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Summary
Short-read genome sequencing (GS) holds the promise of becoming the primary diagnostic approach for the assessment of autism spec-

trum disorder (ASD) and fetal structural anomalies (FSAs). However, few studies have comprehensively evaluated its performance against

current standard-of-care diagnostic tests: karyotype, chromosomal microarray (CMA), and exome sequencing (ES). To assess the clinical

utility of GS, we compared its diagnostic yield against these three tests in 1,612 quartet families including an individual with ASD and in

295 prenatal families. Our GS analytic framework identified a diagnostic variant in 7.8% of ASD probands, almost 2-foldmore than CMA

(4.3%) and 3-fold more than ES (2.7%). However, when we systematically captured copy-number variants (CNVs) from the exome data,

the diagnostic yield of ES (7.4%) was brought much closer to, but did not surpass, GS. Similarly, we estimated that GS could achieve an

overall diagnostic yield of 46.1% in unselected FSAs, representing a 17.2% increased yield over karyotype, 14.1% over CMA, and 4.1%

over ES with CNV calling or 36.1% increase without CNV discovery. Overall, GS provided an added diagnostic yield of 0.4% and 0.8%

beyond the combination of all three standard-of-care tests in ASD and FSAs, respectively. This corresponded to nine GS unique diag-

nostic variants, including sequence variants in exons not captured by ES, structural variants (SVs) inaccessible to existing standard-

of-care tests, and SVs where the resolution of GS changed variant classification. Overall, this large-scale evaluation demonstrated that

GS significantly outperforms each individual standard-of-care test while also outperforming the combination of all three tests, thus war-

ranting consideration as the first-tier diagnostic approach for the assessment of ASD and FSAs.
Introduction

Fetal structural anomalies (FSAs) and autism spectrum

disorder (ASD) represent developmental defects that share

significant overlap in genetic architecture1–8 and clinical

diagnostic recommendations.9–16 Both are genetically het-

erogeneous and are associated with many of the same path-

ogenic variants (e.g., 22q11.2 deletions [MIM: 611867],
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point mutations in CHD8 [MIM: 610528])17,18 that have a

wide range of potential clinical outcomes.19,20 Broad and

comprehensive testing strategies are required to maximize

diagnostic sensitivity for FSAsandASD, as it isdifficult topre-

dict the genetic basis of these conditions a priori due to

the diversity of pathogenic variants contributing to these

conditions1–8 and widespread existence of variable

expressivity.21,22 The current standard-of-care testing for
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Figure 1. Overall study design
We performed genome sequencing (GS) on 7,241 individuals from two phenotypically ascertained cohorts: autism spectrum disorder
(ASD) and fetal structural anomalies (FSAs). The ASD quartet families (n ¼ 6,448 individuals) included one affected proband with
ASD, one unaffected sibling, and two unaffected parents. The prenatal cohort included 249 trios (n¼ 747 individuals) comprising a fetus
with an FSA detected by ultrasound and two unaffected parents as well as 46 singleton fetuses ascertained for a diagnostic procedure
performed in pregnancy. Fetuses from the 249 trios were pre-screened with one or more standard-of-care diagnostic tests (karyotype,
chromosomal microarray [CMA], and/or exome sequencing [ES]) and the 46 singleton fetuses were pre-selected on the basis of having
a clinically reportable variant identified by one of the same three standard-of-care tests. For the 1,612 ASD quartet families, we had access
to unfiltered data fromCMA, ES, andGS available for analysis (see subjects andmethods formore details).We performedmultiple bench-
marking analyses, including comparing the yield of diagnostic variants between ASD probands and their unaffected siblings, direct tech-
nology comparisons in the ASD probands, and comparisons against results from clinical diagnostic tests in the fetuses. We assessed the
performance of GS by considering the overall, incremental, and sequential diagnostic yields provided by this technology. Plots are
demonstrative only and are not drawn to scale nor reflective of real data.
genome-wide genetic surveys involves three orthogonal and

largely complementary diagnostic tests: karyotype to

discover microscopically visible balanced and unbalanced

chromosomal abnormalities, chromosomal microarray

(CMA) to capture sub-microscopic copy-number variants

(CNVs), and exome sequencing (ES) to identify single-nucle-

otide variants (SNVs) and small insertions and deletions (in-

dels) within the �2% of the genome that codes for pro-

teins.9–16 All three tests are required to capture the full

range of genetic variation currently known to be associated

with FSAs and ASD. This sequential diagnostic testing strat-

egy is inefficient in theprenatal settingwhere rapiddiagnosis

is critical and cumbersome in the pediatric setting where

families canbe easily lost to follow-up as a result of anunnec-

essarily long diagnostic odyssey.23

Short-read genome sequencing (GS) has the potential to

identify almost all pathogenic variation captured by these

currently applied technologies in a single test as well as

potentially discovering novel diagnostic variants that are

cryptic to current approaches.24–26 Todate, studies perform-

ingGS for thediagnostic assessmentof FSAs andneurodeve-

lopmental disorders (NDDs), of which ASD is a subtype,

haveonly included small cohorts of highly selected individ-

uals with disparate diagnostic pre-screening, resulting in

variable GS diagnostic yields ranging from 19.8% to

57.7% for FSAs27–34 and 30% to 50% for ASD/NDDs.35–37

These GS studies typically do not provide the opportunity

for direct technology comparisons, as multiple standard-

of-care tests are rarely available on the same individuals.

Given that no single study has quantified the performance

of GS against karyotype, CMA, and ES, the added value of
The American Jour
GS remains unknown for most phenotypes, including for

FSAs and ASD.

The goal of this study was to systematically evaluate the

performance of GS against the current standard-of-care

diagnostic tests for the assessment of FSAs and ASD. We

developed a comprehensive GS analytic framework that

characterized nine different classes of genetic variation

whilemaintaining amanageable burden of manual variant

review, which currently presents a significant barrier to the

widespread implementation of clinical GS.38,39 We tested

our GS analytic framework on 1,612 systematically

collected ASD quartet families (n ¼ 6,448 individuals to-

tal), which represented an ideal technical benchmarking

cohort because each individual in the family had GS and

matched CMA and ES data available for re-analysis. To

assess the diagnostic yield of GS in FSAs, we applied our an-

alytic framework to 295 prenatal families that had clinical

results from karyotype, CMA, and/or ES available for com-

parison. The diagnostic yields from these large-scale

studies suggest that a shift toward recommending GS as a

first-tier diagnostic test for the assessment of ASD and

FSAs is warranted.
Subjects and methods

Study subjects
We applied our short-read GS analytic framework to 1,612 ASD

quartet families from the Simons Foundation for Autism Research

Initiative (SFARI) Simons Simplex Collection (SSC; n ¼ 6,448

individuals total; Table S1).40 Each quartet family comprised one

proband diagnosed with ASD, one unaffected sibling, and two
nal of Human Genetics 110, 1454–1469, September 7, 2023 1455



unaffected parents (Figure 1). The ASD cohort was chosen as the

primary technical comparison for our GS pipeline because every

individual had CMA, ES, and GS data available for re-processing.

This facilitated direct technology comparisons that were not

impacted by differences in bioinformatic analyses, variant inter-

pretation methods, and/or assessment timepoints.41 Additionally,

given the significant overlap in the types of variants that

contribute to ASD and FSAs, particularly SVs,1,6 the larger size of

the ASD cohort enabled the discovery and interpretation of a

broader spectrum of diagnostic variants. All participants or their

legal guardians provided written informed consent for participa-

tion and their data were de-identified by SFARI before sharing

with qualified researchers.40

We next applied the same analytic framework to 295 fetuses that

met criteria for diagnostic testing because of the presence of a

structural anomaly (n ¼ 281) or advanced maternal age (AMA)

(n ¼ 14; Figure 1). The 295 fetuses included 249 trios (n ¼ 747 in-

dividuals) comprising a fetus with a structural anomaly detected

by ultrasound and two unaffected parents. Of the 249 FSAs,

85.5% (n ¼ 213) were prescreened (e.g., no diagnostic variant

identified) with CMA, the current recommended first-tier diag-

nostic test for fetuses with structural anomalies,1 67.0% (n ¼
167) with karyotype, and 35.3% (n ¼ 88) with ES. With respect

to overlapping tests, 58.6% of the FSA cohort had negative results

from both CMA and karyotype and 6.4%had negative results from

all three tests (Table S2).We also included 46 singleton fetuses (n¼
32 FSAs and n¼ 14 AMA) that were pre-selected for carrying a clin-

ically reportable variant (n ¼ 53) detected by karyotype, CMA, or

ES. We used these samples to benchmark the performance of GS

against tests performed in clinical diagnostic laboratories

(Table S3). We also wanted to explore the potential for GS to

discover variants originally identified by karyotyping. The prena-

tal cohort includes fetuses recruited from the Carmen and John

Thain Center for Prenatal Pediatrics at Columbia University (n ¼
160), the University of California San Francisco (UCSF; n ¼ 59),

and the Prenatal Diagnosis Program at the University of North

Carolina Chapel Hill (UNC; n ¼ 30). A subset of the fetuses have

had their karyotype, CMA, and ES data previously pub-

lished.1,3,42–44 This study was approved by the institutional review

boards at Mass General Brigham, Columbia University, UNC, and

UCSF. All participants or their legal guardians provided written

informed consent prior to participation.
GS and sample level quality control
All 7,241 samples analyzed in this study underwent short-read Il-

lumina GS following standard library protocols to a mean genome

coverage of >303 (Tables S1–S3; additional details in the supple-

mental methods). Whole-blood-derived DNA was sequenced for

every individual in the ASD cohort and all the unaffected parents

from the fetal structural anomaly trios. Fetal DNA was obtained

from chorionic villi, amniocytes, umbilical cord blood, or prod-

ucts of conception. Sample relatedness was confirmed for all indi-

viduals via KING32 and all pregnancies were genetically confirmed

to have arisen from non-consanguineous unions (Figure S1). We

also used GS data to infer genetic sex by using PLINK45 and

depth-based chromosomal analyses (Figure S2; details in supple-

mental methods).
GS analytic framework
We developed a framework to identify pathogenic and likely path-

ogenic (P/LP) variants from GS data with high sensitivity while
1456 The American Journal of Human Genetics 110, 1454–1469, Sep
limiting the number of variants requiringmanual review (Figure 2;

Table S4). The framework is organized into four components:

variant discovery, annotation, filtering, and manual classification.

Additional details on the framework can be found in the supple-

mental methods.
Variant discovery
Variant discovery identified nine different classes of genetic varia-

tion, including SNVs, indels, deletions and duplications that

ranged from 50 base pairs to full chromosomal aneuploidies, inver-

sions, insertions, translocations, complex rearrangements (16

different sub-classes),54 and short tandem repeats (STRs), via a suite

of algorithms.55–62 All samples were jointly processed in batches

following GATKBest PracticesWorkflows for SNVand indel discov-

ery with Terra.63 The SV discovery and genotyping was performed

across all samples with GATK-SV, a publicly available cloud-

enabled ensemble method that leverages data frommultiple SV al-

gorithms to boost sensitivity and filters to improve specificity.24,54

Here, we ran six individual SV detection algorithms55–60 on all

samples and then ran GATK-SV in cohort mode (a single sample

version of GATK-SV is also available as a workflow on Terra). We

used GATK-SV for filtering, genotyping, breakpoint refinement,

and complex variant resolution to produce a VCF for each cohort.

Finally, we ran ExpansionHunter to identify potentially diagnostic

STR expansion candidates.61
Variant annotation
All variants (SNVs, indels, SVs, and STRs) were annotated for genic

overlap and functional consequences against GENCODE v.26

gene boundaries based on the canonical transcript.64 Sequence

variants (SNVs and indels) were annotated with ANNOVAR65

and any variants predicted to be stop-gain, stop-loss, frameshift

insertion, frameshift deletion, or splicing (within 2 bp of a splice

junction) according to RefSeq or GENCODE annotations were

considered loss of function (LoF). SVs were annotated with

GATK-SV and functional consequence was determined for each

SV type. LoF SVs were defined as any deletion overlapping coding

sequence, an inversion, mobile element insertion, complex SV, or

translocation with one or more breakpoints disrupting coding

sequence, or an intragenic exonic duplication (a duplication that

overlaps coding sequence with both breakpoints containedwithin

the same gene boundary). Full gene copy gains were defined as du-

plications that fully overlap a gene boundary. Partial gene duplica-

tions were defined as duplications with one breakpoint located

within the gene boundary and one outside.46 Additionally, we an-

notated allele frequency (AF) for all SNVs and indels by using the

maximum AF across gnomAD genomes,66 gnomAD exomes/

ExAC,67 the 1000 Genomes Project,68 and parental samples from

each cohort. The SV and STR allele frequencies were calculated

based on the prevalence of each event in gnomAD.54,69
Variant filtering
We first filtered variants on the basis of predicted functional

impact. For SNVs and indels, we retained all variants annotated

as LoF or missense variants that had a CADD score > 1570 and

were not annotated as benign, likely benign, risk factor, associa-

tion, drug response, or protective in ClinVar.71 All SNVs and indels

that passed our quality control and allele frequency thresholds

were retained if they were predicted to functionally alter a gene

on our list of disease-associated genes (see Table S4 and supple-

mental methods for specific thresholds). The only aspect of our
tember 7, 2023



Figure 2. Genome sequencing analytic framework
The comprehensive framework we developed to identify diagnostic variants from GS data, which consists of four components: variant
discovery, variant annotation, variant filtering, and manual variant classification. We identified nine different variant classes, including
single-nucleotide variants (SNVs), small insertions and deletions (indels; below 50 base pairs), deletions (DELs) and duplications (DUPs)
that ranged from over 50 base pairs to full chromosomal aneuploidies, insertions (INSs), translocations (TLOCs), inversions (INVs), com-
plex rearrangements (CPXs), and short tandem repeats (STRs). The filtering strategy was designed to retain P/LP variants while limiting
the number of variants requiring manual variant classification. The specific filtering criteria are described in the supplemental methods.
All variants output by the filtering pipeline were manually curated by an expert variant review panel following existing clinical guide-
lines.46–53 All variants classified as P/LP in genes associated with the indication for testing were considered to represent the diagnostic
yield of GS. ASD, autism spectrum disorder; GATK, Genome Analysis Toolkit; SV, structural variant; VUS, variant of uncertain signifi-
cance; ACMG, American College of Medical Genetics and Genomics; AMP, Association for Molecular Pathology; SVI, Sequence Variant
Interpretation Working Group; ClinGen, Clinical Genome Resource.
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GS analytic framework that differed between the ASD and prenatal

cohorts was the content of the gene lists, which were phenotype-

specific and computationally derived to limit the burden of up-

front gene curation.39,72 Briefly, the ASD gene list included 901

genes classified as having a ‘‘confirmed’’ or ‘‘probable’’ association

with NDDs in the Developmental Disorders Genotype-Phenotype

Database (Table S5).73 To account for the phenotypic heterogene-

ity of the structural anomalies observed in our FSA cohort

(Tables S2 and S3), we compiled a separate list of 2,535 genes

from eight sources that are broadly associated with developmental

disorders and congenital anomalies (Table S6 and supplemental

methods). All variants were then filtered under four genotype cat-

egories (de novo, rare inherited, homozygous, and hemizygous) de-

pending on the specific mode(s) of inheritance of the gene-disease

association (dominant, recessive, or X-linked). Finally, we applied

more stringent filters (described in supplemental methods) to in-

herited, homozygous, compound heterozygous, and hemizygous

missense variants given that they contributed significantly to

the number of variants requiring manual review but have not

been shown to substantially contribute to the etiology of ASD or

FSAs.2–4,74

A hierarchical filtering process was applied to all SVs. First, SVs

predicted to be LoF or full gene copy gains were retained and par-

tial gene duplications were excluded given their unknown func-

tional impact.46 Then, following current recommendations,

multigenic CNVs (deletions and duplications overlapping R35

and R50 protein-coding genes, respectively)46 were prioritized

for manual classification regardless of whether any of the genes

have been previously associated with disease. Next, any rare SV

overlapping one of the 64 known genomic disorder loci

(Table S7) or the 17 noncoding loci associated with pathogenic po-

sitional effects (Table S8) were retained. The SVs that did not meet

any of the preceding criteria were then filtered on the basis of their

overlap with the phenotype-specific disease-associated gene lists

following the same inheritance patterns and allele frequency

thresholds described above. All STRs that exceeded a pathogenic

repeat length based on literature review were retained if they over-

lapped an STR-mediated locus associated with an early-onset

developmental disorder (18 loci described in Table S9). Finally,

the identification of candidate compound heterozygous variants

comprised three filtering steps: (1) compiling heterozygous

SNVs, indels, and LoF SVs located in the same recessive disease-

associated gene; (2) annotating each variant with inheritance sta-

tus; and (3) retaining only the instances where individuals had

more than one variant in a recessive disease-associated gene

with disparate inheritance patterns (e.g., one maternally in-

herited, one de novo). To retain variants in trans, we used inheri-

tance as a proxy for phasing and required that at least one variant

per compound heterozygous grouping be inherited from a parent

(e.g., not all could occur de novo).
Manual variant classification
To ensure all variants were high quality, we visually inspected the

read evidence for each candidate diagnostic variant output by our

filtering pipeline by using the Integrated Genomics Viewer for

SNVs, indels, and SVs;75 CNView for CNVs;76 and REViewer for

STRs.77 All variants that passed manual visual inspection were

assessed by a variant review panel consisting of board-certified

clinical geneticists, cytogeneticists, molecular geneticists, obstetri-

cians, maternal-fetal specialists, pediatricians, and genetic coun-

selors as well as population geneticists and bioinformaticians
1458 The American Journal of Human Genetics 110, 1454–1469, Sep
with expertise in SV identification and interpretation. All variants

were first evaluated for a gene-phenotype association on a individ-

ual-specific basis.78 If a reliable match was determined for the in-

dividual in question, all variants in that gene were reviewed

following guidelines for sequence variant and CNV interpretation

from the American College of Medical Genetics and Genomics

(ACMG), the Association forMolecular Pathology (AMP), the Clin-

ical Genome (ClinGen),46,47 and recommendations for adjusting

the standard clinical guidelines from the ClinGen Sequence

Variant Interpretation (SVI) Working Group.48–53 Overall, these

guidelines provide a systematic and robust method to identify var-

iants with a 90% or greater certainty of causing disease.47 This

method is reliably reproduced across laboratories79 and rarely re-

sults in downgrading P/LP variants over time.80 All variants classi-

fied as P/LP in a gene robustly associated with the individual’s

phenotype (e.g., the indication for testing) were considered a

molecular diagnosis and were counted toward the diagnostic yield

of GS.
Benchmarking the performance of the GS analytic

framework
ASD proband vs. unaffected sibling comparisons

The quartet family structure of the ASD cohort provided us with a

unique opportunity to evaluate our bioinformatic filtering and

variant classification methods by comparing the number of vari-

ants output at each step between the affected probands with

ASD and their unaffected siblings. To confirm that our filtering

pipeline was enriching for potentially pathogenic variants as in-

tended and assess the potential false positive rate of the variant

interpretation guidelines, we treated each ASD proband and their

unaffected sibling as separate trios with both parents. After

filtering, we compared the number of variants requiring manual

review in the ASD probands to their unaffected siblings then

manually reviewed all variants blind to affected status (e.g., all var-

iants were reviewed as if the child was diagnosed with ASD). We

then compared the fraction of P/LP variants identified between

these two groups.

Cross-technology comparisons

To quantify the sensitivity of GS against CMA and ES, we first

leveraged the ASD cohort, which had unfiltered data for each tech-

nology available for re-analysis. For the CMA analysis, we obtained

CNVs identified from Illumina single-nucleotide polymorphism

(SNP) microarrays that were processed as previously described.6

Briefly, SNP genotyping data were generated via three Illumina

CMA platforms and CNVs were identified from these data via

PennCNV,81 QuantiSNPv2.3,82 and GNOSIS/CNVision.83 All

CNVs identified from CMA were lifted over from GRCh37 to

GRCh38 for comparisons against ES and GS. For the ES analysis,

we used the SNV, indel, and CNV calls that were generated as

part of a larger ASD sequencing initiative.4,5 To summarize, raw

reads from all 6,448 samples were aligned to GRCh38 and SNV

and indel discovery was performedwithGATK v.4.1.2.0.62 All sam-

ples were jointly genotyped following GATK Best Practices for

Variant Calling.63 We also employed GATK-gCNV for exome

CNV detection,84 a new algorithm that is specifically designed to

adjust for known bias factors of exome capture and sequencing

(e.g., GC content), while automatically controlling for other tech-

nical and systematic differences. The GATK-gCNV workflow is

publicly available in a Terra workspace. We applied the same

version of our GS analytic pipeline to the CMA and ES data from

all 6,448 individuals in the ASD quartet families. The only
tember 7, 2023



A B Figure 3. Benchmarking the performance
of GS in ASD probands and unaffected sib-
lings
(A) The fraction of ASD probands and
unaffected siblings identified to carry a
P/LP variant by GS subset by inheritance
category. The denominator used for all
categories was 1,612 except for hemizygous
variants where only males were considered
(n ¼ 1,440 male probands and 755 male sib-
lings). p values were calculated by
comparing the fraction of probands and sib-
lings with a P/LP variant using Fisher’s exact
test.
(B) The total number of P/LP variants
(n ¼ 128) detected by each technology
(GS, CMA, and ES) in n ¼ 126 ASD
probands.
modification made was to the allele balance and depth filters to

accommodate for the higher coverage of ES compared to GS

(Figure S3).

We also analyzed GS of 46 fetuses that were pre-selected for

receiving a clinically reportable finding from karyotype, CMA, or

ES. Inclusion of these benchmarking fetal samples allowed us to

investigate the impact of DNA source (whole blood vs. chorionic

villi or amniocytes) on the performance of GS as well as evaluate

the ability of GS to identify a range of cytogenetically visible

balanced chromosomal rerrangements (BCRs). Each recruitment

site provided us with the list of clinically reported variants found

in each fetus by using their in-house methods and pipelines (e.g.,

raw data were not available for re-analysis).1,3,42–44 We identified

STRs across 18 loci (Table S9) in the ASD and FSA cohorts, despite

there being no clinical STR test results available for direct compar-

ison. Previous studies using the same computational approach

have demonstrated 97.3% and 99.6% sensitivity and specificity

against existing PCR tests,85 respectively. The sensitivity of GS

was calculated as the proportion of P/LP variants identified by

each diagnostic test (karyotype, CMA, and ES) that were also iden-

tified by GS.
Application of GS to a prescreened fetal structural

anomaly cohort
After systematically benchmarking the GS analytic framework, we

applied it to 249 retrospectively obtained fetal structural anomaly

trios (n ¼ 747 individuals) that had been pre-screened with karyo-

type, CMA, and/or ES (Table S2). The analysis performed on the

FSA trios was identical to that applied to the benchmarking sam-

ples described above. The added diagnostic yield of GS in this

cohort was calculated on the basis of the number of P/LP variants

identified by GS.
Results

Assessment of the GS analytic framework

We analyzed short-read GS data from 1,612 ASD quartet

families (n ¼ 6,448 individuals) that also had matched

CMA and ES data available to directly compare the rela-

tive value of each technology. Overall, our GS variant call-

ing methods identified an average of 3.7M short variants

(3.4M SNVs, 0.3M indels) and 8,814 SVs per genome that
The American Jour
passed filtering criteria as well as 115,821 STR genotypes

at 18 targeted disease loci across the cohort. Our filtering

strategy reduced the number of variants requiring manual

curation to an average of 0.49 variants per child (range ¼
0–9), totaling 1,743 variants across 901 NDD-associated

genes and loci (Table S5) in the ASD probands and unaf-

fected siblings. We observed an enrichment of variants

requiring manual review per person in the ASD probands

compared to their unaffected siblings (0.58 mean variants

per ASD proband and 0.39 per unaffected sibling; p ¼
4.12 3 10�14; two-sided Wilcoxon test), suggesting that

our filtering pipeline was accurately enriching for poten-

tially pathogenic variants. Demonstrating the power of

the interpretation guidelines, this proband enrichment

further increased following manual variant curation,

which identified 128 P/LP variants in 126 ASD probands

(7.8% yield; 95% CI 6.5–9.1) compared to 17 P/LP vari-

ants in unaffected siblings (1.1% yield; 95% CI 0.6–1.6;

odds ratio [OR] ¼ 7.9; 95% CI ¼ 4.7–14.1; p ¼ 2.2 3

10�16; Fisher’s exact test; Figure 3; Table S10). Impor-

tantly, 71% of the P/LP variants identified in siblings

included CNVs associated with reduced penetrance,

which are known to be a challenge for genetic counseling

and are already encountered by clinicians during routine

CMA testing.
Evaluating the diagnostic performance of GS

We benchmarked the diagnostic performance of GS

against standard-of-care tests by applying the equivalent

GS framework to the CMA and ES data from the ASD

cohort, with minor modifications to accommodate each

data type (Figure S3; supplemental methods). Overall, GS

identified a diagnostic variant in almost 2-fold more pro-

bands than CMA (n ¼ 126 vs. n ¼ 71; OR ¼ 1.8; 95% CI

1.3–2.5; p ¼ 6.5 3 10�5) and almost 3-fold more than ES

(n ¼ 126 vs. n ¼ 49; OR ¼ 2.7; 95% CI 1.9–3.9; p ¼
1.98 3 10�10) (Figure 3). When we used a new method to

capture CNVs from ES data (GATK-gCNV),84 the overall

diagnostic yield of ES approached that of GS (7.4% vs.

7.8%, respectively), though it still did not capture all
nal of Human Genetics 110, 1454–1469, September 7, 2023 1459



known P/LP variants. For example, a single exon deletion

overlapping the first exon of NRXN1 (MIM: 600565) iden-

tified by GS was missed by ES because it did not pass our

stringent filtering criteria that required CNVs to overlap

>2 exons.5,84 Manual inspection revealed the deletion

was present in the raw ES CNV calls, suggesting

strategies for clinical exome CNV calling could consider re-

laxing filtering for pre-defined disease-associated genes,

particularly for those where CNVs are a knownmechanism

of disease.86

Overall, GS captured 100% of the P/LP variants identi-

fied by CMA (n ¼ 71) and ES (n ¼ 118) while also uniquely

identifying an additional diagnostic variant in seven

(0.4%) ASD probands (Figure 3). We reviewed the proper-

ties of the variants uniquely identified by GS, which

included one SNV and one indel: a de novo stop-gain in

ANKRD11 (MIM: 611192) and a 44 bp de novo frameshift

insertion in SMARCA4 (MIM: 603254), and five SVs: single

exon deletions in RERE (MIM: 610226) and RORA (MIM:

600825),87,88 a reciprocal translocation disrupting GRIN2B

(MIM: 138252), an SVA retrotransposon insertion in DMD

(MIM: 300377), and a 47.2Mb complex SV involving chro-

mosome 1 comprised of four deletions, an inversion, and

an inverted insertional translocation (Table S11). The

ANKRD11 stop-gain was in an exon with no ES coverage

and the SMARCA4 insertion was within 30 bp of an

intron-exon boundary and was not present in the ES read

evidence (Figure S4). In contrast to the single exon

NRXN1 deletion described above, the smaller RERE (5.6

kb) and RORA (0.5 kb) deletions identified by GS were

not detectable in the raw ES data, suggesting that ES will

not be able to capture all single-exon deletions of clinical

relevance. As expected, CMA and ES were unable to detect

the balanced translocation. Similarly, while CMA and ES

both detected the four de novo deletions involved in the

complex SV, they were unable to identify the inversions

that link the deletions into a single event. Finally, we did

not apply a mobile element insertion algorithm to the ES

data, as it is not currently implemented in routine clinical

diagnostics,89 but this type of ES analysis could potentially

capture variants labeled as GS unique in this study, such as

the SVA insertion. Taken together, these data demonstrate

that GS outperforms both CMA and ES, capturing all P/LP

variants from these two technologies and providing a

modest increase in diagnostic yield beyond the combina-

tion of both diagnostic tests.

Using DNA obtained from diagnostic procedures per-

formed in pregnancy, we next confirmed the bench-

marking results in prenatal samples as well as assessed

the performance of GS to detect BCRs routinely identified

by karyotype. We chose 46 fetuses that carried 53 report-

able variants identified from standard clinical testing due

to AMA (n ¼ 14) or ultrasound detection of an FSA (n ¼
32) (Table S3). These variants included seven aneuploidies,

20 CNVs, and 18 SNVs or indels (including four compound

heterozygous variant pairs), all of which are commonly

observed in prenatal testing. This benchmarking cohort
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was also highly enriched for BCRs (n ¼ 8/46 fetuses;

17.4% here vs. 3.0% estimated prevalence across all

FSAs).1 Overall, GS captured 100% of the clinically report-

able CNVs and SNVs/indels originally identified by CMA

(n ¼ 20) and ES (n ¼ 12) and 62.5% of the BCRs identified

by karyotype (n ¼ 5/8). On the basis of the reported karyo-

type, the three BCRs not captured by GS are localized to

highly repetitive telomeric and centromeric regions, which

are known to be inaccessible to short-read GS.26 This class

of missed BCRs account for <1% of the total diagnostic

yield provided by karyotype in FSAs.1

Determining the added diagnostic yield of GS for the

assessment of fetal structural anomalies

After systematically benchmarking the performance of our

GS analytic framework, we applied it to 249 fetus-parent

trios that were pre-screened with karyotype, CMA, and/or

ES. The structural anomalies impacted a wide range of or-

gan systems and 36.1% (n ¼ 90/249) of the cohort had

multisystem involvement (Figure 4; Table S2). GS identi-

fied 816 candidate variants requiring manual review, re-

sulting in an average of 3.1 variants per fetus (median ¼
3.0, range ¼ 0–21). The increased number of variants

output by our GS filtering in fetuses compared to the

ASD probands is due to a greater number of SNVs and in-

dels across the larger gene list used, with an average of

2.65 sequence variants across n ¼ 2,535 genes for the fetal

cohort compared to an average of 0.31 sequence variants

across n ¼ 901 genes for the ASD cohort. Manual variant

curation identified 21 P/LP variants in 19 (7.6%) fetuses

with a structural anomaly (Table S12). On the basis of

our benchmarking analyses, the majority (n ¼ 17/19;

89.5%) of these molecular diagnoses would have also

been identified by a combination of contemporary CMA

and ES. For example, 78.9% (n ¼ 15/19) of the diagnoses

included SNVs and indels identified in fetuses that had

not previously undergone ES. Similarly, GS identified a

67 kb deletion in MED13L (MIM: 608771) and a maternal

uniparental disomy (UPD) event involving chromosome

20 in two fetuses who had previously undergone array

comparative genomic hybridization (aCGH). The

MED13L deletion was missed because the custom aCGH

platform did not have probe coverage over the region

and the UPD was missed because regions of homozygosity

are not identifiable without the analysis of SNP probes,

which are absent from aCGH.1 These data demonstrate

the importance of taking previous diagnostic testing, tech-

nology platforms, and analysis pipelines into consider-

ation when reporting comparative diagnostic yields.

The most conservative estimate therefore suggests that

GS uniquely provided a molecular diagnosis in two FSA

probands: a single exon deletion in MED13L (1.3 kb in

size) and a compound heterozygous variant pair

comprising a missense variant in trans with a 143 kb intra-

genic exonic duplication in DYNC2H1 (MIM: 603297).

While the identification of the compound heterozygous

variants is technically feasible with the combination of
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Figure 4. Overview of fetuses with struc-
tural anomalies and diagnostic yields across
technologies
(A) The phenotypic breakdown of 249 trio
fetuses identified to have a structural anom-
aly detected by ultrasound included in this
study. The fetuses were pre-screened with a
combination of standard-of-care diagnostic
tests (see subjects and methods for details).
Fetuses with anomalies impacting more
than one body system were counted as hav-
ing multisystem abnormalities. The remain-
ing categories represent fetuses with isolated
structural anomalies.
(B) The added diagnostic yield for each
sequencing technology when applied seri-
ally to pre-screened fetuses. Each technol-
ogy is assessed in a cohort that was depleted
for diagnostic variants detected by the pre-
ceding technology. Yields for karyotype
and CMA were taken from Wapner et al.1

and yields for ES from Petrovski et al.3

(C) The estimated overall diagnostic yield
provided by each diagnostic test if they
were applied to a cohort of unselected fe-
tuses with structural anomalies. *The yields
were predicted on the basis of data from
this study as well as previously published
work.1,3 The dashed gray box surrounding
the ES bar indicates the diagnostic yield

that could be captured if ES-based CNV methods are applied.5,84 Each bar is colored on the basis of the fraction of diagnoses provided
by each variant class. CMA, chromosomal microarray; ES, exome sequencing; GS, genome sequencing; SNV, single-nucleotide variant;
indel, small insertion and deletion; CNV, copy-number variant; DEL, deletion; DUP, duplication; TLOC, translocation; INV, inversion.
CMA and ES, most clinical analysis pipelines do not sys-

tematically integrate variants across technologies. Instead,

diagnostic laboratories often manually follow-up on indi-

vidual genes when there is a strong a priori suspicion of a

gene-phenotype match, as was true for this fetus in clinic.

A pathogenic missense variant in DYNC2H1 was identified

by ES in a fetus with short-rib thoracic dysplasia. Given the

specificity of the gene-phenotype association,90 the diag-

nostic laboratory manually reviewed the ES read depth

profile across this gene, identified the duplication, and

confirmed the event with fluorescence in situ hybridiza-

tion.42 While this ultimately represented a successful

approach for this fetus, it is not systematic and the

increased burden of these additional steps is unlikely to

scale, particularly for phenotypes associated with multiple

recessive genes. Overall, these data suggest that GS pro-

vided a 0.8% increase in diagnostic yield beyond the com-

bination of karyotype, CMA, and ES in these FSA trios

(Figure 4).

Classification of SVs unique to GS

Over 75% (n ¼ 7/9) of the diagnostic variants uniquely

identified by GS in the ASD and FSA cohorts were SVs

(Figure 5), including SVs below the resolution of and/or

inaccessible to existing standard-of-care tests (n ¼ 5) and

SVs for which the base pair resolution provided by GS re-

sulted in a medically relevant change in classification

from variant of uncertain significance (VUS) to P/LP (n ¼
The American Jour
2).80 Notably, while STRs represent a variant class uniquely

identifiable from GS, we did not identify any STRs that

met P/LP criteria in the ASDor FSA cohorts. As studies exam-

ining the contribution of STRs to disease risk increase,85,91,92

we expect the interpretation of these variants to improve.

Indeed, predicting the functional consequences of many

GS-unique SVs was challenging, particularly for in-frame

single exon deletions like the 5,618 bp de novo deletion in

RERE in an ASD proband. For small rare in-frame CNVs

(e.g., that disrupt <10% of the protein),50 evidence that

the altered exon codes for a functional unit of the protein

is one way to increase classification of the variant. However,

this type of exon-level annotation is unavailable for most

genes, suggesting that gene-level metrics quantifying the

impact of in-frame CNVs would be of value.

GS also identified SVs that could only be classified as

diagnostic using the resolution uniquely provided by this

technology, such as the pathogenic balanced translocation

disrupting GRIN2B in an ASD proband.24 Reciprocal trans-

locations identified by karyotype are routinely reported

back to families, but very little can be said about their

contribution to the phenotype because the precise loca-

tion of the breakpoints, and thus the predicted functional

impact, remains unknown.93–95 Indeed, our previous work

has demonstrated that GS revises the location of cytoge-

netically visible BCRs by one or more cytogenetic bands

in over 93% of individuals,46,93 suggesting that conclu-

sions about pathogenicity for the indication for testing
nal of Human Genetics 110, 1454–1469, September 7, 2023 1461
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Figure 5. Examples of diagnostic structural variants uniquely identified by genome sequencing
(A) A 5,618 bp single exon in-frame deletion in RERE in an ASD proband.
(B) A compound heterozygous missense variant in trans with an intragenic exonic duplication in DYNC2H1 in a fetus with short-rib
thoracic dysplasia.
(C) An SVA retrotransposon insertion disrupting DMD in an ASD proband.
(D) A balanced reciprocal translocation between chromosomes 12 and 13 in an ASD proband that directly disrupts GRIN2B.
(E) Linear representation of a de novo complex SV impacting chromosome 1 in an ASD proband. Each rearranged segment of DNA in the
derivative chromosome is depicted by a unique roman numeral (i–v), while the four deleted segments of DNA are outlined in purple and
sequentially numbered DEL 1–4 (6.3 Mb total deleted). Arrows and chromosomes are not drawn to scale. Inverted segments are denoted
by a reverse orientation of arrows. Genomic coordinates for this variant are provided in Table S11.
cannot be drawn on the basis of karyotype results alone.

Similarly, we identified a pathogenic de novo 47.2 Mb com-

plex SV in an ASD proband that was only resolved by GS.

Current guidelines recommend the individual assessment

of CNVs involved in a complex SV; however, GS can

resolve complex SVs to a single event so there is strong

rationale to evaluate the overall rearrangement in diag-

nostic classification. In this study, we applied the gene-

number thresholds to the total number of genes overlap-

ped by all four deletions to classify this complex SV as LP,

but we note that these thresholds were derived from very

large canonical CNVs and did not include the analysis of

complex SV.46 To improve gene-number thresholds, future

studies could consider including complex SVs as well as

CNVs below the resolution of CMA, which are now

robustly detectable with GS.96 Taken together, these data

provide specific examples of the types of variants, particu-

larly SVs, that will be encountered as comprehensive

variant identification from clinical GS becomes more

widespread.
Discussion

Since the advent of massively parallel sequencing technol-

ogies, the application of clinical short-read GS has repre-
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sented an enticing approach to ascertain almost all patho-

genic variation in a single diagnostic test. Despite this

enthusiasm,97,98 there remains a dearth of unbiased and

large-scale studies to systematically assess this technology

against conventional tests for any phenotype, and in

particular for FSAs. As such, it has been asserted that GS

can provide anywhere from no improved diagnostic

yield99 to over 50%.29,30 Unfortunately, existing studies

examining the clinical utility of GS frequently have dispa-

rate standard-of-care tests available on individuals for

comparison, precluding systematic benchmarking of GS

against any individual test as well as the combination of

multiple tests. Further, SVs are often not consid-

ered36,100,101 or only identified via a small number of algo-

rithms102–105 despite evidence demonstrating the need for

multiple approaches to maximize sensitivity.25 This places

an unnecessary technical constraint on the diagnostic

value of GS and represents a critical limitation for

surveying conditions where the contribution of SVs is sig-

nificant, such as for FSAs and ASD.1,6 We demonstrate here

that these limitations can be circumvented with a compre-

hensive GS framework to capture, filter, and interpret a

broad spectrum of variant classes without significantly

increasing the burden of manual variant curation.39

The scale of the benchmarking conducted here, namely

the 1,612 ASD quartet families that had three technologies
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(GS, ES, and CMA) available for re-analysis on all individ-

uals, demonstrated that GS captures all diagnostic variants

identified by CMA and ES and provides a molecular diag-

nosis for almost 2-foldmore ASD probands than either tech-

nology alone. We also illustrate that the diagnostic yield of

ES can approach that of GS if sensitive CNV discovery is per-

formed on the exome data.106–108 While phenotype, ascer-

tainment, and clinical context are expected to impact

comparative diagnostic yields, our study demonstrates the

importance of comprehensive variant discovery across tech-

nologies to avoid overestimating the added diagnostic yield

of a single technology. As exemplified by our FSA cohort, in-

flated yields of GS (e.g., 7.6% vs. 0.8%) can easily occur

when previous testing, technology platforms, assessment

timepoints, bioinformatic analyses, and interpretation

guidelines are not taken into consideration.

To confirm these results in fetal DNA samples, we

applied the GS analytic framework to 46 fetuses pre-

selected to harbor a reportable variant identified by karyo-

type, CMA, or ES. As expected, GS identified 100% of the

CNVs and SNVs/indels identified by CMA and ES, respec-

tively. In contrast, only 62.5% of the BCRs identified by

karyotype were recapitulated by GS, largely as a result of

the localization of BCRs to highly repetitive acrocentric

chromosomes.109 Previous studies have found that short-

read GSmay identify upwards of 90.8% of BCR breakpoints

when rearrangements involving the acrocentric chromo-

somes are excluded,93 suggesting the true performance of

GS for detecting all BCRs will likely fall within the

62.5%–90.8% range. However, the impact of these missed

BCRs on the total yield of GS will be small (e.g., 0.3%–

1.1%), as the fraction of BCRs identified in FSAs is only

estimated to be 3%.1 Indeed, we can extrapolate our

benchmarking results to diagnostic yields obtained from

unselected FSAs that were ascertained from the same catch-

ment area as the vast majority (64.2%) of our FSA cohort.

Using these historical data,1,3 we estimate that GS can pro-

vide an overall diagnostic yield of 46.1% in unselected

FSAs, significantly outperforming each individual stan-

dard-of-care test by a widemargin: 17.2% increase over kar-

yotype, 14.1% over CMA, and 38.3% over ES when only

SNVs and indels are considered, and 4.1% when CNVs

are also robustly identified from ES data (Figure 3). Based

on diagnostic performance alone, these data strongly argue

for GS to displace the serial application of karyotype, CMA,

and ES for the assessment of FSAs and ASD, provided

analysis and interpretation are sufficiently optimized to

identify and interpret all classes of variation.

These studies found that GS uniquely identified nine P/LP

variants across ASD probands and fetuses with structural

anomalies, representing an added diagnostic yield of 0.4%

and 0.8% in each cohort, respectively. Our study revealed

that most diagnostic GS-unique variants included SVs that

were inaccessible toexisting standard-of-carediagnostic tests

or were only determined to be pathogenic on the basis of in-

formation thatwasuniquelyprovidedbyGS. These included

BCRs, complex SVs, single exon in-frame deletions, andmo-
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bile element insertions. Itmaybe possible to further increase

theyieldofESby improvingfiltering to recapture singleexon

CNVs. However, we previously demonstrated that the false

positive rate of deletions and duplications detected by

GATK-gCNV from ES data can dramatically increase if

filtering is relaxed toone exongenomewidewithoutmanual

curationof individual variants.5,84 These data should temper

enthusiasm regarding immediate significant increases in

interpretable pathogenic variation from either ES or GS.

Advances in genomics technologies and algorithms will

continue toonlyprovide incremental increases indiagnostic

yield without improvements in variant annotation (e.g.,

predicting the functional impact of a variant) and

interpretation.

Beyond diagnostic yield, there are additional technical,

logistical, and economic considerations when deciding to

implement a new diagnostic test such as GS. Among these,

technical capacity and timely return-of-results is para-

mount in the prenatal setting. While assessing turn-

around-time and the impact of GS on downstream health

care costs was beyond the scope of this study, previous

studies have demonstrated that GS results can be delivered

within 18–21 days for the assessment of FSAs.33,34 Addi-

tionally, rapid GS (ranging from 26 h to 3.2 days for

analysis completion)100,110 has been demonstrated in the

pediatric setting for the assessment of critically ill infants,

where, similar to the prenatal diagnostics, time to diag-

nosis can have a significant impact on medical manage-

ment and clinical outcomes. Further, clinical GS costs

less than existing standard-of-care diagnostic tests for indi-

viduals with a developmental disorder and/or congenital

anomaly111 and rapid GS has reduced the cost of hospital-

ization for children admitted to neonatal or pediatric

intensive care units.112,113 Taken together, these data sug-

gest that the benefits of GS are likely to extend to reduc-

tions in health care costs and rapid return-of-results in

addition to improved diagnostic yield. Yet, efforts to

ensure that GS does not exacerbate health inequities will

be critical, as access to testing will be initially isolated to

metropolitan areas with major medical centers. Addition-

ally, initiatives to expand diverse population representa-

tion in reference databases will be integral to ensuring

that individuals from non-European genetic ancestries

have an equal opportunity to receive a diagnosis, as popu-

lation-specific allele frequencies are essential for variant

interpretation.

In conclusion, these studies demonstrate the potential

for GS to displace a series of standard-of-care diagnostic

tests that individually identify only a small portion of

the genomic variant spectrum associated with FSAs and

ASD. The large-scale benchmarking performed in this

study was critical, as these analyses focus on rare variants

that span an array of mutational mechanisms but are not

frequently observed in the general population or in small

cohorts. We demonstrate that GS is unlikely to signifi-

cantly increase the diagnostic yield in FSAs or ASD without

improvements in variant annotation and interpretation,
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particularly for noncoding variation, as we were only able

to consider a small number of noncoding disease-associ-

ated loci. Some discrete phenotypes will also continue to

require specialized assays (e.g., methylation tests, microsat-

ellite analysis) for variants not accessible to any short-read

GS technology. Overall, these data suggest that GS can

effectively displace karyotype, CMA, and ES as a single

diagnostic test for the assessment of FSAs and ASD and

will provide a marginal, but important, increase in diag-

nostic yield beyond the combination of all three current

standard-of-care diagnostic tests.
Data and code availability

The genomic and phenotype data for the ASD families can

be accessed throughSFARIbasewithpermission from the Si-

mons Foundation Autism Research Initiative. The raw

sequencing data generated from the fetal structural anom-

aly cohort is restricted because of consent limitations. How-

ever, all diagnostic variants identified in the ASD and FSA

cohorts are provided in Tables S10 and S12.
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Anyansi, C., Bennett, M.F., Billingsley, K., Carroll, A., Clam-

ons, S., Danzi, M.C., et al. (2022). REViewer: haplotype-

resolved visualization of read alignments in and around tan-

dem repeats. Genome Med. 14, 84.

78. Strande, N.T., Riggs, E.R., Buchanan, A.H., Ceyhan-Birsoy,

O., DiStefano, M., Dwight, S.S., Goldstein, J., Ghosh, R., Sei-

fert, B.A., Sneddon, T.P., et al. (2017). Evaluating the Clinical

Validity of Gene-Disease Associations: An Evidence-Based

Framework Developed by the Clinical Genome Resource.

Am. J. Hum. Genet. 100, 895–906.

79. Amendola, L.M., Muenzen, K., Biesecker, L.G., Bowling,

K.M., Cooper, G.M., Dorschner, M.O., Driscoll, C., Foreman,

A.K.M., Golden-Grant, K., Greally, J.M., et al. (2020). Variant

Classification Concordance using the ACMG-AMP Variant

InterpretationGuidelines across NineGenomic Implementa-

tion Research Studies. Am. J. Hum. Genet. 107, 932–941.

80. Harrison, S.M., and Rehm, H.L. (2019). Is ‘‘likely pathogenic’’

really 90% likely? Reclassification data in ClinVar. Genome

Med. 11, 72.

81. Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S.F.A.,

Hakonarson, H., and Bucan, M. (2007). PennCNV: an inte-

grated hidden Markov model designed for high-resolution

copy number variation detection in whole-genome SNP gen-

otyping data. Genome Res. 17, 1665–1674.

82. Colella, S., Yau, C., Taylor, J.M., Mirza, G., Butler, H., Clous-

ton, P., Bassett, A.S., Seller, A., Holmes, C.C., and Ragoussis, J.

(2007). QuantiSNP: an Objective Bayes Hidden-Markov

Model to detect and accurately map copy number variation
nal of Human Genetics 110, 1454–1469, September 7, 2023 1467

http://refhub.elsevier.com/S0002-9297(23)00250-1/sref53
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref53
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref53
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref53
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref54
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref54
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref54
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref54
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref54
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref55
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref55
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref55
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref56
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref56
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref56
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref56
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref56
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref57
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref57
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref57
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref57
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref58
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref58
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref58
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref58
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref59
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref59
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref59
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref59
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref59
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref60
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref60
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref60
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref60
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref60
https://doi.org/10.1101/201178
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref62
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref62
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref62
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref63
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref63
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref63
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref63
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref63
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref64
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref64
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref64
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref65
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref65
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref65
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref65
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref65
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref66
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref66
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref66
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref66
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref67
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref67
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref67
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref67
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref69
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref69
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref69
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref69
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref70
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref70
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref70
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref70
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref71
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref71
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref71
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref71
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref71
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref72
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref72
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref72
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref72
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref72
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref73
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref73
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref73
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref73
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref73
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref74
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref74
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref74
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref75
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref75
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref75
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref76
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref76
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref76
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref76
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref76
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref77
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref77
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref77
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref77
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref77
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref77
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref78
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref78
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref78
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref78
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref78
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref78
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref79
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref79
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref79
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref79
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref79
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref80
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref80
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref80
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref80
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref80
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref81
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref81
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref81
http://refhub.elsevier.com/S0002-9297(23)00250-1/sref81


using SNP genotyping data. Nucleic Acids Res. 35,

2013–2025.

83. Sanders, S.J., Ercan-Sencicek, A.G., Hus, V., Luo, R., Murtha,

M.T., Moreno-De-Luca, D., Chu, S.H., Moreau, M.P., Gupta,

A.R., Thomson, S.A., et al. (2011). Multiple recurrent de

novo CNVs, including duplications of the 7q11.23 Williams

syndrome region, are strongly associated with autism.

Neuron 70, 863–885.

84. Babadi, M., Fu, J.M., Lee, S.K., Smirnov, A.N., Gauthier, L.D.,

Walker, M., Benjamin, D.I., Karczewski, K.J., Wong, I.,

Collins, R.L., et al. (2022). GATK-gCNV: A Rare Copy Num-

ber Variant Discovery Algorithm and Its Application to

Exome Sequencing in the UK Biobank. Preprint at bioRxiv.

https://doi.org/10.1101/2022.08.25.504851.
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Figure S1. Confirmation of sample relatedness using kinship values 
Kinship values for GS were calculated using KING1 after restricting to SNVs with an 
alternate allele frequency greater than 5% in gnomAD genomes.2 Each point on the plot 
represents a related pair of individuals, colored by relationship status. (A) Relatedness 
metrics for 6,448 individuals from the 1,612 ASD quartet families. (B) Relatedness metrics 
for 747 individuals from the 249 FSA trios. 



 

 
 

Figure S2. Sample sex QC 
Confirmation of sample sex using single nucleotide polymorphism (SNP) and 
chromosomal read-depth information from GS data. Sex was inferred two ways from GS 
data: 1) using the F value generated with PLINK3 based on sex chromosome SNP 
genotypes, and 2) using read depth (dosage) scores4 derived from chrX and chrY. Each 
point represents a sample, colored by final sex used for analysis. (A) Sex metrics for the 
6,448 individuals from the 1,612 ASD quartet families. Cases with sex chromosomal 
abnormalities (n=9) have been labeled. (B) Sex metrics for the 249 trios individuals from 
the FSA trios (n=747) that were pre-screened with standard-of-care diagnostic tests and 
the 46 singleton benchmarking cases.



 

 
 

 
 

Figure S3. Modified exome sequencing depth and allele balance thresholds 
The plot displays the allele balance (AB) and sum allele depth (AD) for all 1,453 de novo 
SNVs and indels detected from ES using the standard GS filters. Color indicates if the 
variant is unique to ES (blue; n=1,353) or was found in both the ES and GS data (red; 
n=100). Shape indicates variant type (SNV or indel). The dotted line represents the 
modified thresholds ultimately used for filtering the ES data before manual review: AB > 
0.25 and sum(AD) ≥ 1.  
 
 

 
 
 



 

 

 
Figure S4. Two pathogenic sequence variants unique to GS in ASD probands  
Alignment visualization for two de novo variants uniquely identified in GS alongside their 
raw read evidence from ES. Images were generated using IGV.5 For each site, the ES 
and GS screenshots are shown side-by-side. (A) A stopgain SNV in ANKRD11 in proband 
13875.p1 that was absent from the ES VCF and has low coverage in the ES CRAM files 
(B) A 44 bp insertion in SMARCA4 in 14482.p1 that was absent from the ES VCF and 
shows no supporting evidence in ES CRAM files. 
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SUPPLEMENTAL METHODS 
 
Participant ascertainment and genome sequencing 
We included 1,612 deeply phenotyped quartet families ascertained as part of the Simons 
Simplex Collection in this study.6–8 As previously described,9 each family included two 
unaffected parents, one unaffected sibling, and an affected proband with autism spectrum 
disorder (ASD). All affected probands underwent a battery of diagnostic tests, including 
the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic 
Interview-Revised (ADI-R) to confirm the ASD diagnosis, as well as detailed evaluations 
of intellectual/cognitive functioning, adaptive behavior, physical/dysmorphic features, 
developmental milestones, medical comorbidities, and family history. We also included 
295 fetuses that met criteria for diagnostic testing due to the presence of a structural 
anomaly (n=281) or advanced maternal age (n=14) (Figure 1). This included 46 singleton 
fetuses that were pre-selected for having a clinically reportable variant from karyotype, 
chromosomal microarray (CMA), and/or exome sequencing (ES), as well as 249 fetal 
structural anomaly (FSA) trios that had been pre-screened by karyotype, CMA, and/or 
ES. Recruitment and phenotyping protocols for the fetuses have been previously 
described.10–12 All 7,241 individuals underwent paired-end genome sequencing (GS) to a 
mean target coverage of 30X (see Tables S1-3 for specific sequencing metrics).  
 
Sample-level QC 
To confirm sample relatedness, we performed a kinship inference analysis with KING1 
(http://people.virginia.edu/∼wc9c/KING) using the GS data after restricting to single 
nucleotide polymorphisms (SNPs) with an alternate allele frequency (AF) >5% in gnomAD 
(Figure S1).2 In parallel, we also predicted genetic sex using two independent 
approaches: first, we used PLINK to infer sex based on sex chromosome genotypes.3 
Second, we used GATK-SV to calculate copy number estimates for each chromosome 
per sample, which permitted inference of genetic sex as well as the identification of 
chromosomal aneuploidies. We compared the predicted sex for each individual between 
both methods and observed high concordance (Figure S2). Using the relatedness and 
sex results we resolved sample swaps based on discrepancies in family structures 
deviating from the expected relatedness metrics for parent-child (IBS0 ≤ 0.005 and 
kinship coefficient > 0.2) and sibling relationships (IBS0 > 0.005 and kinship coefficient > 
0.2; Figure S1).  
 
We also confirmed cross-technology sample relatedness to assure comparisons were 
performed on the same 6,448 individuals from the 1,612 ASD quartet families. This was 
accomplished by restricting the ES and GS VCFs to high-quality common SNPs from 
Purcell et al. 201413 that were lifted over to GRCh38/hg38 and limited to 5,862 SNPs 
common to both ES and GS. Samples were renamed based on their technology of origin 
and were merged into a single cross-technology ASD VCF for relatedness analysis with 
KING.1 ES and GS samples with a kinship coefficient > 0.45 were considered to be 
identical samples. Finally, we used the confirmed sample metadata from the GS and ES 
comparisons to identify matching CMA data.14 
 



 

Genome sequencing analysis framework 
We developed a GS analytic framework to discover, filter, and interpret nine different 
classes of variation that are described in detail below and also summarized in Table S4. 
The aim of this pipeline was to retain as many pathogenic or likely pathogenic (P/LP) 
variants as possible while reducing the total number of variants requiring manual review. 
The same GS analysis pipeline was applied to both the ASD and prenatal cohorts with 
only modifications to the phenotype-specific gene list used.  
 
1.0. Variant discovery 
 
1.1. Sequence variants (GATK)  
As previously described,7,8 the ASD GS data was generated from PCR-free libraries and 
processed using the Center for Common Disease Genomics functional equivalence 
pipelines (https://github.com/CCDG/Pipeline-Standardization) and following the Genome 
Analysis Toolkit (GATK) Best Practices Workflows for sequence variant, single nucleotide 
variant (SNV) and small insertion/deletion (indel), discovery 
(https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-
Workflows).15 Briefly, this included aligning the raw FASTQ reads to the hg38/GRCh38 
human reference genome using BWA-mem 0.7.15,16 sorting and removing duplicate 
reads with Picard 2.4.1. (http://broadinstitute.github.io/picard/), performing base quality 
score recalibration, indel realignment, generating single sample gVCFs with GATK 
HaplotypeCaller 3.5-0,17 merging single sample gVCFs into batch specific VCFs (ranging 
in size from 40 to 588 quartets),8 joint-calling the merged VCFs, and performing Variant 
Quality Score Recalibration (VQSR). The aligned CRAM and gVCF files were transferred 
to the Amazon Web Services (AWS) S3 storage system and can be accessed with 
permission from the Simons Foundation Autism Research Initiative 
(https://www.sfari.org/resource/sfari-base/).  
 
The GS data from the prenatal samples were generated at the Broad Institute Genomics 
Platform. After sequencing, individual FASTQ files were transferred to a Google Cloud 
bucket for storage. All GS data pre-processing and sequence variant discovery was 
performed using the GATK Best Practices Workflows on the cloud-enabled and freely 
available Terra platform (https://terra.bio/). Sequence variant calling followed the same 
steps described above for ASD. 
 
1.2. Structural Variants (GATK-SV) 
Structural variant (SV) discovery and genotyping was performed with GATK-SV, which 
was deployed on the Terra platform (https://terra.bio/). The code for GATK-SV is publicly 
available at https://github.com/broadinstitute/gatk-sv. All individuals were grouped into 
batches based on: their dosage bias score (a metric that quantifies the non-uniformity of 
coverage for a given GS sample),4 sex, family status, PCR status, and cohort assignment. 
The ASD cohort included batches comprising 200-400 samples each, and the FSA cohort 
included one batch of PCR plus (n=186) and two batches of PCR free samples (n=345 
and n=346, respectively). All families were kept intact during batching. All 7,241 
individuals were analyzed with six SV discovery algorithms, including three paired-
end/split-read algorithms (Manta v.1.4.0, Smoove v.0.2.3 



 

[https://github.com/brentp/smoove], and WHAM-GRAPHENING v.1.7.0),18–20 two read-
depth algorithms (GATK-gCNV and cnMOPS v.1.12.0),21,22 and one mobile element 
insertion algorithm, MELT v.2.0.5.23 SV discovery generated six algorithm-specific VCFs 
per individual that were used as input for GATK-SV, which was run in cohort mode. The 
GATK-SV pipeline is organized into modules that harmonize predicted SVs across all 
input algorithms, reduce false positives, resolve overlapping SVs with disparate copy 
number, identifies complex variants (e.g., inversions flanked by one or more copy number 
variants [CNVs]),4,24 and provides cohort-wide SV genotypes and quality metrics available 
for post hoc filtering. We generated a cohort-wide SV VCF for the ASD and FSA cohorts, 
respectively, that was used as input for all downstream analyses. Further details on the 
GATK-SV methods can be found in Collins et al. 2020.4 
 
1.3. Short tandem repeats (Expansion Hunter) 
We identified short tandem repeat (STR) expansions across 18 loci that were selected 
from the gnomAD disease-associated STR catalog (https://github.com/broadinstitute/str-
analysis/tree/main/str_analysis/variant_catalogs) based on conferring an early-onset 
developmental disorder phenotype (Table S8). STR expansions were genotyped using 
Expansion Hunter25 v5.0.0 across 6,435/6,448 individuals from the ASD quartet families 
(n=9 ASD probands with a sex chromosomal abnormality were removed as well as one 
quartet family that revoked consent after all other analyses were completed). We also 
applied Expansion Hunter to all 295 prenatal samples (n=793 individuals in total).  
 
2.0. Variant annotation  
 
Details describing variant annotation are described in the methods of the main text.  
 
3.0 Variant filtering 
 
3.1. Variant QC 
After variant discovery, we applied quality control (QC) filters intended to maximize 
sensitivity for candidate P/LP variants while removing false variant calls. For SVs, this 
included removing variants with a GATK-SV QUAL score ≤ 1 and multiallelic copy number 
variants (CNVs). For sequence variants, we removed multiallelic variants, variants with 
an allele balance (AB) < 0.15 in the case of interest, indels > 50bp, and variants where 
the sum of the reference and alternate allele depth (AD) was ≤ 5 in any family member. 
We also removed SNVs that did not pass GATK VQSR. To reduce false positives, we 
applied additional quality control filters to samples with outlier variant counts, defined as 
any sample with a variant count (based on raw GATK haplotype caller or individual SV 
algorithm output) above Q3 + 6*IQR. This definition resulted in relatively few SV outlier 
samples (n=12 SV in the FSA cohort and none in the ASD cohort) and sequence variant 
outliers (n=5 in the FSA cohort and n=1 in the ASD cohort). To control the false positive 
rate in these outlier samples, we removed SVs present in >2 SV outlier individuals and 
sequence variants with GQ <75.  



 

 
3.2. Variant functional consequence 
All variants were filtered for functional impact. SVs predicted to be loss-of-function (LoF) 
or full gene copy gain were retained for further filtering.4 Partial gene duplications, defined 
as duplications with one breakpoint located outside the gene boundary and one within, 
were excluded given their unknown functional impact.26 Any sequence variants predicted 
to be stop-gain, stop-loss, frameshift insertion, frameshift deletion, splicing (within 2 bp of 
a splice junction), or missense according to RefSeq or Gencode annotations were 
retained for additional filtering. We further filtered missense variants based on three tiers 
(described below) to identify those that are increasingly likely to be functionally damaging 
and thus classified as P/LP (Tier 1 = most likely to be P/LP, and Tier 3 = least likely to be 
P/LP). We removed missense variants classified as benign, likely benign, risk factor, 
association, drug response, or protective in ClinVar from all tiers.  
 
Tier 1 missense: 

● Classified as P/LP in ClinVar 
 

Tier 2 missense: 
● Classified as P/LP in ClinVar or 
● Any missense variant with a CADD score > 3027 

 
Tier 3 missense: 

● Classified as P/LP in ClinVar or 
● Any missense variant with a CADD score > 30 or 
● Missense variants with a CADD score between 15 and 30 also located in a 

missense constrained region28  
 

3.3. Disease genes and genomic regions 
To facilitate variant filtering, we computationally built a candidate disease gene list for the 
ASD and FSA cohorts, respectively. The ASD gene list comprised 901 genes (Table S5) 
broadly associated with neurodevelopmental disorders (NDDs) from the DDG2P 
database29 classified as having a ‘confirmed’ or ‘probable’ association with developmental 
disorders that conferred a brain/cognitive phenotype. To account for the variable 
phenotypes observed in the FSA cohort (Tables S2-3), we compiled 2,535 developmental 
disorder genes (Table S6) based on the union of eight gene lists, described below:  
 

1) 374 dominant developmental disorder genes from the DDG2P database 
(accessed July 29, 2019)29 with a “confirmed” disease association and monoallelic, 
imprinted, mosaic, x-linked dominant, and x-linked over-dominance modes of 
inheritance. 
 

2) 800 recessive developmental disorder genes from the DDG2P database29 with a 
“confirmed” disease association and biallelic or hemizygous modes of inheritance. 
 

3) 93 genes that were significantly enriched for rare de novo variants in the 
Deciphering Developmental Disorders study.30 



 

 
4) 26 dominant genes significantly enriched for rare de novo protein-truncating 

variants in ASD.6 
 

5) 358 genes from the Clinical Genome (ClinGen) Resource Dosage Sensitivity Map 
with “some evidence for dosage pathogenicity” (haploinsufficiency/triplosensitivity 
score = 2) or “sufficient evidence for dosage pathogenicity” 
(haploinsufficiency/triplosensitivity score = 3) (downloaded July 29, 2019; 
https://www.clinicalgenome.org/curation-activities/dosage-sensitivity/). 
 

6) 708 autosomal dominant and 1,182 recessive disease genes curated from the 
Online Mendelian Inheritance in Man (OMIM) database.31,32 
 

7) 217 recessive and dominant X-linked genes from OMIM (tables were accessed 
June 12, 2017).  
 

8) 117 genes that have been robustly associated with fetal structural anomalies 
detectable by ultrasound that were curated by the Prenatal Assessment of 
Genomes and Exomes study.33 

 
Each gene was classified as being associated with a disorder that had a dominant and/or 
recessive pattern of inheritance based on existing annotations from DDG2P and OMIM. 
We categorized the inheritance labels provided by DDG2P as recessive: biallelic, and 
hemizygous or dominant: imprinted, monoallelic, mosaic, x-linked dominant, and x-linked 
over dominant. When disease inheritance was not available for a gene (n=4 missing from 
DDG2P), variants in that gene were retained under both dominant and recessive modes 
of inheritance. 
 
We also compiled a list of 64 known genomic disorder (GD) loci to assess overlap with 
SVs in both our cohorts. We took all of the known CNV syndromes located on the 
autosomes and chromosome X from DECIPHER34 and the haploinsufficient (HI) and 
triplosensitive (TS) regions from the Clinical Genome (ClinGen) Resource Dosage 
Sensitivity Map if they had a HI or TS score ≥ 2 (“sufficient evidence for dosage 
pathogenicity”). We removed any regions that were only associated with late-onset 
conditions, resulting in 64 candidate regions (Table S7). All SVs that overlapped ≥ 50% 
of a GD locus were retained for manual review. Following the most recent guidelines for 
CNV interpretation,26 we also manually reviewed any rare (<1% frequency in gnomAD-
SV)4 deletion or duplication that overlapped ≥ 25 or ≥ 35 protein-coding genes, 
respectively, even if it did not overlap a disease gene or GD region from our lists. Finally, 
we also retained all SVs that overlapped one of 17 non-coding loci known to confer 
pathogenic long-range position effects (LRPEs; Table S8). To define the non-coding 
search space, we used topologically-associated domain (TAD) boundaries from the 
IMR90 fetal fibroblast cell line,35 which have been previously shown to be associated with 
pathogenic LRPEs if disrupted,36,37 that contained each LRPE target gene.  
 



 

3.4. Inheritance 
We filtered variants under the five inheritance modes described below. For the ASD 
quartets, the unaffected sibling and both parents were treated as independent trios during 
inheritance filtering. We applied more stringent missense variant filters (tiers described in 
the variant functional consequence section) to rare inherited and compound heterozygous 
variants as these two categories resulted in a large number of variants requiring manual 
review despite there being little evidence supporting their contribution to the etiology of 
ASD or FSAs.6,12,33,38,39 The specific functional consequence considered for each 
inheritance type are as follows: 
 
Dominant disease genes: 

● De novo 
○ All LoF 
○ Missense Tier 3 

 
● Rare inherited  

○ All LoF 
○ Missense Tier 1 

 
Recessive disease genes: 

● Homozygous 
○ All LoF 
○ Missense Tier 3 

 
● X-linked recessive 

○ All LoF 
○ Missense Tier 3 

 
● Compound heterozygous 

○ At least one variant in the pair had to be LoF or Tier 2 missense  
 
The identification of compound heterozygous variants comprised three steps, including: 
1) compiling heterozygous SNVs, indels, and LoF SVs located in the same recessive 
disease gene, 2) annotating each variant with inheritance status, and 3) retaining only the 
instances where individuals had more than one variant in a recessive disease gene with 
disparate inheritance patterns (e.g., one maternally inherited, one de novo). We required 
that at least one variant per compound heterozygous grouping be inherited from a parent 
due to the lack of phasing information from short-read GS.  
 
3.5. Allele frequency  
All variants (SNVs, indels, and SVs) meeting the above thresholds were retained if they 
had an alternate allele frequency (AF) <1% for variants in dominant disease genes or 
regions and <5% for recessive disease genes. Given that some GDs can occur at an 
appreciable frequency in disease cohorts,40 we did not apply any AF cut-off when 
considering SV that overlapped ≥50% of a known GD locus. 
 



 

4.0. Variant interpretation 
Details describing manual variant curation are described in the methods of the main 
text.  
 
Benchmarking the performance of GS against conventional tests 
 

Filtering CMA data 
As previously described,7,14 SNP genotyping data was generated for the ASD cases using 
three microarray platforms, the Illumina 1Mv1, 1Mv3, or Omni2.5. CNV calls for each 
individual were identified using PennCNV,41 QuantiSNPv2.3,42 and GNOSIS/CNVision.14 
CNVs were filtered for rarity based on overlap with CNVs from the Database of Genomic 
Variants (in GRCh36/hg18) and overlap with CNVs from the ASD parents.14,43 All CNV 
coordinates were lifted over from GRCh36/hg18 to GRCh38/hg38 and those classified as 
high-quality (CNV p-value [pCNV] ≤ 1.0 X 10-9)14 were filtered following the same steps 
outlined in the GS SV pipeline (Table S4). There were 14 variants detected by GS that 
were also detected by CMA but failed filtering because they were not lifted over from hg18 
to hg38 (n=6), failed the pCNV high-quality filter (n=5), or were removed due to incorrect 
CNV coordinates that suggested the variant did not overlap coding sequence (n=3; GS 
coordinates were used as truth). These variants were recovered and counted towards the 
overall yield of CMA. We also removed one deletion from CMA manual review that was 
identified to be rare by CMA but was found in 65 (2.0%) of our 3,224 ASD parents based 
on GS, which was above our allele frequency threshold. 
 
Filtering exome sequencing data   
The ES data for the ASD cases was generated as part of a larger sequencing initiative 
and has been extensively described.6,38 We realigned sequencing data from 
GRCh37/hg19 to GRCh38/hg3838 and applied the same filtering steps as those outlined 
in the GS filtering pipeline (Table S4) with minor modifications to account for differences 
in depth between ES and GS (Figure S3). These included increasing our AB and total 
allele depth filters for de novo variants (both in de novo dominant inheritance and as part 
of a compound heterozygous pair) to account for the higher ES coverage, increased rate 
of false positives, and potential for somatic variant detection. The new thresholds (AB 
>0.25 and total AD  ≥10) were chosen based on retaining >95% of the variants that were 
also detected  by GS (Figure S3).  
 
To identify CNVs from ES data, we applied GATK-gCNV,21 a publicly available Bayesian 
model for germline detection of CNVs. Briefly, this is a read-depth based tool that uses a 
negative-binomial factor analysis to adjust for known and unknown biases of exome 
sequencing, while modeling sample and genomic region copy number through a 
hierarchical hidden Markov model. In this analysis, we jointly processed the 6,448 
individuals from 1,612 ASD quartet families described in this study with an additional 
66,000 samples.38 Samples were assigned to batches based on 3D clustering of the first 
three principal components of coverage depth after normalizing for average depth. The 
72,448 samples were processed across 126 batches, with a median batch size of 449 
samples (min 136 and maximum 2,259). After raw calling with GATK-gCNV, we applied 



 

our calibrated sample-level quality filters, resulting in 5.49% of the total samples being 
removed. The GATK-gCNV quality score statistic (QS>400 for homozygous deletions, 
QS>100 for heterozygous deletions, and QS>50 for duplications) was applied to 
individual calls to extract rare CNVs with predicted sensitivity and positive predictive value 
of >90%, which resulted in a resolution of three exons or more. With these filtering 
metrics, the average ES sample harbored 1-2 rare high-quality CNVs.
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