stage 1 0 5 

Stage 2 9 17 

Stage 3 1 6 

Stage 4 1 1 

No data available 5 1 

Total Samples 49 136 
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Table S2. Compare H-score and Positivity between genetic ancestries within Normal-

Heathy tissues for PROCR, ZEB1, and PDGFRα 

Marker  Genetic Ancestry  
Variable 

Label Column_Overall 
African 

American European P-value 
PROCR 

Positivity 
0.17 (0.04, 0.55) 0.30 (0.06, 0.55) 

(N=31) 
0.15 (0.04, 0.41) 

(N=129) 2.2051E-8 

H-Score 
27.97 (5.45, 
127.65) 

56.41 (10.46, 
127.65) 

24.37 (6.68, 
83.50) 6.0538E-9 

ZEB1 
Positivity 

0.01 (0.00, 0.24) 0.01 (0.00, 0.10) 
(N=33) 

0.01 (0.00, 0.12) 
(N=144) 0.0739 

H-Score 
1.62 (0.15, 30.72) 2.21 (0.24, 

16.47) 
1.46 (0.15, 

19.76) 0.0249 
PDGFRα 

Positivity 
0.10 (0.01, 0.75) 0.28 (0.03, 0.75) 

(N=35) 
0.09 (0.01, 0.73) 

(N=154) 
0.000000251 

H-Score 
16.30 (1.43, 
110.23) 

36.96 (6.25, 
110.23) 

14.27 (1.43, 
88.61) 

0.000014339 

 

Note: Values expressed as median (min, max) 

Note: P-value comparisons across race categories are based on Two-sided Wilcoxon test.  
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Table S3. Cytokine/chemokine array identified factors secreted by luminal and PZP cells 

either alone or together. 

Shared Angiogenin, Angiopoietin 2, BDNF, DKK1, Emmprin, IFNγ, 

IGFBP2, IGFBP3, IL-8, Kallikrein 3, MIF, Osteopontin, 

Pentraxin 3, Serpin E1, ST2 and VEGF  

Luminal and in co-culture GDF15, GROα, IL-1α, Lipocalcin 2, MMP-9, PDGF-AA 

PZP and in co-culture Angiopoietin 1, Complement factor D, Cystatin C, EGF, ENA-

78 (CXCL5), Endoglin, FGF19, HGF, SDF-1α, 

Thrombospondin-1, uPAR 

Coculture-specific IL-6 
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Figure 8f - Uncropped Blots 
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Figure S13- Uncropped Blots 
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