

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202301538

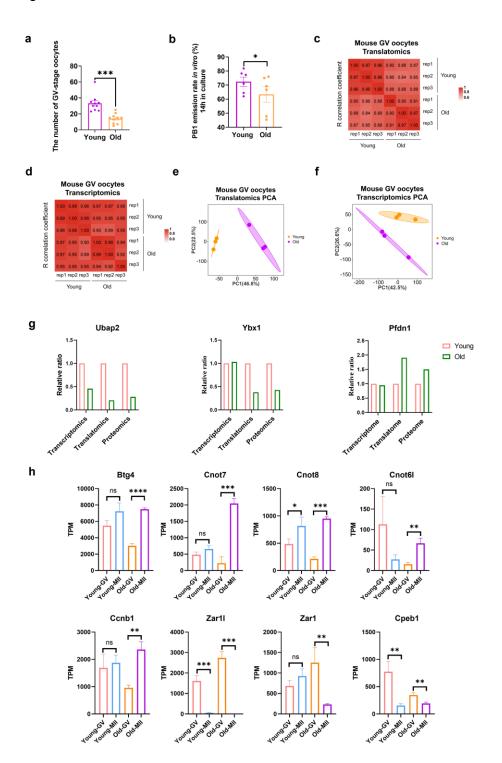
Multi-Omics Analysis Reveals Translational Landscapes and Regulations in Mouse and Human Oocyte Aging

Jiana Huang, Peigen Chen, Lei Jia, Tingting Li, Xing Yang, Qiqi Liang, Yanyan Zeng, Jiawen Liu, Taibao Wu, Wenqi Hu, Kehkooi Kee*, Haitao Zeng*, Xiaoyan Liang* and Chuanchuan Zhou*

Supporting Information

Multi-Omics Analysis Reveals Translational Landscapes and Regulations in

Mouse and Human Oocyte Aging


Jiana Huang[#], Peigen Chen[#], Lei Jia, Tingting Li, Xing Yang, Qiqi Liang, Yanyan Zeng, Jiawen Liu, Taibao Wu, Wenqi Hu, Kehkooi Kee*, Haitao Zeng*, Xiaoyan Liang*, Chuanchuan Zhou*

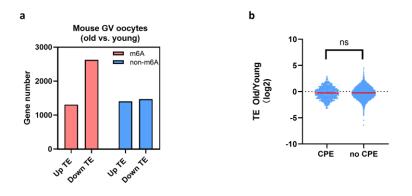
This PDF file includes:

Figure. S1 to S8

Table. S1 to S3

Supplementary Figures:

Figure S1. Multi-omics analyses of aged and young mouse oocytes. a) The number of germinal vesicle (GV)-stage oocytes retrieved from young and aged mice. Each dot represents a single biological replicate. *p*-Values were calculated with Student's t-test for paired samples. b) The in vitro PB1 emission rates of oocytes from young and aged


mice. Each dot represents a single biological replicate. *p*-Values were calculated with Student's t-test for paired samples. c) Heatmap depicting the *Pearson* correlation coefficient of the translatome between each biological replicate from young and aged mice. d) Heatmap depicting the *Pearson* correlation coefficient of the transcriptome between each biological replicate from young and aged mice. e) PCA plot of the transcriptomics of young and aged mouse GV oocytes. f) PCA plot of the transcriptomics of young and aged mouse oocytes. g) The transcriptional, translational, and protein levels of representative genes in young and aged mouse GV oocytes. h) The translational levels of representative genes in young and aged mouse GV and MII oocytes. PB1, polar body-1. PCA, principal component analysis. Ns, no significant difference. *P<0.05, **P<0.01, *** P<0.001, **** P<0.0001.

а b Mouse GV oocytes (old vs. young) Mouse GV oocytes (old vs. young) RNA decay Histone modification Cnot6 Suz12 log10 (p value) Crebbp log10 (p value) 7 / ● up ● nodif ● down up nodiff Kdm2a Cdvl Kat8 2. - Kdm1b Ezh2 Cnot Eed – Kdm5b setd2 2. log2 (fold change) log2 (fold change) d С NESET Mouse GV oocytes NES: 2.784 p<0.0001 GO Term Enrichment in young-spec high TE ge metabolic process osome organization cell cycle og10(p va RNA metabolic process 731 g2FC in Translation Effi Mouse GV oocytes 30.3535 RK_G2M_CHECKPOINT

Figure S2

Figure S2. Translational efficiency of aged and young mouse oocytes. a) Volcano plot showing the changes in the RNA decay-related genes identified by translatomics. b) Volcano plot showing the changes in the histone modification regulatory genes identified by the translatomics. c) Gene set enrichment analysis of TE showing the downregulated genes enriched in the hallmark of the G2/M checkpoint and the upregulated genes enriched in the hallmark of oxidative phosphorylation. d) Gene ontology term enrichment of the young-specific high-TE genes of aged mouse oocytes. TE, translational efficiency.

Figure S3

Figure S3. Correlations of translational efficiency changes and m6A modification/CPE existence in aged mouse oocytes. a) Bar plots showing the numbers of up- and down-regulated TE genes between aged and young mouse oocytes. Pink denotes the m6A-enriched genes. Blue denotes genes not containing m6A. b) Violin plots showing the changes in CPE-containing and non-CPE-containing genes in aged mouse oocytes. CPE, cytoplasmic polyadenylation element. TE, translational efficiency. *p*-Value was calculated with Student's t-test for independent samples. Ns, no significant difference.

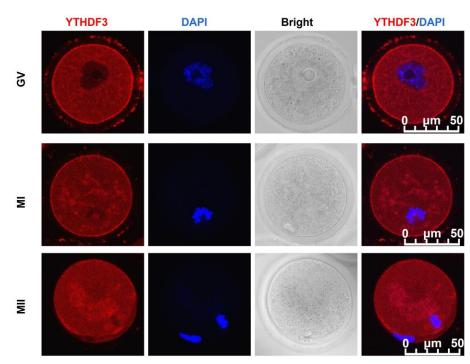


Figure S4. Immunofluorescence verifying the expression of YTHDF3 in young mouse

Figure S4

oocytes during in vitro maturation. Scale bar, 50 µm.

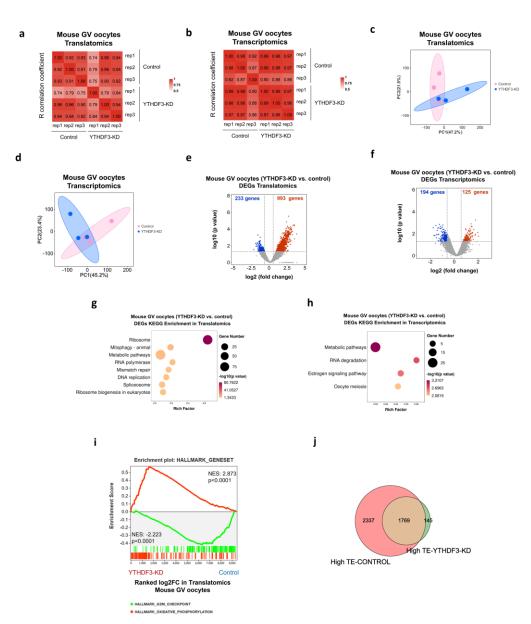
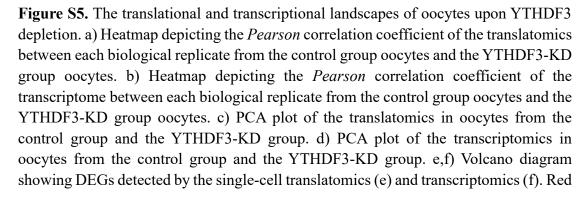



Figure S5

and blue dots denote up- and down-regulated genes, respectively. *P*<0.05, FC>1.5 or <0.67. g,h) KEGG analysis of the DEGs detected by translatomics (g) and transcriptomics (h) analyses. i) Gene set enrichment analysis of the translatomics showing the translationally downregulated genes enriched in hallmarks of the G2/M checkpoint and translationally upregulated genes enriched in hallmarks of oxidative phosphorylation. j) Venn diagram showing the overlap of high-TE genes identified from the control group oocytes and the YTHDF3-KD group oocytes. YTHDF3-KD, YTHDF3 knockdown. PCA, principal component analysis. DEGs, differentially expressed genes. FC, fold change. KEGG, Representative Kyoto Encyclopedia of Genes and Genomes. High TE, translation efficiency > 2.

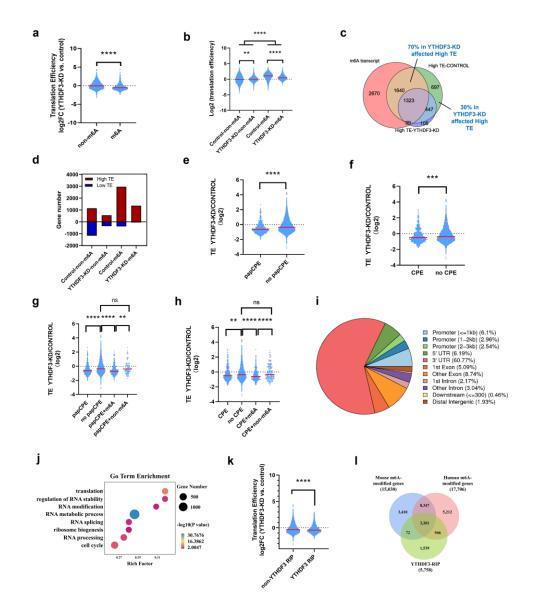


Figure S6. Translational efficiency analyses of oocytes upon YTHDF3 depletion. a)

Violin plots showing the TE changes in genes not enriched by m6A and m6A-enriched genes. *p*-Value was calculated with Student's t-test for independent samples. b) Violin plots showing the TE changes in group not enriched by m6A and m6A-enriched group genes in the YTHDF3-KD group oocytes compared with the control group oocytes. p-Values were calculated with one-way ANOVA and Bonferroni post-hoc test. c) Venn diagram showing the overlaps of the m6A-enriched gene set, high-TE genes in the control group oocytes, and high-TE genes in the YTHDF3-KD group oocytes. High TE, TE>2. d) Bar plots showing the numbers of high-TE genes (TE>2) and low-TE genes (TE<0.5) among the four groups of oocytes. Red denotes high-TE genes. Blue denotes low-TE genes. e) Violin plots showing the TE changes in genes of the papCPEcontaining group and genes of the group not containing papCPE in the YTHDF3-KD group oocytes compared with the control group oocytes. p-Value was calculated with Student's t-test for independent samples. f) Violin plots showing the TE changes in the genes of the CPE-containing group and the genes of the group not containing CPE in the YTHDF3-KD group oocytes compared with the control group oocytes. p-Value was calculated with Student's t-test for independent samples. g) Violin diagram depicting the change in TE upon YTHDF3 depletion among the four groups of genes. p-Values were calculated with one-way ANOVA and Bonferroni post-hoc test. h) Violin plots showing the TE changes in four groups of genes in the YTHDF3-KD group oocytes and the control group oocytes. p-Values were calculated with one-way ANOVA and Bonferroni post-hoc test. i) The distribution and enrichment of YTHDF3-binding sites within different gene regions. j) GO term enrichment analysis of the overlapping YTHDF3 target genes described in Figure. 5c. k) Violin plots showing the TE changes in YTHDF3-target group and non-YTHDF3-target group genes in oocytes upon YTHDF3 depletion. p-Value was calculated with Student's t-test for independent samples. 1) Overlapping analysis of human m6A-enriched genes (m6A-Atlas database), mouse m6A-containing genes (RMBase database), and YTHDF3 binding genes identified in HEK293T cells. YTHDF3-KD, YTHDF3 knockdown. TE, translational efficiency. CPEs, cytoplasmic polyadenylation elements. papCPE, CPEs residing near PAS, <100 nt. GO, Gene ontology. Ns, no significant difference. **P<0.01, ****P*<0.001, *****P*<0.0001.

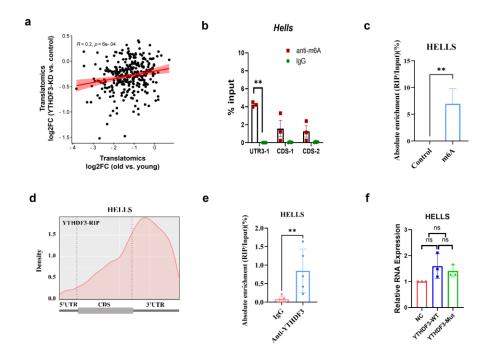
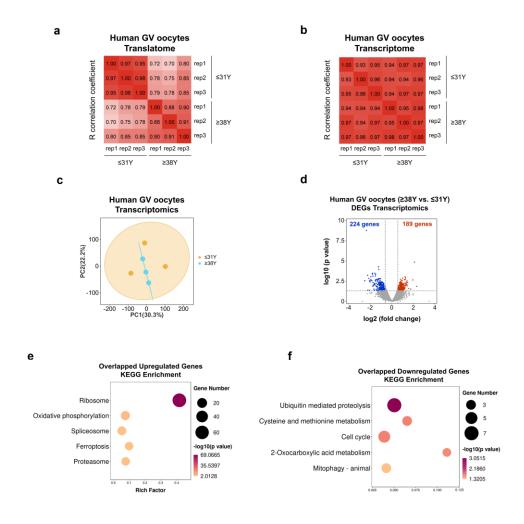



Figure S7. The RNA levels of *HELLS* genes identified by RT–qPCR in HEK293T cells. a) Scatter plot showing the correlation in gene translational log2 FC between YTHDF3-KD/control oocytes and aged/young oocytes. The Pearson correlation coefficient=0.2, with a p-Value < 0.001. b) Shown are m6A RIP followed by qPCR with 50 mouse oocytes on different sites of the Hells gene. UTR3-1, primers at the 3'UTR of Hells, CDS-1 and CDS-2, two pairs of primers at the CDS region of Hells. p-Value was calculated with two tailed Mann-Whitney test. c) M6A RIP followed by RT-qPCR in HEK293T cells confirming the enrichment of m6A in HELLS mRNA. p-Value was calculated with two tailed Mann-Whitney test. d) Distribution of the YTHDF3-binding site across the HELLS gene in HEK293T cells. e) YTHDF3 RIP followed by RT-qPCR in HEK293T cells confirming the interaction between YTHDF3 and HELLS mRNA. p-Value was calculated with two tailed Mann-Whitney test. f) The RNA levels of the HELLS gene in HEK293T cells transfected with empty vector or wild-type (YTHDF3-WT) or mutant (YTHDF3-Mut) Flag-tagged YTHDF3 plasmid. p-Value was calculated with two tailed Mann-Whitney test. FC, fold change. RIP, RNA immunoprecipitation. NC, negative control. Ns, no significant difference. **P<0.01.

Figure S8. The transcriptional and translational landscapes of aged human oocytes. a) Heatmap depicting the *Pearson* correlation coefficient of the translatomics between each biological replicate from the young human oocytes and the aged human oocytes. b) Heatmap depicting the *Pearson* correlation coefficient of the transcriptomics between each biological replicate from the young human oocytes and the aged human oocytes. c) PCA plot of the transcriptomics of oocytes from young and aged human females. d) Volcano diagram showing DEGs detected by ultrasensitive transcriptomics. Red and blue dots denote up- and down-regulated genes, respectively. *P*<0.05, FC>1.5 or <0.67. e) Representative KEGG analysis of the overlapped translationally upregulated genes between aged mouse and human oocytes. f) Representative KEGG analysis of the overlapped translationally upregulated genes between aged mouse and human oocytes. FC, fold change. KEGG, Kyoto Encyclopedia of Genes and Genomes.

Supplementary Tables:

Table S1. The changes of critica	l regulatory genes in	transcriptomics of	during oocyte
----------------------------------	-----------------------	--------------------	---------------

Pathway	Gene ID	Gene Name	log2(FC)	<i>p</i> -Value
Oocyte meiosis	ENSMUSG0000017146	Brcal	-0.3826	0.375041652
	ENSMUSG0000041147	Brca2	-0.6041	0.107795584
	ENSMUSG0000022789	Dnm11	0.0155	0.636930919
	ENSMUSG0000031928	Mrella	-0.2108	0.853601771
	ENSMUSG0000026039	Sgo2a	-1.1184	0.010830307
	ENSMUSG0000094443	Sgo2b	-0.2814	0.723956467
	ENSMUSG0000020362	Cnot6	-0.2726	0.714194381
	ENSMUSG0000034724	Cnot6l	0.0222	0.698922456
	ENSMUSG0000031601	Cnot7	0.7093	0.004437619
RNA decay	ENSMUSG0000020515	Cnot8	0.0402	0.474688301
	ENSMUSG0000053110	Yap l	-1.1084	0.065332471
	ENSMUSG0000032056	Btg4	0.3878	0.052488237
	ENSMUSG0000035248	Tut7	0.0503	0.577225487
DIV	ENSMUSG0000020661	Dnmt3a	-1.0151	0.036448999
	ENSMUSG0000027478	Dnmt3b	0.2871	0.144031217
	ENSMUSG0000004099	Dnmtl	-1.1192	1.81E-05
DNA	ENSMUSG0000000730	Dnmt3l	-0.07	0.717579668
methylation	ENSMUSG0000001228	Uhrfl	-0.5381	0.375945467
	ENSMUSG0000046323	Dppa3	0.3913	0.218123922
	ENSMUSG0000034832	Tet3	-1.0703	0.037639167
	ENSMUSG0000006307	Kmt2b	-0.7119	0.134985059
	ENSMUSG0000036940	Kdmla	-0.4466	0.390759249
Histone modification	ENSMUSG0000038080	Kdm1b	-0.3985	0.395728995
	ENSMUSG0000029687	Ezh2	0.1552	0.177539376
	ENSMUSG0000017548	Suz12	-0.1309	0.968979422
	ENSMUSG0000030619	Eed	0.4956	0.020385722
	ENSMUSG00000044791	Setd2	-0.336	0.490615239
	ENSMUSG0000030801	Kat8	-0.0855	0.787175305
	ENSMUSG0000022521	Crebbp	0.0994	0.432672092
	ENSMUSG00000059288	Cdyl	-0.2509	0.736788661

aging

	Old vs. Young			YTHDF3-KD vs. Control		
Gene – Name	TE	Translatomics	Translatomics	ТЕ	Translatomics	Translatomics
	(log2FC)	(log2FC)	<i>p</i> -Value	(log2FC)	(log2FC)	<i>p</i> -Value
Actr2	-3.2223	-2.3187	8.35332E-09	-1.2584	-1.2404	0.053927132
Amdl	-1.9912	-1.3155	0.000205853	-1.2019	-0.5871	0.144810839
Arid2	-3.7274	-3.1071	2.78063E-08	-2.0411	-0.809	0.387363087
Asap2	-0.6033	-0.9467	0.150304735	-0.9213	-0.8839	0.266157498
Capn7	-2.1271	-2.0312	5.5785E-09	-1.8646	-0.9809	0.296898379
Cdh2	-1.2928	-0.8637	0.007249401	-1.4264	-0.78	0.038984516
Ckap5	-1.9470	-2.1788	2.81287E-08	-1.1510	-0.5972	0.392521082
Clspn	-1.4549	-1.9972	0.001453223	-0.7024	-0.6199	0.414748233
Cull	-1.3821	-1.0003	9.30016E-05	-1.2312	-0.6689	0.09285732
Ezh2	-1.3043	-0.809	0.020345546	-0.9651	-0.6054	0.100792202
Fbxo30	-2.0421	-1.0683	0.006140947	-1.4447	-0.735	0.095646965
Femlb	-1.9542	-2.0309	1.35261E-06	-1.2032	-0.6877	0.364312174
Fignl1	-2.0246	-1.0681	0.015176017	-1.2452	-0.6215	0.158269249
Galnt1	-1.4930	-1.3633	0.03626276	-1.3156	-0.6682	0.210567329
Gdap1	-1.8142	-1.3303	0.002120321	-1.4716	-0.6061	0.157851108
Gsk3b	-2.9412	-2.7855	0.001974923	-1.3823	-0.6754	0.404300625
Hells	-1.8282	-1.6112	9.13826E-08	-0.7020	-0.6781	0.02672084
Icel	-2.3970	-2.686	9.47681E-12	-1.0918	-0.7278	0.217306945
Ing5	-1.4842	-1.5113	0.007641374	-0.7816	-0.6122	0.412759773
Klhl9	-3.8141	-2.1653	3.08197E-08	-0.9623	-1.0723	0.132884284
Mki67	-3.0437	-3.2987	1.60976E-15	-1.5089	-0.809	0.293921071
Mllt10	-1.5226	-0.7878	0.002736263	-0.7394	-1.0499	0.071961435
Paipl	-2.4855	-1.4574	0.006948432	-2.0231	-1.4781	0.013773845
Pcdh9	-1.5185	-1.0034	0.010527822	-1.6062	-0.5905	0.296287419
Per3	-1.1065	-1.0322	0.006126983	-1.0778	-0.9963	0.122356309
Plk4	-1.7028	-1.1382	0.001620663	-1.2147	-0.7237	0.095229631
Pnpla8	-1.4793	-1.6031	4.5825E-07	-1.2334	-0.6288	0.399337697
Ptp4a2	-2.5962	-1.9637	2.00642E-08	-1.7110	-0.7945	0.088193569
Slc6a15	-1.9062	-0.8047	0.118569553	-1.6163	-0.939	0.054228047
Trip11	-2.0360	-2.4232	1.11941E-19	-0.9064	-0.6042	0.430452326
Tsc22d4	-0.6659	-1.4293	0.003467148	-0.6992	-0.7029	0.210669263
U2surp	-1.7222	-1.5208	0.010858743	-0.8268	-0.7722	0.201630246
Ubqln2	-1.6912	-1.8437	4.51443E-06	-1.8303	-1.0305	0.224128468
Zbtb18	-1.7766	-2.6925	2.51152E-05	-0.8190	-1.5209	0.088744519
Zbtb33	-1.7688	-2.1698	0.127266763	-1.1905	-0.7013	0.295117356
Zscan18	-1.0499	-1.8461	0.184237175	-1.0930	-0.9237	0.265535673

Table S2. The changes of 302 identified genes in translational efficiency (TE) and translatomics

Gene ID	Gene Name	log2(fold change)	<i>p</i> -Value	FDR
ENSG00000124193	SRSF6	3.6524	5.91173E-07	2.67921E-05
ENSG00000169045	HNRNPH1	1.778	0.00358855	0.02237658
ENSG00000101811	CSTF2	-1.9793	6.54632E-06	0.000177679
ENSG00000149187	CELF1	-1.3724	0.00115512	0.009786672
ENSG00000122566	HNRNPA2B1	1.7183	0.005777245	0.031383861
ENSG00000164548	TRA2A	2.1947	0.001974808	0.014443136
ENSG00000116560	SFPQ	1.6989	0.000634935	0.00630015
ENSG00000169813	HNRNPF	-1.1269	0.00484292	0.027572268
ENSG00000197451	HNRNPAB	1.4801	0.009944283	0.045683675
ENSG00000204356	NELFE	1.9775	0.001136895	0.009699979
ENSG00000112081	SRSF3	1.4695	0.016672996	0.066849432
ENSG00000115875	SRSF7	1.8623	8.98992E-06	0.00022663
ENSG00000161547	SRSF2	2.2377	0.000644853	0.006351681
ENSG00000125870	SNRPB2	1.0583	0.014738892	0.061224841
ENSG00000197111	PCBP2	2.3066	4.55005E-05	0.000832319
ENSG00000168066	SF1	1.7769	0.011373385	0.050634157
ENSG00000132485	ZRANB2	1.659	0.001966858	0.014411117
ENSG0000003756	RBM5	1.9601	0.034477515	0.112104035
ENSG00000143889	HNRNPLL	3.001	6.03152E-06	0.000168361
ENSG00000147140	NONO	2.3205	3.09342E-05	0.000608649
ENSG00000119707	RBM25	1.1795	0.032355659	0.106972581
ENSG00000121057	AKAP1	-1.5879	0.003519094	0.022109448
ENSG00000126945	HNRNPH2	-1.4392	0.005735288	0.031240086
ENSG00000148840	PPRC1	-1.4868	0.000844589	0.007724829
ENSG00000265241	RBM8A	0.8896	0.043666424	0.131931476
ENSG0000004534	RBM6	1.5983	0.006068849	0.032529836
ENSG00000102317	RBM3	1.0402	0.042782245	0.129892498
ENSG00000151962	RBM46	-1.2209	0.027059635	0.093847838
ENSG00000099783	HNRNPM	1.4389	0.003897213	0.023817284
ENSG00000070756	PABPC1	1.6154	0.012794785	0.05535505

Table S3. RNA-binding proteins that were differently expressed between aged and