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Figure S1. Confirmation of sample relatedness using kinship values 
Kinship values for GS were calculated using KING1 after restricting to SNVs with an 
alternate allele frequency greater than 5% in gnomAD genomes.2 Each point on the plot 
represents a related pair of individuals, colored by relationship status. (A) Relatedness 
metrics for 6,448 individuals from the 1,612 ASD quartet families. (B) Relatedness metrics 
for 747 individuals from the 249 FSA trios. 



 

 
 

Figure S2. Sample sex QC 
Confirmation of sample sex using single nucleotide polymorphism (SNP) and 
chromosomal read-depth information from GS data. Sex was inferred two ways from GS 
data: 1) using the F value generated with PLINK3 based on sex chromosome SNP 
genotypes, and 2) using read depth (dosage) scores4 derived from chrX and chrY. Each 
point represents a sample, colored by final sex used for analysis. (A) Sex metrics for the 
6,448 individuals from the 1,612 ASD quartet families. Cases with sex chromosomal 
abnormalities (n=9) have been labeled. (B) Sex metrics for the 249 trios individuals from 
the FSA trios (n=747) that were pre-screened with standard-of-care diagnostic tests and 
the 46 singleton benchmarking cases.



 

 
 

 
 

Figure S3. Modified exome sequencing depth and allele balance thresholds 
The plot displays the allele balance (AB) and sum allele depth (AD) for all 1,453 de novo 
SNVs and indels detected from ES using the standard GS filters. Color indicates if the 
variant is unique to ES (blue; n=1,353) or was found in both the ES and GS data (red; 
n=100). Shape indicates variant type (SNV or indel). The dotted line represents the 
modified thresholds ultimately used for filtering the ES data before manual review: AB > 
0.25 and sum(AD) ≥ 1.  
 
 

 
 
 



 

 

 
Figure S4. Two pathogenic sequence variants unique to GS in ASD probands  
Alignment visualization for two de novo variants uniquely identified in GS alongside their 
raw read evidence from ES. Images were generated using IGV.5 For each site, the ES 
and GS screenshots are shown side-by-side. (A) A stopgain SNV in ANKRD11 in proband 
13875.p1 that was absent from the ES VCF and has low coverage in the ES CRAM files 
(B) A 44 bp insertion in SMARCA4 in 14482.p1 that was absent from the ES VCF and 
shows no supporting evidence in ES CRAM files. 
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SUPPLEMENTAL METHODS 
 
Participant ascertainment and genome sequencing 
We included 1,612 deeply phenotyped quartet families ascertained as part of the Simons 
Simplex Collection in this study.6–8 As previously described,9 each family included two 
unaffected parents, one unaffected sibling, and an affected proband with autism spectrum 
disorder (ASD). All affected probands underwent a battery of diagnostic tests, including 
the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic 
Interview-Revised (ADI-R) to confirm the ASD diagnosis, as well as detailed evaluations 
of intellectual/cognitive functioning, adaptive behavior, physical/dysmorphic features, 
developmental milestones, medical comorbidities, and family history. We also included 
295 fetuses that met criteria for diagnostic testing due to the presence of a structural 
anomaly (n=281) or advanced maternal age (n=14) (Figure 1). This included 46 singleton 
fetuses that were pre-selected for having a clinically reportable variant from karyotype, 
chromosomal microarray (CMA), and/or exome sequencing (ES), as well as 249 fetal 
structural anomaly (FSA) trios that had been pre-screened by karyotype, CMA, and/or 
ES. Recruitment and phenotyping protocols for the fetuses have been previously 
described.10–12 All 7,241 individuals underwent paired-end genome sequencing (GS) to a 
mean target coverage of 30X (see Tables S1-3 for specific sequencing metrics).  
 
Sample-level QC 
To confirm sample relatedness, we performed a kinship inference analysis with KING1 
(http://people.virginia.edu/∼wc9c/KING) using the GS data after restricting to single 
nucleotide polymorphisms (SNPs) with an alternate allele frequency (AF) >5% in gnomAD 
(Figure S1).2 In parallel, we also predicted genetic sex using two independent 
approaches: first, we used PLINK to infer sex based on sex chromosome genotypes.3 
Second, we used GATK-SV to calculate copy number estimates for each chromosome 
per sample, which permitted inference of genetic sex as well as the identification of 
chromosomal aneuploidies. We compared the predicted sex for each individual between 
both methods and observed high concordance (Figure S2). Using the relatedness and 
sex results we resolved sample swaps based on discrepancies in family structures 
deviating from the expected relatedness metrics for parent-child (IBS0 ≤ 0.005 and 
kinship coefficient > 0.2) and sibling relationships (IBS0 > 0.005 and kinship coefficient > 
0.2; Figure S1).  
 
We also confirmed cross-technology sample relatedness to assure comparisons were 
performed on the same 6,448 individuals from the 1,612 ASD quartet families. This was 
accomplished by restricting the ES and GS VCFs to high-quality common SNPs from 
Purcell et al. 201413 that were lifted over to GRCh38/hg38 and limited to 5,862 SNPs 
common to both ES and GS. Samples were renamed based on their technology of origin 
and were merged into a single cross-technology ASD VCF for relatedness analysis with 
KING.1 ES and GS samples with a kinship coefficient > 0.45 were considered to be 
identical samples. Finally, we used the confirmed sample metadata from the GS and ES 
comparisons to identify matching CMA data.14 
 



 

Genome sequencing analysis framework 
We developed a GS analytic framework to discover, filter, and interpret nine different 
classes of variation that are described in detail below and also summarized in Table S4. 
The aim of this pipeline was to retain as many pathogenic or likely pathogenic (P/LP) 
variants as possible while reducing the total number of variants requiring manual review. 
The same GS analysis pipeline was applied to both the ASD and prenatal cohorts with 
only modifications to the phenotype-specific gene list used.  
 
1.0. Variant discovery 
 
1.1. Sequence variants (GATK)  
As previously described,7,8 the ASD GS data was generated from PCR-free libraries and 
processed using the Center for Common Disease Genomics functional equivalence 
pipelines (https://github.com/CCDG/Pipeline-Standardization) and following the Genome 
Analysis Toolkit (GATK) Best Practices Workflows for sequence variant, single nucleotide 
variant (SNV) and small insertion/deletion (indel), discovery 
(https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-
Workflows).15 Briefly, this included aligning the raw FASTQ reads to the hg38/GRCh38 
human reference genome using BWA-mem 0.7.15,16 sorting and removing duplicate 
reads with Picard 2.4.1. (http://broadinstitute.github.io/picard/), performing base quality 
score recalibration, indel realignment, generating single sample gVCFs with GATK 
HaplotypeCaller 3.5-0,17 merging single sample gVCFs into batch specific VCFs (ranging 
in size from 40 to 588 quartets),8 joint-calling the merged VCFs, and performing Variant 
Quality Score Recalibration (VQSR). The aligned CRAM and gVCF files were transferred 
to the Amazon Web Services (AWS) S3 storage system and can be accessed with 
permission from the Simons Foundation Autism Research Initiative 
(https://www.sfari.org/resource/sfari-base/).  
 
The GS data from the prenatal samples were generated at the Broad Institute Genomics 
Platform. After sequencing, individual FASTQ files were transferred to a Google Cloud 
bucket for storage. All GS data pre-processing and sequence variant discovery was 
performed using the GATK Best Practices Workflows on the cloud-enabled and freely 
available Terra platform (https://terra.bio/). Sequence variant calling followed the same 
steps described above for ASD. 
 
1.2. Structural Variants (GATK-SV) 
Structural variant (SV) discovery and genotyping was performed with GATK-SV, which 
was deployed on the Terra platform (https://terra.bio/). The code for GATK-SV is publicly 
available at https://github.com/broadinstitute/gatk-sv. All individuals were grouped into 
batches based on: their dosage bias score (a metric that quantifies the non-uniformity of 
coverage for a given GS sample),4 sex, family status, PCR status, and cohort assignment. 
The ASD cohort included batches comprising 200-400 samples each, and the FSA cohort 
included one batch of PCR plus (n=186) and two batches of PCR free samples (n=345 
and n=346, respectively). All families were kept intact during batching. All 7,241 
individuals were analyzed with six SV discovery algorithms, including three paired-
end/split-read algorithms (Manta v.1.4.0, Smoove v.0.2.3 



 

[https://github.com/brentp/smoove], and WHAM-GRAPHENING v.1.7.0),18–20 two read-
depth algorithms (GATK-gCNV and cnMOPS v.1.12.0),21,22 and one mobile element 
insertion algorithm, MELT v.2.0.5.23 SV discovery generated six algorithm-specific VCFs 
per individual that were used as input for GATK-SV, which was run in cohort mode. The 
GATK-SV pipeline is organized into modules that harmonize predicted SVs across all 
input algorithms, reduce false positives, resolve overlapping SVs with disparate copy 
number, identifies complex variants (e.g., inversions flanked by one or more copy number 
variants [CNVs]),4,24 and provides cohort-wide SV genotypes and quality metrics available 
for post hoc filtering. We generated a cohort-wide SV VCF for the ASD and FSA cohorts, 
respectively, that was used as input for all downstream analyses. Further details on the 
GATK-SV methods can be found in Collins et al. 2020.4 
 
1.3. Short tandem repeats (Expansion Hunter) 
We identified short tandem repeat (STR) expansions across 18 loci that were selected 
from the gnomAD disease-associated STR catalog (https://github.com/broadinstitute/str-
analysis/tree/main/str_analysis/variant_catalogs) based on conferring an early-onset 
developmental disorder phenotype (Table S8). STR expansions were genotyped using 
Expansion Hunter25 v5.0.0 across 6,435/6,448 individuals from the ASD quartet families 
(n=9 ASD probands with a sex chromosomal abnormality were removed as well as one 
quartet family that revoked consent after all other analyses were completed). We also 
applied Expansion Hunter to all 295 prenatal samples (n=793 individuals in total).  
 
2.0. Variant annotation  
 
Details describing variant annotation are described in the methods of the main text.  
 
3.0 Variant filtering 
 
3.1. Variant QC 
After variant discovery, we applied quality control (QC) filters intended to maximize 
sensitivity for candidate P/LP variants while removing false variant calls. For SVs, this 
included removing variants with a GATK-SV QUAL score ≤ 1 and multiallelic copy number 
variants (CNVs). For sequence variants, we removed multiallelic variants, variants with 
an allele balance (AB) < 0.15 in the case of interest, indels > 50bp, and variants where 
the sum of the reference and alternate allele depth (AD) was ≤ 5 in any family member. 
We also removed SNVs that did not pass GATK VQSR. To reduce false positives, we 
applied additional quality control filters to samples with outlier variant counts, defined as 
any sample with a variant count (based on raw GATK haplotype caller or individual SV 
algorithm output) above Q3 + 6*IQR. This definition resulted in relatively few SV outlier 
samples (n=12 SV in the FSA cohort and none in the ASD cohort) and sequence variant 
outliers (n=5 in the FSA cohort and n=1 in the ASD cohort). To control the false positive 
rate in these outlier samples, we removed SVs present in >2 SV outlier individuals and 
sequence variants with GQ <75.  



 

 
3.2. Variant functional consequence 
All variants were filtered for functional impact. SVs predicted to be loss-of-function (LoF) 
or full gene copy gain were retained for further filtering.4 Partial gene duplications, defined 
as duplications with one breakpoint located outside the gene boundary and one within, 
were excluded given their unknown functional impact.26 Any sequence variants predicted 
to be stop-gain, stop-loss, frameshift insertion, frameshift deletion, splicing (within 2 bp of 
a splice junction), or missense according to RefSeq or Gencode annotations were 
retained for additional filtering. We further filtered missense variants based on three tiers 
(described below) to identify those that are increasingly likely to be functionally damaging 
and thus classified as P/LP (Tier 1 = most likely to be P/LP, and Tier 3 = least likely to be 
P/LP). We removed missense variants classified as benign, likely benign, risk factor, 
association, drug response, or protective in ClinVar from all tiers.  
 
Tier 1 missense: 

● Classified as P/LP in ClinVar 
 

Tier 2 missense: 
● Classified as P/LP in ClinVar or 
● Any missense variant with a CADD score > 3027 

 
Tier 3 missense: 

● Classified as P/LP in ClinVar or 
● Any missense variant with a CADD score > 30 or 
● Missense variants with a CADD score between 15 and 30 also located in a 

missense constrained region28  
 

3.3. Disease genes and genomic regions 
To facilitate variant filtering, we computationally built a candidate disease gene list for the 
ASD and FSA cohorts, respectively. The ASD gene list comprised 901 genes (Table S5) 
broadly associated with neurodevelopmental disorders (NDDs) from the DDG2P 
database29 classified as having a ‘confirmed’ or ‘probable’ association with developmental 
disorders that conferred a brain/cognitive phenotype. To account for the variable 
phenotypes observed in the FSA cohort (Tables S2-3), we compiled 2,535 developmental 
disorder genes (Table S6) based on the union of eight gene lists, described below:  
 

1) 374 dominant developmental disorder genes from the DDG2P database 
(accessed July 29, 2019)29 with a “confirmed” disease association and monoallelic, 
imprinted, mosaic, x-linked dominant, and x-linked over-dominance modes of 
inheritance. 
 

2) 800 recessive developmental disorder genes from the DDG2P database29 with a 
“confirmed” disease association and biallelic or hemizygous modes of inheritance. 
 

3) 93 genes that were significantly enriched for rare de novo variants in the 
Deciphering Developmental Disorders study.30 



 

 
4) 26 dominant genes significantly enriched for rare de novo protein-truncating 

variants in ASD.6 
 

5) 358 genes from the Clinical Genome (ClinGen) Resource Dosage Sensitivity Map 
with “some evidence for dosage pathogenicity” (haploinsufficiency/triplosensitivity 
score = 2) or “sufficient evidence for dosage pathogenicity” 
(haploinsufficiency/triplosensitivity score = 3) (downloaded July 29, 2019; 
https://www.clinicalgenome.org/curation-activities/dosage-sensitivity/). 
 

6) 708 autosomal dominant and 1,182 recessive disease genes curated from the 
Online Mendelian Inheritance in Man (OMIM) database.31,32 
 

7) 217 recessive and dominant X-linked genes from OMIM (tables were accessed 
June 12, 2017).  
 

8) 117 genes that have been robustly associated with fetal structural anomalies 
detectable by ultrasound that were curated by the Prenatal Assessment of 
Genomes and Exomes study.33 

 
Each gene was classified as being associated with a disorder that had a dominant and/or 
recessive pattern of inheritance based on existing annotations from DDG2P and OMIM. 
We categorized the inheritance labels provided by DDG2P as recessive: biallelic, and 
hemizygous or dominant: imprinted, monoallelic, mosaic, x-linked dominant, and x-linked 
over dominant. When disease inheritance was not available for a gene (n=4 missing from 
DDG2P), variants in that gene were retained under both dominant and recessive modes 
of inheritance. 
 
We also compiled a list of 64 known genomic disorder (GD) loci to assess overlap with 
SVs in both our cohorts. We took all of the known CNV syndromes located on the 
autosomes and chromosome X from DECIPHER34 and the haploinsufficient (HI) and 
triplosensitive (TS) regions from the Clinical Genome (ClinGen) Resource Dosage 
Sensitivity Map if they had a HI or TS score ≥ 2 (“sufficient evidence for dosage 
pathogenicity”). We removed any regions that were only associated with late-onset 
conditions, resulting in 64 candidate regions (Table S7). All SVs that overlapped ≥ 50% 
of a GD locus were retained for manual review. Following the most recent guidelines for 
CNV interpretation,26 we also manually reviewed any rare (<1% frequency in gnomAD-
SV)4 deletion or duplication that overlapped ≥ 25 or ≥ 35 protein-coding genes, 
respectively, even if it did not overlap a disease gene or GD region from our lists. Finally, 
we also retained all SVs that overlapped one of 17 non-coding loci known to confer 
pathogenic long-range position effects (LRPEs; Table S8). To define the non-coding 
search space, we used topologically-associated domain (TAD) boundaries from the 
IMR90 fetal fibroblast cell line,35 which have been previously shown to be associated with 
pathogenic LRPEs if disrupted,36,37 that contained each LRPE target gene.  
 



 

3.4. Inheritance 
We filtered variants under the five inheritance modes described below. For the ASD 
quartets, the unaffected sibling and both parents were treated as independent trios during 
inheritance filtering. We applied more stringent missense variant filters (tiers described in 
the variant functional consequence section) to rare inherited and compound heterozygous 
variants as these two categories resulted in a large number of variants requiring manual 
review despite there being little evidence supporting their contribution to the etiology of 
ASD or FSAs.6,12,33,38,39 The specific functional consequence considered for each 
inheritance type are as follows: 
 
Dominant disease genes: 

● De novo 
○ All LoF 
○ Missense Tier 3 

 
● Rare inherited  

○ All LoF 
○ Missense Tier 1 

 
Recessive disease genes: 

● Homozygous 
○ All LoF 
○ Missense Tier 3 

 
● X-linked recessive 

○ All LoF 
○ Missense Tier 3 

 
● Compound heterozygous 

○ At least one variant in the pair had to be LoF or Tier 2 missense  
 
The identification of compound heterozygous variants comprised three steps, including: 
1) compiling heterozygous SNVs, indels, and LoF SVs located in the same recessive 
disease gene, 2) annotating each variant with inheritance status, and 3) retaining only the 
instances where individuals had more than one variant in a recessive disease gene with 
disparate inheritance patterns (e.g., one maternally inherited, one de novo). We required 
that at least one variant per compound heterozygous grouping be inherited from a parent 
due to the lack of phasing information from short-read GS.  
 
3.5. Allele frequency  
All variants (SNVs, indels, and SVs) meeting the above thresholds were retained if they 
had an alternate allele frequency (AF) <1% for variants in dominant disease genes or 
regions and <5% for recessive disease genes. Given that some GDs can occur at an 
appreciable frequency in disease cohorts,40 we did not apply any AF cut-off when 
considering SV that overlapped ≥50% of a known GD locus. 
 



 

4.0. Variant interpretation 
Details describing manual variant curation are described in the methods of the main 
text.  
 
Benchmarking the performance of GS against conventional tests 
 

Filtering CMA data 
As previously described,7,14 SNP genotyping data was generated for the ASD cases using 
three microarray platforms, the Illumina 1Mv1, 1Mv3, or Omni2.5. CNV calls for each 
individual were identified using PennCNV,41 QuantiSNPv2.3,42 and GNOSIS/CNVision.14 
CNVs were filtered for rarity based on overlap with CNVs from the Database of Genomic 
Variants (in GRCh36/hg18) and overlap with CNVs from the ASD parents.14,43 All CNV 
coordinates were lifted over from GRCh36/hg18 to GRCh38/hg38 and those classified as 
high-quality (CNV p-value [pCNV] ≤ 1.0 X 10-9)14 were filtered following the same steps 
outlined in the GS SV pipeline (Table S4). There were 14 variants detected by GS that 
were also detected by CMA but failed filtering because they were not lifted over from hg18 
to hg38 (n=6), failed the pCNV high-quality filter (n=5), or were removed due to incorrect 
CNV coordinates that suggested the variant did not overlap coding sequence (n=3; GS 
coordinates were used as truth). These variants were recovered and counted towards the 
overall yield of CMA. We also removed one deletion from CMA manual review that was 
identified to be rare by CMA but was found in 65 (2.0%) of our 3,224 ASD parents based 
on GS, which was above our allele frequency threshold. 
 
Filtering exome sequencing data   
The ES data for the ASD cases was generated as part of a larger sequencing initiative 
and has been extensively described.6,38 We realigned sequencing data from 
GRCh37/hg19 to GRCh38/hg3838 and applied the same filtering steps as those outlined 
in the GS filtering pipeline (Table S4) with minor modifications to account for differences 
in depth between ES and GS (Figure S3). These included increasing our AB and total 
allele depth filters for de novo variants (both in de novo dominant inheritance and as part 
of a compound heterozygous pair) to account for the higher ES coverage, increased rate 
of false positives, and potential for somatic variant detection. The new thresholds (AB 
>0.25 and total AD  ≥10) were chosen based on retaining >95% of the variants that were 
also detected  by GS (Figure S3).  
 
To identify CNVs from ES data, we applied GATK-gCNV,21 a publicly available Bayesian 
model for germline detection of CNVs. Briefly, this is a read-depth based tool that uses a 
negative-binomial factor analysis to adjust for known and unknown biases of exome 
sequencing, while modeling sample and genomic region copy number through a 
hierarchical hidden Markov model. In this analysis, we jointly processed the 6,448 
individuals from 1,612 ASD quartet families described in this study with an additional 
66,000 samples.38 Samples were assigned to batches based on 3D clustering of the first 
three principal components of coverage depth after normalizing for average depth. The 
72,448 samples were processed across 126 batches, with a median batch size of 449 
samples (min 136 and maximum 2,259). After raw calling with GATK-gCNV, we applied 



 

our calibrated sample-level quality filters, resulting in 5.49% of the total samples being 
removed. The GATK-gCNV quality score statistic (QS>400 for homozygous deletions, 
QS>100 for heterozygous deletions, and QS>50 for duplications) was applied to 
individual calls to extract rare CNVs with predicted sensitivity and positive predictive value 
of >90%, which resulted in a resolution of three exons or more. With these filtering 
metrics, the average ES sample harbored 1-2 rare high-quality CNVs.
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