Stromal heterogeneity may explain increased incidence of metaplastic breast cancer in women of African descent.

Brijesh Kumar^{1,8,9}, Aditi S. Khatpe^{1,2,8}, Jiang Guanglong³, Katie Batic¹, Poornima Bhat-Nakshatri¹, Maggie M. Granatir⁴, Rebekah Joann Addison⁴, Megan Szymanski⁴, Lee Ann Baldridge⁴, Constance J. Temm⁴, George Sandusky⁴, Sandra K. Althouse⁵, Michele L. Cote⁶, Kathy D. Miller³, Anna Maria Storniolo³, and Harikrishna Nakshatri^{1,2,7,10}

¹Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA ²Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

³Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA ⁴Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA

⁵Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA

6 Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA 7 VA Roudebush Medical Center, Indianapolis, IN 46202, USA

8 These authors contributed equally.

⁹Current Address: School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India

Running title: Influence of genetic ancestry on breast stromal cells.

Keywords: breast cancer, genetic ancestry, normal breast, PROCR, ZEB1, PDGFRα, IL-6, STAT3, breast microenvironment, metaplastic carcinoma

Supplementary Figures and Tables.

Figure S1: Establishment of PROCR⁺/ZEB1⁺/PDGFRa⁺ (PZP) cell lines from the healthy **breast tissues of women of African ancestry**. (a) Genetic ancestry mapping of breast tissue donors (KTB104, and KTB109181) using a 41-SNP panel. (b) $PROCR^{+}/EpCAM^{-}$ cells are enriched in established PZP cell lines $(n=3)$. (c) Quantitation of PROCR⁺/EpCAM⁻cells $(n=3)$. (d) APC and PE isotypes control staining patterns of cell lines, as characterized by flow cytometry $(n=3)$. These staining patterns were used to draw quadrants. (E) ZEB1 expression levels in various PROCR+/EpCAM‒ (KTB104*p=0.0065, KTB106*p<0.0001 and KTB109181*p=0.0009) cell lines compared to $EpCAM^+(KTB34)$ and $KTB39$ luminal cell lines (n=3). Data analyzed using two-tailed t-test. (f) PROCR⁺/ZEB1⁺ (KTB104, KTB106 and KTB109181) cell lines express PDGFR α as determined by flow cytometry (n=3). (g) Quantitation of PDGFR α^+ cells (n=3). (h) PDGFR α mRNA level in PROCR⁺/EpCAM⁻ cells compared to PROCR⁺/EpCAM⁺ cells. These results are from RNA-seq studies done in triplicate that involved seven epithelial cell lines, KTB40 and KTB42 (*p=0.0003 and results have been published previously $\frac{1}{1}$). Data analyzed using oneway ANOVA. (i) PDGFRβ mRNA level in PROCR⁺/EpCAM⁻ cells compared to PROCR⁺/EpCAM⁺ cells (KTB*p<0.0001; KTB42*p=0.0004). Data analyzed using two tailed ttest. **p<0.01, ***p<0.001, ****p<0.0001. All the data points are shown as mean \pm SEM. Source data are provided as a Source Data file.

Figure S2: Additional cell surface marker profiles of PROCR+/ZEB1+ cells. (a) APC and PE isotypes control staining patterns of cell lines as characterized by flow cytometry (n=3). These staining patterns were used to draw quadrants. PZP cell lines were stained with CD49f and EpCAM antibodies to demonstrate lack of breast basal, luminal progenitor, and mature/differentiated cell population $(n=3)$. (b) Phase contrast images representing the epithelial morphology of human telomerase gene (hTERT) immortalized breast epithelial cells (KTB34 and KTB39) and fibroblastlike features of KTB40 and KTB42 (n=3). (c) PZP cell lines were stained with CD105 and CD26 antibodies to determine whether PZP cells show phenotypic similarity to the lobular and interlobular human breast fibroblastic cells (n=3). (d) Quantification of CD105high/CD26 and CD105high/CD26low population of cells (n=3). (E) PZP cell lines were stained with CD90 and CD73 antibodies to identify rare endogenous pluripotent somatic stem cells and potential mesenchymal stem cells $(n=3)$. (f, g and h) Quantification of CD90^{low} /CD73^{high}, CD90^{med}/CD73^{high}, and CD90high/CD73high population of cells (n=3). (i) PZP cell lines were stained with CD44 and CD24 antibodies to determine whether their phenotype overlaps with cancer stem cells $(n=3)$. (i) Quantification of CD44high/CD24low population (n=3). (k) PZP cell lines were stained with CD10 antibody to determine myoepithelial cell marker expression $(n=3)$. (1) Quantification of CD10⁺ population ($n=3$). All the data points are shown as mean \pm SEM. Source data are provided as a Source Data file.

Figure S3

Figure S3: PZP cells lack ALDH+ subpopulation. (a) ALDH+ subpopulation, as measured through ALDEFLUOR assay, in immortalized breast epithelial (KTB34 and KTB39) and PZP (KTB32, KTB40, KTB42, KTB53, KTB57, KTB59, KTB104, KTB106 and KTB109181) cell lines. (b) Quantification of ALDH+ cells (n=3). Data analyzed using two tailed t-test (KTB32*p=0.002, KTB40*p=0.001, KTB42*p=0.0017, KTB53*p=0.0012, KTB57*p=0.0009, KTB59*p=0.0006, KTB104*p=0.0016, KTB106*p=0.001 and KTB109181*p=0008 compared to epithelial cell lines). All the data points are shown as mean ± SEM. Source data are provided as a Source Data file.

Figure S4

Figure S4: Genetic ancestry mapping of African American and non-Hispanic White breast tissue donors. (a) Genetic ancestry marker distribution patterns of donors whose Normal- Healthy breast tissues were used to generate TMA. (b) The bar plot of population structure from STRUCTURE Bayesian analysis with K=7. Each individual is represented by a vertical bar with colors representing the estimated proportion of ancestry. The reference populations are Africa (red), America (green), Europe (magenta), Central/South Asia (blue), East Asia (yellow), Middle East (Cyan), and Oceania (orange). Source data are provided as a Source Data file.

Figure S5: PROCR and PDGFRα expression patterns in breast epithelium and stroma of Normal-Healthy tissues. (a) PROCR expression was predominantly in stroma compared to breast epithelium (n=122). (b) Positivity of *ZEB1* in relation to income levels of donors, <20 K (n=12), 20-50 K (n=42), 50-100 K (n=65) and >100 K (n=73) in \$. (c) H-score of *ZEB1* in relation to income levels of donors, <20 K (n=12), 20-50 K (n=42), 50-100 K (n=65) and >100 K (n=73) in \$. Box plot representing whiskers with min-max data points and median value. (d) PDGFRα expression in stroma and breast epithelium (n=124). ****p<0.0001 analyzed using two tailed ttest. All the data points are shown as mean ± SEM. Source data are provided as a Source Data file.

Figure S6: ERα expression pattern in Normal-Healthy, NATs, and breast tumors. (a) Representative IHC of $ER\alpha$ in Normal-Healthy, NATs, and tumors of women of African and European ancestry. (b) Enlarged view of ERα expression in Normal-Healthy and tumor. (c) Differences in ERα expression (positivity and H-score) between Normal-Healthy of breast tissues of women of African and European ancestry. Data analyzed using Wilcoxon test (Two-sided). (d) Differences in ERα expression (positivity and H-score) between Normal-Healthy and NATs in women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (e) Differences in ERα expression (positivity and H-score) between NATs and tumors women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (Normal-Healthy-AA (n=25), EA (n=16); NAT -AA (n=22), EA (n=34); Tumor -AA (n=29), EA (n= 59)). Dot blots contain data from duplicate cores of NATs and tumors wherever available. All the data points are shown as mean \pm SD. Source data are provided as a Source Data file.

EA

 AA

Figure S7

Figure S7: GATA3 expression pattern in Normal-Healthy, NATs, and breast tumors. (a) Representative IHC of GATA3 in Normal-Healthy, NATs, and tumors of women of African, and European ancestry. (b) Enlarged view of GATA3 expression in Normal-Healthy and tumor. (c) Differences in GATA3 expression (positivity and H-score) between Normal-Healthy of women of African and European ancestry. Data analyzed using Wilcoxon test (Two-sided). (d) Differences in GATA3 expression (positivity and H-score) between Normal-Healthy and NATs in women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (e) Differences in GATA3 expression (positivity and H-score) between NATs and tumors in women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (Normal-Healthy, AA (n=21), EA (n=16); NAT -AA (n=19), EA (n=29); Tumor -AA (n=23), EA (n= 58). Dot blots contain data from duplicate cores of NATs and tumors wherever available. All the data points are shown as mean ± SD. Source data are provided as a Source Data file.

Figure S8: FOXA1 expression pattern in Normal-Healthy, NATs, and breast tumors. (a) Representative IHC of FOXA1 in Normal-Healthy, NATs, and tumors of women of African, and European ancestry. (b) Enlarged view of FOXA1 expression in Normal-Healthy and tumor. (c) Differences in FOXA1 expression (positivity and H-score) between Normal-Healthy of women of African, and European ancestry. Data analyzed using Wilcoxon test (Two-sided). (d) Differences in FOXA1 expression (positivity*p=0.000079348 and H-score) between Normal-Healthy and NATs in women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (e) Differences in FOXA1 expression (positivity and H-score) between NATs and tumors in women of African and European ancestry. Data analyzed using two-tailed Wilcoxon test. (Normal-Healthy, AA (n=29), EA (n=23); NAT -AA (n=22), EA (n=38); Tumor -AA (n=26), EA (n= 59). Dot blots contain data from duplicate cores of NATs and tumors wherever available. All the data points are shown as mean ± SD. Source data are provided as a Source Data file.

Figure S9: The effects of co-culture of PZP and luminal progenitor cell lines on expression of specific genes. (a) Relative mRNA level of IL-6 in KTB40, KTB42 and KTB-epithelial cell lines (n=3). Data analyzed using two tailed t-test. $(KTB40*p=0.0417; KTB42*p<0.0001)$ Expression of (b) IL-8 $(n=3)$ $(KTB34+32*p=0.0033, KTB34+40*p<0.0001;$ KTB34+42*p=0.0005; KTB39+32*p=0.0111; KTB39+40*p<0.0001; KTB39+42*p<0.0001), (c) DLL1 (n=3) (KTB34+32*p=0.0006, KTB34+40*p=0.0001; KTB34+42*p<0.0001; KTB39+32*p=0.0002; KTB39+40*p=0.0001; KTB39+42*p=0.0003),

(d) F3 $(n=3)$ (KTB34+32*p=0.0005, KTB34+40*p=0.0002; KTB34+42*p=0.0002; KTB39+32*p<0.0001; KTB39+40*p<0.0001; KTB39+42*p<0.0001),

(e) NRG1 $(n=3)$ $(KTB34+32*p=0.04$, $KTB34+40*p=0.0038$; $KTB39+32*p=0.0440$; KTB39+40*p=0.0158; KTB39+42*p=0.0137),

(f) CMTM6 $(n=3)$ (KTB34+32*p=0.0006, KTB34+40*p=0.0008; KTB34+42*p=0.0008; KTB39+32*p=0.0003; KTB39+40*p=0.0008; KTB39+42*p=0.0009),

(g) MIF $(n=3)$ (KTB34+32*p=0.0011, KTB34+40*p=0.0015; KTB34+42*p=0.0036; KTB39+32*p=0.0001; KTB39+40*p<0.0001; KTB39+42*p=0.0003),

(h) MFGE8 (n=3) (KTB34+32*p=0.0005, KTB34+40*p=0.0012; KTB34+42*p=0.0009; KTB39+32*p=0.003; KTB39+40*p=0012; KTB39+42*p=0.0014), and

(i) POSTN (n=3) (KTB34+32*p=0.0004, KTB34+40*p<0.0001; KTB34+42*p=0.0014; KTB39+32*p=0.0287; KTB39+40*p<0001; KTB39+42*p=0.0097) in PZP cell lines (KTB32, KTB40, and KTB42), luminal progenitor (epithelial cells; KTB34 and KTB39), and co-culture of PZP and luminal progenitor cell lines. Statistical significance (*p* values) was determined by comparing KTB32/40/42 (PZP cells), KTB34/KTB39 (epithelial cells), and respective co-cultured PZP + epithelial cells as indicated in the figure. All the data points are shown as mean ± SEM. Source data are provided as a Source Data file.

Figure S10

Figure S10: The effects of PZP cells on trans-differentiation of epithelial cells (a) PZP KTB40 and KTB42 cells were labelled with tomato-red using pCDH-EF1-Luc2-P2A-tdTomato lentivirus and sorted tomato-red positive cells by flow cytometry to generate stable cell lines. (n=1) (b) APC and FITC isotypes control staining patterns of cell lines is shown. These staining patterns were used to draw quadrants. (c) ALDEFLUOR staining patterns of KTB34, KTB39, and co-cultured KTB40/KTB42 and KTB34/KTB39 cell lines $(n=3)$. Quantification of ALDH⁺ cells in Tom⁻ cell epithelial cell population (n=3). (KTB40+34*p=0.0087; KTB40+39*p=0.034, KTB42+39*p= 0.0192). (d) ALDEFLUOR staining patterns of KTB40, KTB42, and co-cultured KTB40/KTB42 and KTB34/KTB39 cell lines. Only Tom^+ PZP cells were analyzed $(n=3)$. Quantification of ALDH⁺ cells among Tom⁺ population (n=3) (KTB42+34*p=0.0102). *p<0.05, **p<0.01). The data analyzed using two tailed t-test. All the data points are shown as mean ± SEM. Source data are provided as a Source Data file.

Figure S11

Figure S11: The effects of IL-6 neutralization on PZP cell-induced trans-differentiation of epithelial cells. (a) Treatment of co-cultured KTB34 and KTB40 cells with neutralizing IL-6R antibody showed a decrease in $CD49f⁺/EpCAM^{-/low}$ population compared to co-cultured IgG control (n=3). KTB39 and KTB42 co-cultured cells followed by neutralizing IL-6R antibody treatment showed a modest decrease in $CD49f^{+}/EpCAM^{-/low}$ population (n=3). (b) Quantification of CD49f⁺/EpCAM^{high}, CD49f⁺/EpCAM^{med}, and CD49f⁺/EpCAM^{low} populations in Tom- cell population ($n=3$). The effect of IL-6R antibody on trans-differentiation was significant ($p=0.0121$, two-way ANOVA). (c) Analysis of CD44⁺/EpCAM^{high} and CD44⁺/EpCAM^{low} populations in KTB34, co-cultured KTB34 and KTB40, KTB39, and co-cultured KTB39 and KTB42 cells with IgG control and neutralizing IL-6R antibody treatment (n=3). (d) Quantification of CD44+/EpCAMhigh and CD44+/EpCAMlow subpopulations in Tom- KTB34 and KTB39 cells (n=3). The data analyzed using two-way ANOVA, ****p<0.0001 for all. While the effects of PZP cells in altering CD44/EpCAM staining patterns of epithelial cells were significant (**p<0.0001 by two-way ANOVA), the effects of IL-6R in reversing PZP-induced changes in epithelial cell CD44/EpCAM staining patterns were not significant. All the data points are shown as mean ± SEM. Source data are provided as a Source Data file.

Figure S12

Figure S12: The effects of IL-6 neutralization on CD24 and CD10 staining patterns of epithelial cells. (a) Analysis of CD24⁺/CD10^{high} and CD24⁺/CD10^{low} populations in KTB34, cocultured KTB34 and KTB40, KTB39, and co-cultured KTB39 and KTB42 cells with IgG control or neutralizing IL-6R antibody treatment $(n=3)$. (b) Quantification of CD24⁺/CD10^{high} (KTB34*p<0.0001; KTB40+34*p=0.0002; KTB39*p<0.0001; KTB42+39*p<0.0001) and CD24⁺/CD10^{low} (KTB34*p=0.0002; KTB40+34*p=0.0018; KTB39*p<0.0001; KTB42+39 $*p$ <0.0001) populations in Tom cell population (n=3). While the co-culture-induced changes in CD24 and CD10 staining patterns were significant $(*p<0.0018, **p<0.0002,$ ****p<0.0001), the effects of IL-6R antibody in reversing these changes were not significant. The data analyzed using two-way ANOVA. All the data points are shown as mean \pm SEM. Source data are provided as a Source Data file.

Figure S13

Figure S13: Generation of HRas^{G12V}, SV40-T/t antigen and HRas^{G12V}+ SV40-T/t antigen **transformed PZP cell lines**. (a) Western blotting was used to detect overexpression of mutant Ras in KTB32, KTB40, and KTB42 cell lines. (n=1) (b) Western blotting was used to detect overexpression of SV40-T/t antigens in KTB32, KTB40, and KTB42 cell lines. (n=1) (c) Western blotting was used to detect overexpression of mutant Ras and SV40-T/t antigens in double transformed KTB32, KTB40 and KTB42 cell lines. Empty vector pLKO containing cell line was used as a control cell line. β–actin was used as an internal control. (n=1) (d) Phase contrast images showing morphology of KTB32, KTB40, and KTB42 cell lines transformed with HRas^{G12V}, SV40-T/t antigens, and $HRas^{G12V}$ + SV40-T/t antigen. (n=1).

Figure S14

Figure S14: Characterization of transformed cell lines and tumors. (a) APC and PE isotypes controls staining of cell lines (n=3). These staining patterns were used to draw quadrants. (b) CD44 and CD24 staining patterns of immortalized and transformed PZP (KTB32, KTB40 and KTB42) cell lines (n=3). (c) IHC analyses of cytokeratins CK5/6, CK8, CK14, and CK19 in tumors developed from KTB42-HRas^{G12V} transformed cells. Basal markers: CK5/6 and CK14, Luminal markers: CK8 and CK19 (n=5). (d) IHC analyses of cytokeratins CK8, CK14, and CK19 in tumors developed from the KTB42-HRas $G12V+SV40-T/t$ antigen transformed cells (n=5). (e) GSEA analysis of genes differentially expressed in PZP cells compared to epithelial cells reveals enrichment of signaling networks in PZP cells similar to that of metaplastic carcinomas of the breast.

Figure S15: Characterization of tumors developed from PROCR+/EpCAM- KTB42 cells transformed with HRas^{G12V} and SV40-T/t antigens. (a) PROCR⁺/EpCAM⁻ cells were sorted from KTB42-HRas^{G12V}+SV40-T/t transformed cells and injected into NSG mice that formed the tumors. Human cells were isolated from tumors by flow cytometry using CD298 marker to establish tumor-derived cell lines. Tumor-derived cell lines were characterized using cell surface markers (PROCR, EpCAM, CD49f, CD44, CD24, CD10, CD73, and CD90) by flow cytometry (n=3). (b) IHC analyses of PROCR and EpCAM in tumors developed from PROCR+/EpCAM-KTB42-HRas^{G12V}+SV40-T/t transformed cells $(n=6)$. (c) Tumor developed from PROCR⁺/EpCAM⁻ KTB42-HRas^{G12V}+SV40-T/t transformed cells did not show lung metastasis (n=6). H&E staining shows tumor phenotype. (d) Single cell was sorted from PROCR+/EpCAMpopulation of KTB42-HRas $G12V+SV40-T/t$ transformed cells and plated into 96 well plate. Clone D4 from single cell was established and characterized for PROCR and EpCAM markers. (e) IHC analyses of tumors (n=5) derived from clone D4 cells for PROCR and EpCAM. (f) H&E staining shows tumor phenotype (n=5).

a

Gating Strategy applied for Fig. 1e, S1f

35

Gating Strategy applied for Fig. 10a-c, S14a-b

Figure S16: Gating Strategy for flow cytometry analysis (a-f) Forward and side scatter plots of

figures represented in main text.

Table S1: Histopathological features of tumors used in the TMA.

Table S2. Compare H-score and Positivity between genetic ancestries within Normal-

Heathy tissues for PROCR, ZEB1, and PDGFRα

Note: Values expressed as median (min, max)

Note: P-value comparisons across race categories are based on Two-sided Wilcoxon test.

Table S3. Cytokine/chemokine array identified factors secreted by luminal and PZP cells either alone or together.

Figure 8f - Uncropped Blots

 $-692 16 - 37$ \mathbf{I} \mathbf{r} $+7967$
 $+7167$
 $+7167$
 $+7167$
 $+7167$
 $+7167$
 $+796$
 $+7167$ $Contw1$ 3441 140 CM $34+40$ $25 - 3$ -64 $\overline{1}$ \mathbf{r} $+T96$ \mathcal{C} on. $+166$
 $+196$
 $+168$
 $+168$
 $+196$
 $+126$
 $+126$
 $+126$ 34 CM B -cetin 4001 $34+40$ 75.4
 25.4

 \overline{y}

Figure S13- Uncropped Blots

References:

1. Kumar B*, et al.* Normal breast-derived epithelial cells with luminal and intrinsic subtypeenriched gene expression document inter-individual differences in their differentiation cascade. *Cancer Res* **78**, 5107-5123 (2018).