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S1 Supplementary methods

S1.1 Defining metabolic neighbourhood from metabolic network

Human1 [1] is a genome-scale reconstruction of the human metabolic network containing 13082 reactions

and 8378 metabolites and is currently one of its most comprehensive representations. Even if metabolic

networks are primarily designed for modelling purposes (eg. Flux analysis), they also hold valuable topo-

logical information on the human metabolism. In the aim to use this network as a support to propagate

literature, items dedicated to modelling (biomass function, transport reactions, cellular compartments,

etc ...) are not useful. A critical aspect is also the presence of side compounds, cofactors of reactions [2],

(eg. ATP, NAD, NADP, CoA, etc ...) that could create spurious shortcuts between compounds actually

very distant in the metabolic network. In addition to being hubs in the original networks, such metabo-

lites are also widely indexed in the literature and are among the top cited metabolites. Nonetheless, their

literature is scattered and they are generally not the focus of the publications that mention them, which

makes them irrelevant contributors for their metabolic neighbours. To overcome this, we chose to build

a carbon skeleton graph with the GSAM tool[3]. We used the SBML of the metabolic network and the

available SMILES annotations of metabolites for the description of their chemical structure. Monocarbon

compounds (such as CO2 or formate) were also removed from the network. Based on an atom mapping

procedure achieved with the RDT library [4], the rebuilt network is a compound graph connecting two
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compounds when they are involved in at least one reaction, each on one side, by sharing at least one

carbon. Atom mapping with the RDT library was previously applied on Recon3D [5].

An illustrated example of this procedure is presented in Figure S1. In the raw metabolic network, the

galactokinase reaction connects each of its substrates (Galactose, ATP) to each of its products (Galactose-

1-phosphate, ADP, H+). However, while a link between Galactose and Galactose-1-phosphate or between

ATP and ADP appears clearly, a direct connection between Galactose and ATP is more spurious because

ATP acts as a cofactor1 in this reaction. In this way, it seems reasonable that the Galactose-1-phosphate

could receive and use as a prior knowledge the literature from Galactose, since one is structurally derived

from the other, but not from ATP. Also, as ATP is involved in hundreds of reactions, this would allow many

compounds, yet separated by many reactions, to share their literature with Galactose-1-phosphate. After

reconstruction of the carbon skeleton graph, metabolites duplicated in several cellular compartments have

also been merged in one super-compartment to provide a unified network. Only the largest component

with 2704 metabolites and 10024 edges is conserved for the subsequent analysis. The carbon skeleton

graph is treated as undirected to use the links substrates-products or products-substrates equivalently in

the propagation process. The transition matrix P was then built according to the weight policy defined

in [6]. Briefly, it determines transition probabilities between compounds while accounting for the reaction

level, which would otherwise be omitted by simply using the compound graph.

1A cofactor is a compound required to catalyse a reaction
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Figure S1: Example of the galactokinase reaction in the reconstruction process of the carbon skeleton graph: The

galactokinase is an enzyme that catalyses the phosphorylation of galactose into galactose-1-phosphate. Coloured

circles describe the carbons shared between each participant of the reaction, their number is also indicated. The

blue square shows the phosphate transferred from the ATP to the galactose. There is no carbon shared between

Galactose and ADP or between ATP and galactose-1-phosphate.

S1.2 Defining literature data for disease-metabolite associations

We used the FORUM Knowledge Graph [7] (release 2020) to extract literature data of metabolites. The

FORUM KG provides links between PubChem compounds and PubMed articles, themselves indexed with

a descriptive set of MeSH descriptors. The Human-GEM metabolic network v1.7 (see https://github.

com/SysBioChalmers/Human-GEM/releases/tag/v1.7.0), converted in RDF format using an homemade

java tool (https://services.pfem.clermont.inrae.fr/gitlab/forum/sbml2rdf), has been integrated

in the FORUM KG. The total number of articles associated with each metabolite in the network, as

well as their co-mentions with MeSH descriptors associated with diseases were then determined using

SPARQL requests. Like in the original article, we not only considered the literature associated with

MeSH descriptors of specific diseases (eg. D010300: Parkinson’s disease), but also with broader descriptors

representing disease families (eg. D019636: Neurodegenerative Diseases).
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S1.3 Diagnostic values

• Entropy: The entropy value reflects both the diversity and the balance between the different con-

tributors of the prior. Basically, the more contributors and the more uniform the weight distribution

is, the higher the Entropy. For a compound k, Entropy is the Shannon entropy computed on the

weights in the prior mix: H(wk) =
∑

i∈Tk
log2(wi,k)wi,k. Entropy is null when there is only one

contributor, which therefore cannot be considered a ”neighbourhood”. For two contributors, the

entropy is maximum and equals 1 when their contributions are equal. Obviously, one cannot re-

quire the maximum entropy (log2(N)) as the number of contributors increases, but Entropy > 1

seems a reasonable threshold to apply on the predictions. The objective is to maintain a balanced

distribution of contributors, while becoming more flexible as the number of contributors increases.

By fixing the threshold at 1, the maximum entropy is required when there are only 2 contributors,

and as the number of contributors increases, this constraint is progressively relaxed on a logarithmic

scale.

• CtbAvgDistance: The average distance of the contributors, weighted by wk.

• CtbAvgCorporaSize: The average corpus size of the contributors, weighted by wk.

• NbCtb: The number of contributors in Tk.

• priorLogOdds and priorLog2FC: The LogOdds and Log2FC computed from the prior distribution

fprior. It is only provided when the targeted metabolite has literature and represents the belief of the

metabolic neighbourhood. Comparing LogOdds and priorLogOdds, or Log2FC and priorLog2FC,

allow identifying potential divergences between the literature of the compound and that of the

neighbourhood. For instance, when articles mentioning a specific metabolite frequently co-mention

a disease, but that disease is never mentioned in the literature of its metabolic neighbours.
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S2 Supplementary tables

LogOdds Disease MESH

9.99 Parkinson Disease D010300

9.96 Synucleinopathies D000080874

9.87 Parkinsonian Disorders D020734

9.59 Basal Ganglia Diseases D001480

9.57 Movement Disorders D009069

8.59 Neurodegenerative Diseases D019636

7.31 Brain Diseases D001927

7.09 Central Nervous System Diseases D002493

6.91 Nervous System Diseases D009422

5.37 Primary Dysautonomias D054969

Table S1: Top 10 disease-related MeSH suggested for hydroxytyrosol, ranked by LogOdds

Contributor corpora cooc LogOdds Log2FC weights

dopamine 98422 8225 inf 3.87 0.62

3.4-dihydroxyphenylacetate 5864 257 286.04 2.76 0.33

3.4-dihydroxyphenylacetaldehyde 111 38 50.62 2.80 0.03

homovanillate 6477 377 514.87 3.18 0.01

others 45 4 2.35 0.74 0.01

Table S2: The table describes different properties of the contributors for the association between hydroxytyrosol

and Parkinson’s Disease: corpora corresponds to the total number of mentions associated with the compound;

cooc is the number of co-occurring mentions with the disease; LogOdds indicates the individual LogOdds of the

contributors in the prior mixture, same for Log2FC; weights indicates the weight of each contributor in the prior

mixture. The values in others corresponds to the median for the remaining contributors.
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priorLogOdds LogOdds Disease cooc p-value Fisher

4.16 23.47 Prostatic Diseases 9 1.13e-10

5.79 21.19 Genital Neoplasms, Male 8 2.85e-9

4.17 19.82 Prostatic Neoplasms 8 1.08e-9

5.68 19.15 Genital Diseases, Male 9 3.91e-8

5.67 15.83 Urogenital Neoplasms 8 4.72e-6

5.53 10.56 Hair Diseases 2 2.57e-3

4.00 9.63 Male Urogenital Diseases 10 1.36e-3

4.47 9.36 Prostatic Hyperplasia 2 1.27e-3

5.66 8.92 Neoplasms by Site 10 1.17e-2

5.11 8.68 Disorder of Sex Development, 46,XY 1 1.90e-2

4.85 8.65 Androgen-Insensitivity Syndrome 1 1.25e-2

5.49 8.03 Hirsutism 1 3.42e-2

6.18 7.82 Virilism 1 4.80e-2

5.73 7.60 Skin Diseases 5 4.78e-2

5.22 7.07 Breast Diseases 3 4.81e-2

5.68 7.04 Neoplasms 11 6.85e-2

4.51 6.99 Alopecia 1 2.87e-2

5.71 6.97 Skin and Connective Tissue Diseases 5 8.70e-2

4.48 6.93 Hypotrichosis 1 2.91e-2

4.87 6.72 Breast Neoplasms 3 4.24e-2

5.47 6.23 Polycystic Ovary Syndrome 1 1.17e-1

5.48 6.06 Ovarian Cysts 1 1.30e-1

5.48 5.86 Cysts 1 1.64e-1

5.52 5.62 Disorders of Sex Development 1 1.31e-1

5.54 5.17 Urogenital Abnormalities 1 1.59e-1

Table S3: Top 25 disease-related MeSH predicted for 5-αA, ranked by LogOdds. The cooc column indicates the

number of co-occurring mentions with the disease. p-value Fisher refers to the p-value obtained with an over-

representation analysis (Fisher right-tailed exact test) using the same literature data as used for the predictions

(see S1.2)
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Contributor corpora cooc prior weights posterior weights LogOdds Log2FC

androsterone 2348 45 0.29 0.51 49.44 2.59

testosterone 79421 2521 0.29 0.28 inf 3.75

testosterone sulfate 69365 1939 0.09 0.10 inf 3.56

estradiol-17beta 93909 1102 0.02 0.04 inf 2.32

progesterone 75499 661 0.01 0.02 391.09 1.89

estrone 11455 114 0.01 0.02 78.05 2.00

4-androstene-3,17-dione 8435 737 0.25 0.01 inf 5.06

5-alpha-dihydrotestosterone 10389 124 4.00e-3 0.01 101.38 2.25

others 203 1 0.01 0.01 0.71 0.47

Table S4: The table describes different properties of the contributors for the association between 5-αA and PCOS:

corpora corresponds to the total number of mentions associated with the compound; cooc is the number of co-

occurring mentions with the disease; prior weights indicates the weight of each contributor in the prior mixture;

posterior weights indicates the weight of each contributor in the posterior mixture; LogOdds indicates the individual

LogOdds of the contributors in the posterior mixture, same for Log2FC; The values in others correspond to the

median for the remaining contributors. As in Figure 5, contributors are ordered by posterior weights.

Contributor corpora cooc prior weights posterior weights LogOdds Log2FC

androsterone 2348 45 0.29 0.61 47.63 2.56

testosterone 79421 2521 0.29 0.14 inf 3.74

testosterone sulfate 69365 1939 0.09 0.06 inf 3.56

estradiol-17beta 93909 1102 0.02 0.06 inf 2.31

progesterone 75499 661 0.01 0.04 389.81 1.89

estrone 11455 114 0.01 0.03 76.66 1.99

16alpha-hydroxydehydroepiandrosterone 35 0 5.00e-3 0.03 -0.63 -0.16

5-alpha-dihydrotestosterone 10389 124 3.00e-3 0.01 99.82 2.24

androsterone sulfate 25 1 1.00e-3 0.01 0.42 0.37

others 264 1 1.00e-4 0.01 0.04 0.17

Table S5: The table describes different properties of the contributors for the association between 5-αA and PCOS

without the single co-mention: corpora corresponds to the total number of mentions associated with the compound;

cooc is the number of co-occurring mentions with the disease; LogOdds indicates the individual LogOdds of the

contributors in the posterior mixture, same for Log2FC; weights indicates the weight of each contributor in the

posterior mixture. The values in others correspond to the median for the remaining contributors. As in Figure 5,

contributors are ordered by posterior weights.
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S3 Supplementary figures

Figure S2: Detailed workflow diagram of the presented analysis. The left part of the diagram illustrates the

process of extracting co-mention data between PubChem compounds and disease-related MeSH descriptors from

the FORUM KG. Additionally, the upper part outlines the construction of the Carbon Skeleton Graph (CSG)

from the Human 1 metabolic network (v1.7) and its integration into the FORUM KG, facilitating the linkage of

metabolic species with their co-mention data. The step labelled ”Metabolites’ Influence Matrix Step” denotes the

computation of probabilities πi,k using a random walk with restart algorithm on the resulting CSG (refer to the

Method section for further details). Lastly, the lower part of the diagram demonstrates the combination of these

intermediary data elements to compute the predictions.
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Figure S3: Profile of the contributors for the association between 5-αA and PCOS without the single co-occurrence

(PMID 8855823). Contributors are organised in blocks from left to right by increasing contributions. The contribu-

tions correspond to the weight of each contributor in the posterior mixture (Wi,k) and gives the width of the block.

The colour of each block associated with a contributor depends on its individual LogOdds, from blue to red, for

negative (less likely) to positive (more likely) contributions respectively. Weights and LogOdds are also detailed in

table S5
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Figure S4: View of the metabolic neighbourhood of 5-αA (in red). Main contributors of the relation with PCOS

are highlighted in blue.
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Figure S5: Profile of the contributors for the association between 5-S-Cysteinyldopamine and Parkison’s disease.

The profile of the contributors from the prior distribution is shown in A and from the posterior distribution in

B, with actual literature data: 11 supporting articles out of 33. C is the profile of the contributors with only 2

co-occurrences. It represents the minimal number of co-occurrences necessary to shift the balance of contributors

and highlight the relationship.

S4 Supplementary materials

S4.1 Validation dataset

The Human-GEM metabolic network v1.7 has been converted in RDF and integrated in the FORUM

KG. As in the original article, we conducted an over-representation analysis using a right-tailed fisher

exact test, and extracted significant relations between metabolites and MeSH descriptors based on their

co-mentions in the literature. Then, for the subset of metabolites conserved in the carbon skeleton

graph (see S1.1), we randomly selected 10,000 significant relations (q-value ≤ 1e− 6 with BH correction

and no weakness [8]) with disease-related MeSH. For negative examples, we randomly generated 10,000

metabolite-MeSH pairs using the same set of metabolites and MeSH as for positives examples, ensuring

that they are not positive examples if they exist (q-value > 1e − 6). Among the 1025 metabolites with
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available literature in the carbon skeleton graph, 455 are present in the validation dataset.

The method has been implemented with a forget option, to not update the prior mixture fprior with

the metabolite literature. LogOdds and Log2FC are computed directly from the prior distribution, as if

the metabolite has no literature. The analysis was run on all the examples with the forget option and

AUC and ROC curves were computed using the R library pROC.

S4.2 Baselines

We note Pj =
mj

N the probability to mention the disease j, with mj the number of mentions involving j

and N the total number of mentions in the metabolic network. Also, pi,j =
yi,j
ni

is the probability that an

article mentioning the metabolite i, mentions the disease j. yi,j is the number of co-mentions between i

and j and ni is the total number of articles mentioning i.

In Baseline-Freq, for an association between a metabolite i and a disease-related MeSH j, the predictor

is simply Pj , the overall probability to mention the disease.

In Baseline-DN, the predictor is the ratio between the average probability to mention the disease in the

direct neighbourhood of the metabolite i (noted DNi) and the overall probability:∑
u∈DNi

pu,j
|DNi|

Pj

Baseline-DN is thus comparable in form to Log2FC.

S4.3 Damping factor α and theoretical sample size ν: benchmark

We evaluated the impact of both hyperparameters α and ν on the construction of the prior and the

predictions. The damping factor α set the probability that at each step the walk continues, so that the

mention returns to its starting point with a probability (1 − α). Increasing α therefore increases the

average length of the walks and the radius in which a compound can propagate its literature. As the

probability πi,k to reach more distant neighbours increases with α, so do the weights wi,k in the prior and

the average distance of the contributors (Supplementary Figure S6). At α = 0, only the direct neighbours

in the network can contribute to the prior of a compound. Considering that the direct neighbourhood

is not always the richer and that we should also keep the majority of the contributors in a radius of 2

reactions, setting α approximately 0 < α < 0.7 seems reasonable according to the distance criteria.
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Figure S6: Boxplot of the average distance of the contributors, weighted by wi,k, using different damping factors α.

The red dotted line connects the median of each boxplot and the black horizontal line is a threshold at an average

distance of 2 reactions.

We also evaluated how the weights of the contributors distribute according to their distance to the

compound, by increasing α (Supplementary Figure S7). As α increases, the closest contributors lose weight

in the prior to the benefit of more distant contributors. When α > 0.7, it seems that the contributors

at a distance of at least 2 reactions became dominant in the prior. Nonetheless, it should be noted that

a compound always sends more of its articles to its closest neighbours, but as this quantity decreases

and the number of new contributors increases with α, the closest neighbourhood becomes less and less

influential. For α = 0.4, we observed a relatively balanced distribution of the weights, with on average

52% of the prior derived from the direct neighbourhood, 35% from the 2-reactions neighbours, and the

remaining from more distant ones.
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Figure S7: Distribution of the contributors’ weights in the prior mixtures wi,k, at a distance of n reactions, for

several damping factors α. The red dotted line connects the medians and the blue dots represent the maximal

outliers.

Finally, we also evaluated α and ν using our validation dataset (S4.1) to determine their mutual

impact on the built prior (Supplementary Figure S8). We have chosen to focus on the predictions based

on the LogOdds, as the effect of the damping factor α is more pronounced than on the Log2FC. The

same methodology as described in section Evaluation of the prior computation was applied: only the prior

distribution (fprior) was used to compute the LogOdds. The TPR, FPR and precisions were computed

for each combination of α and ν using a threshold at LogOdds > 2. For a fixed ν, while the TPR and

FPR decrease with α, the precision increases. This suggests that as we use a closer neighbourhood, we

grasp more true associations that could only be provided by the direct neighbours, but also false-positives,

that would be contradicted by considering a larger neighbourhood, as there would be no consensus. For

ν, there is no significant impact on the predictions until ν = 10000, where it shows a similar effect to

that of α on TPR, FPR and precision. As we strengthen the initial prior with an increasing ν, it will

require more observations from the contributors to make it deviates from its theoretical mean set at P

(the overall frequency of the disease). As the median corpus size of the metabolites in the network is

172, setting a ν > 10000 could erase the contributions of the majority of the compounds, unless they are

highly related to the disease (high co-mention frequency). Also, setting ν to extreme values would smooth

the LogOdds and especially the Log2FC around 0, as the initial prior centred on P would be too strong,
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leading to weak predictions.

However, the metabolic neighbourhood of each compound is different: some have no direct neighbours

with available literature, making it necessary to use a larger neighbourhood, and some others the opposite.

Therefore, there is no optimal parameters for the whole network and we can only recommend setting

0 ≤ α ≤ 0.7 and 1 ≤ ν ≤ 10000, increasing α and ν for specificity and decreasing for sensibility. From

these results we therefore chose α = 0.4 and ν = 1000 in the presented analyses.

Figure S8: Evaluation of the True Positive Rate (TPR), False Positive Rate (FPR) and Precision on the validation

dataset obtained with a threshold on LogOdds > 2, using different combinations of hyperparameters α and ν

S4.4 Evaluation using simulated overlooked metabolites

To evaluate the performance of the predictions based on the posterior distribution (fpost), we build a

second validation dataset with simulated overlooked metabolites. Similarly to S4.1, we extracted 10,000

significant relations between metabolites and disease-related MeSH from the FORUM KG for positive

examples and generated 10,000 random pairs for negative examples. We also restricted this initial selection

to metabolites with more than 100 annotated articles. To simulate the observed number of co-mentions

as if these metabolites were overlooked, we generated random samples from a binomial distribution. For

positive cases, we used the observed co-mention frequency as the success probability, while for negative

examples, we used the marginal frequency of mentioning the disease (independence hypothesis). We used

three different sample sizes to represent different degrees of overlooked metabolites (10, 50 and 100) and
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generated 10 replicates by sample size. We set α = 0.4 and ν = 1000 for the method and compared it

against a new baseline (Baseline-DN+Cpd), similar to Baseline-DN, but in which the average probability

includes the metabolite’s literature. In contrast to Baseline-DN+Cpd, the targeted metabolite is not

considered as a new contributor in the proposed approach, but is used to refine the prior distribution.

The average ROC curves per tested sample sizes obtained for the method and Baseline-DN+Cpd on

this new validation dataset are shown in Figure S9.A, along with the associated AUC values in Table

S6. Despite its simplicity, Baseline-DN+Cpd performs well, but the proposed approach shows better

performances on all the tested sample sizes.

Focusing on overlooked metabolites, the most challenging scenarios among the previously simulated data

are when positive examples apparently show no co-mention (yi = 0), and conversely, when co-mentions

(e.g. anecdotal) wrongly support negative examples (yi > 0). These configurations are common in the

literature and could lead to many false negatives and false positives. We refer to them as Hard cases.

To build validation datasets for Hard cases, we extracted from the previous generated simulations: all

available positive examples where there is no co-mention, and, all the negative examples where there is

at least one co-mention. On these Hard cases, the method outperforms the baseline, which, particularly

on low sample sizes (n = 10), is misled by the observations (Figure S9 and Table S6). Despite an average

AUC of roughly 0.65, the approach performs particularly well for tolerable FPR, with a TPR close to 0.3

for an FPR of 0.05 in all the tested sample sizes (Table S7). However, we can note that as the sample

size increases, the examples seem to become even more complex and the performances seem to decrease

slightly. Finally, these results show the robustness of the predictions for overlooked metabolites, even

when the observations are misleading.
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Figure S9: Average receiver operating characteristic (ROC) curves per tested sample sizes for the method set with

α = 0.4, ν = 1000 and Baseline-DN+Cpd. In A, performances are evaluated on datasets of simulated overlooked

metabolites, with increasing sample size: 10, 50 and 100. In B, only the Hard cases have been retained to evaluate

the performances of the method against Baseline-DN+Cpd.

Full Hard cases

Sample Size Baseline Method Baseline Method

n=10 0.72 0.79 0.25 0.66

n=50 0.77 0.82 0.35 0.66

n=100 0.8 0.84 0.37 0.64

Table S6: Average AUC obtained on the predictions with the proposed method and Baseline-DN+Cpd, by increasing

sample sizes, on the full validation datasets (Full) and only on the Hard cases.

Sample Size Baseline Method

n=10 0.02 0.29

n=50 0.07 0.31

n=100 0.1 0.3

Table S7: Average TPR on the predictions obtained with the proposed method and Baseline-DN+Cpd on Hard

cases for an FPR fixed at 0.05 and by increasing sample sizes.
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S4.5 Impact of the carbon skeleton graph on the predictions

Using the same validation dataset as in section Evaluation of the prior computation, we repeated the

analysis on the original metabolic network (without removing spurious connections) and compared it

with the carbon skeleton graph. The comparison of the ROC curves obtained from the carbon skeleton

graph (CSG network) and the original Human1 metabolic network is presented in Figure S10. The AUC

obtained using the original network is 0.74, significantly lower than with the CSG network (0.78). To get

more insights on the impact of the CSG network on the built priors, we examined the contributions of

a well-known cofactor: ATP with 109,321 annotated articles. To exclude non-significant contributions,

we only consider cases where more than 10% of a metabolite’s prior is represented by the literature of

ATP. In the original network, ATP contributed significantly to the prior of 268 metabolites, or 6.6% of the

metabolites in the network. In the CSG network, its contributions were more restricted due to the pruning

of its connections as cofactor, and it only contributed significantly to the prior of 21 metabolites. These

results support the use of the CSG network in the proposed approach. More generally, they illustrate the

potential biases induced by cofactors when working with the topology of metabolic networks, but also the

potential of the atom-mapping procedure to avoid them.

Figure S10: Receiver operating characteristic (ROC) curves using Log2FC as predictor with the carbon skeleton

graph (CSG network) or the original Human1 metabolic network. The AUC are respectively 0.78 and 0.74. The

red dotted line corresponds to random strategies.
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S4.6 Comparison of the posterior distributions for 5-αA and PCOS

In this section, we provide a more detailed view of the differences between the posterior distributions

obtained with and without the co-mention. The prior mixture used is the same in both cases and a

detailed view of the individual distribution of the contributors is provided in Figure S11. With an average

probability of ≈ 0.08, the 4-androstene-3,17-dione is the contributor whose literature most frequently

mention the disease and therefore, the prior that it suggests is high. However, the likelihood of our

observations is very low for the prior suggested by this contributor, as we would expect around 6 (82×0.08)

co-mentions if an article mentioning 5-αA had roughly the same probability to mention the disease. Its

weight drops in the posterior distribution in both cases, as our observations are more likely compared to

the literature of other contributors (Figure S12). By removing the co-mention (green on Figure S12), the

weights of the contributors whose literature mentions the disease most frequently decrease, in favour of

those for whom their literature mentions it less. This is illustrated by a shift to the left of the probability

distribution between the red and green curves.

Figure S11: Detailed prior mixture of the top 10 contributors for the relation between 5-αA and PCOS. The

individual distribution of each contributor in the mixture, along the parameters of the associated Beta distribution,

are indicated.
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Figure S12: Pior (blue) and posterior distributions obtained with (red) and without (green) the co-mention for the

relation between 5-αA and PCOS.

S4.7 5-αA and Meningioma

Like for PCOS, 5-αA is mentioned with Meningioma in only one article but here, the fisher test would

have suggested the relation (to a certain threshold: p.value ≈ 0.02) whereas the LogOdds obtained

with the method is low: 0.67. Meningioma is less frequently mentioned than PCOS in the literature

(824 against 10,131 annotated articles) which explains why the p.value is more significant. The Figure

S13 shows the prior and posterior profiles of the contributors for the association between 5-αA and

meningioma. The literature of most of the neighbours, with the exception of progesterone, does not

frequently mention the disease and therefore, the prior alone does not suggest a relation (priorLogOdds

= -1.1). The posterior distribution logically tends to favour contributors that support the observed co-

occurrence, but the resulting LogOdds is still low, as the observations are not sufficient to shift the prior

belief. If we look at the co-mention, we see that the relation between 5-αA and melangiomia is at least

secondary in this article, as the indexing of the MeSH comes from the use of meningioma tissue as a control

tissue in the conducted experiment[9]. This also shows the importance of the neighbouring literature in

avoiding suggestions that could be solely derived from anecdotal mentions of rarely mentioned diseases

in the literature. Of course these are suggestions, not definitive predictions, and the method returns the

odds of a potential relation. Although the posterior odds don’t suggest a relation, the profile shows that

the progesterone, a close neighbour, seems related to the disease and therefore the association may still
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be worth exploring further.

Figure S13: Profile of the contributors for the association between 5-αA and Meningioma in the prior mixture

(A) and in the posterior mixture (B). Contributors are organised in blocks by increasing weights in the mixture

from left to right, and the weights also give the width of the block. The colour of each block associated with a

contributor depends on its individual LogOdds, from blue to red, for negative (less likely) to positive (more likely)

contributions respectively.
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R.M.T.: Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: ap-

plication to Recon 3D. Journal of Cheminformatics 9(1), 39 (2017). doi:10.1186/s13321-017-0223-1

[6] Frainay, C., Aros, S., Chazalviel, M., Garcia, T., Vinson, F., Weiss, N., Colsch, B., Sedel, F., Thabut,

D., Junot, C., Jourdan, F.: MetaboRank: network-based recommendation system to interpret and

enrich metabolomics results. Bioinformatics 35(2), 274–283 (2019). doi:10.1093/bioinformatics/bty577

[7] Delmas, M., Filangi, O., Paulhe, N., Vinson, F., Duperier, C., Garrier, W., Saunier, P.-E., Pitarch, Y.,

Jourdan, F., Giacomoni, F., Frainay, C.: FORUM: building a Knowledge Graph from public databases

and scientific literature to extract associations between chemicals and diseases. Bioinformatics 37(21),

3896–3904 (2021). doi:10.1093/bioinformatics/btab627

[8] Delmas, M., Filangi, O., Paulhe, N., Vinson, F., Duperier, C., Garrier, W., Saunier, P.-E., Pitarch, Y.,

Jourdan, F., Giacomoni, F., Frainay, C.: FORUM: building a Knowledge Graph from public databases

and scientific literature to extract associations between chemicals and diseases. Bioinformatics 37(21),

3896–3904 (2021). doi:10.1093/bioinformatics/btab627

[9] Délos, S., Carsol, J.L., Ghazarossian, E., Raynaud, J.P., Martin, P.M.: Testosterone metabolism in

primary cultures of human prostate epithelial cells and fibroblasts. The Journal of Steroid Biochemistry

and Molecular Biology 55(3-4), 375–383 (1995). doi:10.1016/0960-0760(95)00184-0

22


	Supplementary methods
	Defining metabolic neighbourhood from metabolic network
	Defining literature data for disease-metabolite associations
	Diagnostic values

	Supplementary tables
	Supplementary figures
	Supplementary materials
	Validation dataset
	Baselines
	Damping factor  and theoretical sample size : benchmark
	Evaluation using simulated overlooked metabolites
	Impact of the carbon skeleton graph on the predictions
	Comparison of the posterior distributions for 5-A and PCOS
	5-A and Meningioma


