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cardiomyopathy-associated genes: A cross-sectional
approach to estimating penetrance for secondary findings
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Chee Jian Pua,7 Birgit Funke,8 Daniel G. MacArthur,9,10 Sanjay K. Prasad,1,3 Stuart A. Cook,2,7

Mona Allouba,1,11 Yasmine Aguib,1,11 Magdi H. Yacoub,1,3,11 Declan P. O’Regan,2 Paul J.R. Barton,1,2,3

Hugh Watkins,4 Leonardo Bottolo,12,13,14 and James S. Ware1,2,3,*
Summary
Understanding the penetrance of pathogenic variants identified as secondary findings (SFs) is of paramount importance with the

growing availability of genetic testing. We estimated penetrance through large-scale analyses of individuals referred for diagnostic

sequencing for hypertrophic cardiomyopathy (HCM; 10,400 affected individuals, 1,332 variants) and dilated cardiomyopathy (DCM;

2,564 affected individuals, 663 variants), using a cross-sectional approach comparing allele frequencies against reference populations

(293,226 participants from UK Biobank and gnomAD). We generated updated prevalence estimates for HCM (1:543) and DCM

(1:220). In aggregate, the penetrance by late adulthood of rare, pathogenic variants (23% for HCM, 35% for DCM) and likely pathogenic

variants (7% for HCM, 10% for DCM) was substantial for dominant cardiomyopathy (CM). Penetrance was significantly higher for

variant subgroups annotated as loss of function or ultra-rare and for males compared to females for variants in HCM-associated genes.

We estimated variant-specific penetrance for 316 recurrent variantsmost likely to be identified as SFs (found in 51% of HCM- and 17% of

DCM-affected individuals). 49 variants were observed at least ten times (14% of affected individuals) in HCM-associated genes. Median

penetrance was 14.6% (514.4% SD). We explore estimates of penetrance by age, sex, and ancestry and simulate the impact of including

future cohorts. This dataset reports penetrance of individual variants at scale andwill inform themanagement of individuals undergoing

genetic screening for SFs. While most variants had low penetrance and the costs and harms of screening are unclear, some individuals

with highly penetrant variants may benefit from SFs.
Introduction

Cardiomyopathies (CMs) are diseases of the heart muscle,

characterized by abnormal cardiac structure and function

that is not due to coronary disease, hypertension, valve dis-

ease, or congenital heart disease. Many affected individuals

have a monogenic etiology with autosomal dominant in-

heritance. Penetrance is incomplete and age related, and

expressivity is highly variable. These features present

huge challenges for disease management. In particular,

the penetrance of variants in CM-associated genes is

incompletely characterized and poorly understood, espe-

cially when identified in an asymptomatic individual

without family history of CM. With the growing availabil-

ity of exome and genome sequencing in wider clinical set-

tings and consumer-initiated elective genomic testing,1
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the importance of estimating the penetrance of individual

variants identified as secondary findings (SFs) to guide

intervention is ever increasing.

SFs are genetic variants that are actively sought out (as

opposed to incidental findings) but that are unrelated to

the clinical indication for genetic testing and can there-

fore be considered as opportunistic genetic screening.

Genes associated with inherited CMs make up one-fifth

of the 78 genes recommended by the American College

of Medical Genetics and Genomics (ACMG SF v.3.1) for

reporting SFs during clinical sequencing.2 It is recommen-

ded to return variants that would be classified as patho-

genic or likely pathogenic in an affected individual with

>90% confidence that the variant is causing the observed

disease. This is independent of the probability that an

individual carrying the variant will develop disease
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(penetrance). The ACMG SF guidelines have not yet been

adopted globally; the European Society of Human Ge-

netics recommends a cautious approach but is responsive

to accumulating evidence.3,4

We are concerned that the costs, harms, and benefits

have not been fully characterized. We have previously dis-

cussed issues with the recommendations based on the lack

of estimates of the harms and cost of this approach for var-

iants in specific genes.5 These estimates are required to

conform to the ninth rule of Wilson and Jungner’s princi-

ples of screening.6 The burden of the implementation of

reporting SFs in specific healthcare systems remains unas-

sessed. There is little evidence for clinical utility and

limited justification for use of resources.4 Research is

beginning to become available on implementation frame-

works7 and the perspectives of and impact on individuals

with disease.8–12

Subclinical phenotypic expressivity of rare variants in

CM-associated genes has been demonstrated in the UK

Biobank (UKBB) population cohort.13–15 Causes of vari-

ability in penetrance may include (1) genetic and allelic

heterogeneity, as different alleles have different conse-

quences on protein function; (2) environmental modifiers

altering genetic influence (e.g., age, sex, hypertension, life-

style); and (3) additional genetic modifiers with additive or

epistatic interactions with the variant of interest (other

variants or combinations of genetic factors, e.g., polygenic

risk, variants in cis that drive allelic imbalance, imprinting,

epigenetic regulation, compensation, threshold model,

and transcript isoform expression).16–22

Variant-specific estimates of penetrance are required to

appropriately inform clinical practice and to fully utilize

genetics as a tool to individualize the risk of developing dis-

ease in asymptomatic heterozygotes.5,23 It is challenging

to estimate the penetrance of individual rare variants

through other study methods, as longitudinal population

studies require very large sample sizes and long-term

follow-up is required if penetrance is age related. Where

data are available for rare variants in CM-associated genes,

reported penetrance is mostly estimated from family-based

studies. These may be affected by ascertainment biases and

secondary genetic and environmental factors24 and thus

less applicable to SFs. Penetrance has been estimated in

aggregate by gene and by disease.13,25,26 Variant-specific

penetrance in the general adult population for rare vari-

ants in CM-associated genes is unknown.

Here, we apply a cross-sectional approach by using a

method26 that compares the allele frequency of individual

rare variants in large cohorts of phenotypic affected indi-

viduals with the background frequency of the same vari-

ants in the population (phenotype agnostic) to estimate

penetrance. As well as providing aggregate penetrance esti-

mates for groups of rare variants (e.g., those curated as

pathogenic), this approach can estimate the penetrance

of individual rare alleles. Importantly, these estimates repre-

sent variants in the general population rather than in fam-

ilies ascertained for disease.
The American Jour
Subjects and methods

Case cohort
Sequencing data for 10,400 individuals referred for hypertrophy

cardiomyopathy (HCM) gene panel sequencing and 2,564 individ-

uals referred for dilated cardiomyopathy (DCM) gene panel

sequencing was collected from seven international testing centers:

three UK-based centers—the NIHR Royal Brompton Biobank, Ox-

ford Molecular Genetics Laboratory, and Belfast Regional Genetics

Laboratory; two US-based centers—the Partners Laboratory of

Molecular Medicine and GeneDx; the National Heart Centre,

Singapore; and Aswan Heart Centre, Egypt. Although the diag-

nosis cannot directly be reconfirmed, given genetic testing guide-

lines (e.g., Wilde et al.,27 Ackerman et al.28), a clinical diagnosis of

CM is implicit. For information on DNA sequencing and data

obtained for analyses, see the supplemental information.

For each variant observed in one or more individuals referred for

CM sequencing, we calculated the allele count (AC) and allele

number (AN) and further stratified by reported age, sex, and

ancestry where the data allowed. All research participants pro-

vided written informed consent, and the studies were reviewed

and approved by the relevant research ethics committee (Aswan

Heart Centre: FWA00019142, research ethics committee code

20130405MYFAHC_CMR_20130330; NIHR Royal Brompton Bio-

bank: South Central – Hampshire B Research Ethics Committee,

09/H0504/104þ5, 19/SC/0257; National Heart Centre Singapore:

Singhealth Centralised Institutional Review Board 2020/2353

and Singhealth Biobank Research Scientific Advisory Executive

Committee SBRSA 2019/001v1; UK Biobank: National Research

Ethics Service 11/NW/0382, 21/NW/0157, under terms of access

approval number 47602).

In addition, diagnostic laboratories (Oxford Molecular Genetics

Laboratory, Belfast Regional Genetics Laboratory, the Partners Lab-

oratory of Molecular Medicine, and GeneDx) provided aggregated

(and therefore fully anonymous) cohort-level summaries of

variant data collected for clinical purposes during routine health-

care. Secondary use of this data did not require research consent

from individuals, and approval for public release of the data fol-

lowed local governance procedures. Data are publicly available

through DECIPHER (https://www.deciphergenomics.org/). Ana-

lyses of these data do not require research ethics committee

approval.
Population cohort
167,478 participants of the UK Biobank (UKBB) with whole-

exome-sequencing data available for analyses and 125,748 exome

sequenced participants of the Genome Aggregation Database

(gnomAD; version v.2.1.1) were included in this study.

Briefly, the UKBB recruited participants aged 40–69 years old

from across the UK between 2006 and 2010,29 of which the

200,571 exome tranche of individuals that had not withdrawn

were included in this study.30 The maximal subset of unrelated

participants was used, identified by those included in the UKBB

principal-component analysis (PCA) (S3.3.2,29 n ¼ 167,478). Age

at recruitment, genetic sex, and genetic (for European [EUR] and

British ancestry) or reported ancestry information (for other global

ancestries: AFR, African, Caribbean [n ¼ 2,903]; SAS, Indian,

Pakistani, Bangladeshi [n ¼ 3,136]; EAS, Chinese [n ¼ 605]) were

incorporated.

gnomAD contains sequencing information for unrelated

individuals sequenced as part of various disease-specific and
nal of Human Genetics 110, 1482–1495, September 7, 2023 1483
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population genetic studies.31 The version 2 short variant dataset

spans 125,748 exomes. We used Ensembl Variant Effect Predic-

tor32 (VEP, version 105) to incorporate the variant-specific sum-

mary counts. Variants flagged by gnomAD as AC0 were excluded

from gnomAD counts. For more information on the incorporation

of these datasets, please see the supplemental information.

Variant annotation
We used VEP (105) to annotate the case and population datasets,

with additional plugins: gnomAD31 (version r2.1), LOFTEE,31

SpliceAI33 (1.3.1), REVEL34 (1.3), and ClinVar35 (20220115). The

data were organized with PLINK36 (1.9) and the VEP output was

analyzed with R (4.1.2).

Protein-altering variants, defined with respect to MANE tran-

scripts, that were annotated as high or moderate impact by

Sequence Ontology and Ensembl were included in the analysis.

We restricted the analysis to genes with strong or definitive evi-

dence of causing CM following ClinGen guidance37,38 and expert

curation39 to include eight sarcomeric HCM-associated genes

(HCM [MIM: 192600]: MYH7 [MIM: 160760], MYBPC3 [MIM:

600958], MYL2 [MIM: 160781], MYL3 [MIM: 160790], ACTC1

[MIM: 102540], TNNI3 [MIM: 191044], TNNT2 [MIM: 191045],

TPM1 [MIM: 191010]) and 11 DCM-associated genes (DCM [e.g.,

MIM: 613426 and 604145]: BAG3 [MIM: 603883], DES [MIM:

125660], DSP [MIM: 125647], LMNA [MIM: 150330], MYH7

[MIM: 160760], PLN [MIM: 172405], RBM20 [MIM: 613171],

SCN5A [MIM: 600163], TNNC1 [MIM: 191040], TNNT2 [MIM:

191045], TTNPSI > 90% [MIM: 188840]), with the exception of

FLNC [MIM: 102565], which was not included on the panel

sequencing of the DCM case cohort (Table S4). Variants with con-

sequences consistent with the known disease-causing mechanism

were retained.

Further manual annotation was undertaken following ACMG

guidelines with ClinVar35 and Cardioclassifier,40 as previously

published.13 For analyses of variants in aggregate, the UKBB data

were filtered following the same thresholds and used to estimate

aggregate penetrance.

Statistical analysis
Estimation of penetrance and 95% confidence interval

Penetrance, the probability of a disease given a risk allele, is ex-

pressed as a probability function on a scale of 0–1 or as a percent-

age. Penetrance was estimated from case-population data in a

Binomial framework following Bayes’ theorem26

PðDjAÞ ¼ PðDÞPðAjDÞ
PðAÞ

penetrance ¼ population prevalence
case allele frequency

population allele frequency

where, D, disease; A, allele; P, probability; PðDjAÞ ¼ penetrance

(probability of disease given a risk allele), PðDÞ ¼ prevalence, the

population baseline risk of disease (probability of disease);

PðAjDÞ ¼ allele frequency in the case cohort (probability of the

allele given disease); and PðAÞ ¼ allele frequency in the population

cohort (probability of the allele).

We define penetrance in this setting as the probability of domi-

nant CM by late adulthood (UKBB had a mean age of 56 years old

at recruitment). We assume the independence of the random vari-

ables in the penetrance equation above to derive the 95% confi-

dence interval for penetrance as the product and ratio of binomial
1484 The American Journal of Human Genetics 110, 1482–1495, Sep
proportions. We used the specialized version of the central limit

theorem, the delta method, on the log-transformed random vari-

able logðDjAÞ ¼ logðDÞ þ logðAjDÞ � log ðAÞ with an improved

mean approximation and adjustment for degeneracy (as allele fre-

quency tends to 0 for rare variants). Please see additional methods

and alternative approaches considered (supplemental methods,

Table S3; Figures S4 and S5).

For estimates of penetrance by sex, we adjusted all terms of the

penetrance equation by values for sex-specific parameters. For es-

timates of penetrance by ancestry, we kept PðDÞ as estimated for

CM (there are few estimates of the prevalence of CM in specific an-

cestries) and proportioned PðAjDÞ and PðAÞ by reported ancestry.

For estimates of penetrance by age, we normalized PðDÞ by the

number diagnosed in the case cohort by a particular age in a cumu-

lative fashion, with PðAjDÞ by a particular age and PðAÞ fixed as to-

tal population allele frequency (supplemental methods).

Estimated cardiomyopathy prevalence
To incorporate PðDÞ in our penetrance analysis, we estimated

the uncertainty surrounding the reported prevalence of CM

(Tables S1 and S2; Figures S1–S3). For HCM, we meta-analyzed

four imaging-based prevalence estimates13,41–43 excluding studies

with potential selection biases. From the meta-analysis estimate

(pDhPðDÞ) and its confidence interval, we derived values of allele

count, xD, and allele number, nD (where p ¼ x
n). A literature review

was also completed for DCM, but there were not enough imaging-

based prevalence estimates in literature, so we used 39,003 partic-

ipants of the UKBB imaging cohort to estimate phenotypic

DCM44–46 (supplemental methods). Using the same methods

and included studies, we derived estimates for male- and female-

specific HCM and DCM prevalence.
Results

Case cohort summary information

Sequencing data for 10,400 individuals referred for HCM

genetic panel sequencing and 2,564 individuals referred

for DCM genetic panel sequencing were included in the

analysis. Aggregate frequency of rare protein-altering vari-

ants in well-established disease-associated genes was 41%

for HCM and 32% for DCM in the respective case cohorts

(Tables S6 and S7). Of the cohorts with age, sex, and

ancestry information available (20% of HCM-affected indi-

viduals, 42% of DCM-affected individuals), 35% and 32%

were female, 93% and 91% were of EUR ancestry, and

mean age was 48 and 49 years old, for HCM and DCM,

respectively (Table S5).

Estimates of the prevalence of CMs

To estimate the prevalence of CMs, we undertook a litera-

ture review and meta-analysis (Tables S1 and S2;

Figures S1–S3). Prevalence is underestimated when derived

from national cohorts using coding systems such as ICD

codes because of incomplete ascertainment through diag-

nostic and procedure coding.47 We would therefore expect

the most accurate estimates of the prevalence of CM to

come from imaging studies in populations, where echocar-

diogram or cardiac magnetic resonance imaging was used

to identify CM within a population sample that is
tember 7, 2023



Figure 1. Penetrance of rare variants in
aggregate by variant curation, rarity,
age, and sex
(A–H) In aggregate, variants curated as
pathogenic and variants that are particu-
larly rare (gnomAD allele count [AC] ¼ 0)
were most penetrant. The plot depicts
aggregate estimated penetrance and 95%
confidence intervals for rare variants in
HCM- (A, B, C, D) and DCM-associated
(E, F, G, H) genes. Variant curation was as-
sessed following ACMG guidelines
through ClinVar and CardioClassifier soft-
ware with additional manual curation of
variants with conflicting evidence (A and
E [for HCM affected individuals: 173 P var-
iants, 316 LP, 824 VUSs, 19 LB; for the UK
Biobank: 30 P, 97 LP, 1,536 VUSs, 54 LB, 2
B; for DCM affected individuals: 21 P, 245
LP, 356 VUSs, 37 LB, 4 B; for the UK Bio-
bank: 15 P, 505 LP, 3,933 VUSs, 108 LB, 7
B]). The variants were assessed for rarity
by gnomAD AC bins, where 0 is not identi-
fied in the gnomAD dataset (B and F). Age
was assessed in decades based on the cu-
mulative proportion of affected individuals
analyzed by each age timepoint (C and G).
Sex was estimated with all parameters strat-
ified by reported sex (D and H).
representative. The estimates are not generalizable if the

prevalence is estimated for selected subgroups of individ-

uals, such as young, elderly, or athletic cohorts. We there-

fore meta-analyzed four imaging-based prevalence esti-

mates, which resulted in an HCM population prevalence

estimate of 1 in 543 individuals (pD ¼ 0.18% [95%

CID ¼ 0.15%–0.23%]).13,41–43 The well reported estimate

of 1 in 500 individuals for HCM prevalence (0.20%) is

within this confidence interval.

A literature review revealed insufficient imaging-based

estimates to undertake a direct meta-analysis of the preva-

lence of DCM. Instead, we used 39,003 participants of the

UKBB imaging cohort to estimate phenotypic DCM.44–46

This derived a DCM population prevalence of 1 in 220 in-

dividuals (pD ¼ 0.45% [95% CID ¼ 0.39%–0.53%]), which

includes the well reported estimate of 1 in 250 (0.40%)48

within the confidence interval.

We also estimated sex-specific CM prevalence. This re-

sulted in an HCM population prevalence of �1 in 1,300 fe-

males (pD ¼ 0.08% [95% CID ¼ 0.04%–0.12%]) and �1 in

360 males (pD ¼ 0.28% [95% CID ¼ 0.22%–0.35%]) and a

DCM population prevalence of �1 in 340 females (pD ¼
0.30% [95% CID ¼ 0.23%–0.38%]) and �1 in 160 males

(pD ¼ 0.63% [95% CID ¼ 0.52%–0.75%]).

Estimated penetrance of rare variants in aggregate

In individuals with cardiomyopathy referred for diagnostic

sequencing, we identified 1,332 rare (inclusive population

allele frequency of <0.1%) variants in HCM-associated

genes (4,305 observations, case frequency 41%) and 663
The American Jour
rare variants in DCM-associated genes (831 observations,

case frequency 32%) (Tables S6–S9). The UKBB dataset

was filtered following the same pipeline. We used 1,719

rare variants in HCM-associated genes (9,152 observations,

5.5% population frequency) and 4,568 rare variants in

DCM-associated genes (22,177 observations; 13.2% popu-

lation frequency) to estimate penetrance of rare variant

subgroups in aggregate.

Variants with a pathogenic classification in ClinVar were

the most penetrant subgroup by ACMG classification45

(HCM 22.5% [17.5%–28.8%], DCM 35.0% [21.6%–

56.8%]; Figure 1, Table S15). An estimate of the aggregate

penetrance of both pathogenic and likely pathogenic

variants in HCM was 10.7% (8.7%–13.3%) with this

approach, concordant with a recent estimate derived via

direct assessment of cardiac imaging in UKBB (10.8%; indi-

viduals with variants and left ventricular hypertrophy

(LVH) R 13mm without hypertension or valve disease;

binomial 95% confidence interval of 3.0%–25.4%;

n ¼ 4/37).10 This concordance was also observed for other

variants in the same paper (e.g., VUSs), for which we esti-

mated penetrance as 0.55% (0.45%–0.68%) compared to

0.57% (0.07%–2.03%, n ¼ 2/353).10

The aggregate penetrance of pathogenic and likely path-

ogenic variants in DCM was 11.3% (9.3%–13.6%). Popula-

tion penetrance of rare variants in DCM-associated genes

in UKBB has been previously estimated as %30%49 for a

clinical or subclinical diagnosis in an analysis of 44

DCM-associated genes and in the range of 5%–6% for

truncating variants in TTN (TTNtvs, 1.9%–12.8%; 877
nal of Human Genetics 110, 1482–1495, September 7, 2023 1485



A B Figure 2. The aggregate estimates of
penetrance of loss-of-function variants
are high for specific genes
The plot depicts estimated penetrance and
95% confidence interval of HCM-associ-
ated (A) and DCM-associated (B) rare vari-
ants. Predicted loss-of-function (pLoF)
and non-pLoF variant groups are plotted
in green and blue, respectively. *, TTNtvs
that are PSI > 90%. Pathogenic TNNT2 in-
frame deletions caused an increased pene-
trance signal for inframe deletions for both
HCM and DCM (see Figure S12). PTC, pre-
mature termination codon; PAV, protein-
altering variant; NMDc/NMDi, nonsense
mediated decay competent/incompetent.
individuals with variants)5 depending on the definition

used. We report a concordant penetrance estimate from

our analysis of strong and definitive evidence DCM-associ-

ated genes only and 9.8% (8.0%–12.1%) for all TTNtvs (Fig-

ures 2 and S12).

Variants predicted to result in premature termination co-

dons (PTCs; nonsense-mediated decay competent or

incompetent50) in MYBPC3, BAG3, DSP, and LMNA were

the most penetrant. Inframe deletions in TNNT2 were

highly penetrant for both HCM and DCM. TTNtvs and

missense variants predicted to be damaging in TPM1 and

TNNC1 had moderate penetrance (Figures 2 and S12;

Tables S13, S14, S18, and S19).

Stratification by variant rarity showed that variants ab-

sent from gnomAD were the most penetrant subgroup

(HCM pathogenic 91.9% [57.3%–100.0%], HCM likely

pathogenic 22.1% [16.4%–29.8%], DCM pathogenic

100.0% [56.3%–100.0%], DCM likely pathogenic 13.7%

[11.2%–16.8%]; Figure 1, Table S16). Stratification of pene-

trance by sex identified increased penetrance for males

compared to females for rare variants in HCM-associated

genes (Figures 1 and S13; Table S20). We estimated pene-

trance as <20% up to 50 years of age by modeling the

penetrance of CM as an age-related cumulative frequency

by using the proportion of affected individuals referred at

each age decile (Figure 1; Table S17).

While there are limitations to the cohort size when split

by reported ancestry and we are unable to rule out local

ancestry mismatches between case and population data-

sets, there was no significant difference in the penetrance

of TTNtvs between African (5.7% [2.9%–10.9%]), Euro-

pean (6.9% [5.5–8.5%]), East Asian (6.1% [3.0%–12.4%]),

and South Asian (5.7% [2.1%–15.8%]) ancestries, as previ-

ously suggested.51

Estimated penetrance of individual rare variants

Of the variants identified and used to estimate penetrance

in aggregate, we report four subgroups of variants in our

case series (Figure 3):
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Group 1 consisted of 338 variants that were found in

more than one affected individual (case allele count

[AC] R 2) and were ultra-rare in population reference sets

(population AC [pop AC] % 1). Penetrance cannot be esti-

mated with precision for individual variants in this group,

since the population allele frequency (AF) cannot be esti-

mated with precision. When considered in aggregate, this

group has high penetrance (Figures S14). For HCM, 293 var-

iants in group 1 were identified 1,320 times (13% case fre-

quency, 31%observations). 29%were curated as pathogenic

(P, n ¼ 84, 41% of HCM group 1 observations), 34%

were likely pathogenic (LP, n ¼ 100, 36% observations),

and 37% were curated as uncertain significance (VUSs,

n ¼ 109, 23% observations). For DCM, 45 variants in group

1 were identified 132 times (5% case frequency, 16% obser-

vations). 18% of these were P (n¼ 8, 20% DCM group 1 ob-

servations), 49% LP (n ¼ 22, 55% observations), and 33%

VUSs (n ¼ 15, 25% observations).

Group 2 included 316 variants found multiple times in

both affected individuals and population reference data-

sets (case AC R 2, pop AC R 2). This group is expected

to include variants with intermediate penetrance,

including founder effect variants. For this group, we can

estimate AF in both populations and therefore can esti-

mate penetrance (Figure 4, Interactive Figure S15;

Tables S10 and S11). These account for more than half

of all variants identified in HCM-associated genes and

include those most likely to be identified as SFs, as they

are identified multiple times in the population. For

HCM, 257 variants were identified a total of 2,203 times

(21% case frequency, 51% observations). 11% were P

(n ¼ 29, 37% HCM group 2 observations), 25% LP (n ¼
64, 31% observations), 59% VUSs (n ¼ 151, 29% observa-

tions), and 5% likely benign (LB, n ¼ 13, 3% observa-

tions). 49 of these variants were recurrent at least ten

times and described a large portion of observations (case

AC R 10; found 1,424 times, 33.0% of case cohort obser-

vations, case frequency of 13.7%). The median penetrance

of these was 14.6% (514.4% SD). For DCM, 59 variants
tember 7, 2023



A

B

Figure 3. Penetrance of individual vari-
ants could be estimated for 316 recurrently
observed rare variants from group 2
(A) The figure shows variant counts and sub-
groups for rare variants in HCM-associated
(left) and DCM-associated (right) genes. (B)
The pie charts plot the proportion of all
variant observations in each subgroup
(also denoted as ‘‘Gþ’’). The observations
approximate to the number of individuals
with variants, although a small number of
individuals may carry more than one
variant. All, denotes frequency of the
variant in affected individuals; obs, denotes
observations of allele count. Group 1: vari-
ants observed recurrently in affected indi-
viduals and absent or singleton in the popu-
lation; penetrance estimates are unreliable
as the population frequency is uncertain.
This group is expected to include most
definitively pathogenic, high-penetrance
variants. Group 2*: variants observed recur-
rently in affected individuals and the
wider population; these are the variants
most likely to be observed as secondary
findings. *Penetrance can be estimated.
Group 3: variants observed once in affected
individuals and recurrently in the popula-
tion; penetrance estimates are unreliable,
as the case frequency is uncertain. Variants

in this group are likely either not pathogenic or have low penetrance. Group 4: variants are singleton in affected individuals and absent
or singleton in the population; current data is too sparse to estimate penetrance.
were identified 140 times (5% case frequency, 17% obser-

vations). None were curated as P, 24% were LP (n ¼ 14,

22% DCM group 2 observations), 56% VUSs (n ¼ 33,

53% observations), 17% LB (n ¼ 10, 21% observations),

and 3% B (n ¼ 2, 4% observations). With the current

DCM case cohort size, no variant was identified ten or

more times.

The final two groups consisted of 1,350 variants with

only a single observation in our case series. This does not

provide a reliable estimate of case frequency, so penetrance

estimates would lack precision. Group 3 variants were

those identified multiple times in the population (pop

AC R 2) and consisted mostly of VUSs: for HCM, 201

variants were identified (2% case frequency, 5% of case ob-

servations). This included 0.5% P (n ¼ 1; MYBPC3

c.3297dup [p.Tyr1100Valfs*49] [GenBank: NM_000256.

3]), 5% LP (n ¼ 10), 92% VUSs (n ¼ 184), and 3% LB

(n ¼ 6). For DCM, 231 variants were identified (9% case

frequency, 28% observations). 1% were P (n ¼ 3), 7% LP

(n ¼ 17), 79% VUSs (n ¼ 182), 12% LB (n ¼ 27), and 1%

B (n ¼ 2).

Group 4 variants are those observed once in affected

individuals and rarely in the population reference dataset

(pop AC % 1). A substantial portion of these were

P/LP: for HCM, 583 variants were identified (5% case fre-

quency, 13% observations). 10% were P (n ¼ 59), 24% LP

(n¼ 142), and 66% VUSs (n¼ 380). For DCM, 328 variants

were identified (13% case frequency, 39% observations).

3% were P (n ¼ 10), 59% LP (n ¼ 192), and 38% VUSs

(n ¼ 126).
The American Jour
The impact of age, sex, and ancestry on variant-specific

penetrance estimates

For group 2, where age-related penetrance could be derived,

we estimated the penetrance of specific variants by decade

of age (e.g., Figure 5). For some variants (e.g., MYBPC3

c.1624G>C [p.Glu542Gln] [GenBank: NM_000256.3]),

the age-related penetrance curve shows infrequent onset

before middle age. These curves may inform surveillance

strategies in individuals with variants unaffected at first

assessment.

We identified rare variants in HCM-associated genes

where estimated penetrance for males was significantly

increased compared to females (Figure S13). Identifica-

tion of such variants allows for future investigations

of modifiers protecting females with variants from

disease.

For estimates of penetrance by ancestry, variants that

were nominally more common in AFR, EAS, or SAS ances-

tries compared to EUR ancestry were identified (Table S12).

We interpret these as more consistent with an inaccurate

penetrance estimation arising from ancestries where the

variant is sparsely observed rather than true differences

in penetrance on different ancestral background. For

example, MYBPC3 c.1544A>G (p.Asn515Ser) (GenBank:

NM_000256.3) was identified 5/492 times in AFR affected

individuals (AF ¼ 0.005) and 33/10,655 times in AFR pop-

ulation participants (AF ¼ 0.0016; penetrance of 0.6%

[0.2%–1.5%]) compared to 1/9,692 times in EUR affected

individuals (AF ¼ 0.00005) and not observed in 211,532

EUR population participants. Even when ancestry is
nal of Human Genetics 110, 1482–1495, September 7, 2023 1487



Figure 4. Variant-specific estimates of
penetrance for the 316 recurrently
observed rare variants in CM-associated
genes from group 2
An interactive widget is available for
browsing the individual variants in this
figure (see Figure S15). The variants depicted
(HCM n ¼ 257, A; DCM n ¼ 59, B) were
identifiedmultiple times in affected individ-
uals and population reference datasets and
penetrance could therefore be estimated.
Presented is the estimated penetrance and
95% confidence interval. The x axis denotes
the number of times the variant was
observed in each case cohort. AC, allele
count; B/LB, benign/likely benign; VUS,
variant of uncertain significance; LP, likely
pathogenic; P, pathogenic.
nominally matched, broad continental groupings hide

great diversity and results may be misleading due to strat-

ification between case datasets (mostly North AFR from

Egypt) and population reference datasets (e.g., UKBB par-

ticipants from the Caribbean) (Box 1).

Clinical impact of specific variants now shown to have

low penetrance

We can define the upper bound of the penetrance estimate

for somevariants. 162 rare variants inHCM-associated genes

(63% of variants, observed 745 times [7% case frequency;

17% of observations]) have a penetrance of %10%, accord-

ing to the upper limit [UCI] of the 95% CI for our

estimate. These included two variants previously curated as

definitively pathogenic and 25 variants curated as likely

pathogenic.

One of the pathogenic variants is splice acceptor

MYBPC3 c.26�2A>G (GenBank: NM_000256.3), which

has an estimated penetrance of 1.0% (0.4%–2.8%) or

0.9% (0.3%–2.5%) in EUR ancestry, as it was identified

four times in EUR affected individuals and 20 times in

population participants (90% were EUR). The potential

for this variant to have incomplete penetrance has been

noted previously through identified asymptomatic indi-

viduals with variants (see ClinVar ID 42644). There is in

silico evidence of an alternate splice site downstream

that could result in an in-frame deletion of two amino

acids.

The second pathogenic variant identified with a UCI of%

10% is the missense variant MYH7 c.3158G>A

(p.Arg1053Gln) (GenBank: NM_000257.4), which is a
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Finnish founder mutation. This variant

had an estimate penetrance of 2.2%

(0.9%–5.2%), as it was identified seven

times in EUR affected individuals and

17 times in the population cohort (16

Finnish from gnomAD, one NWE from

UKBB). Estimates of penetrance are sen-

sitive to allele frequency differences

across ancestries. Analysis of founder
mutations in thepopulation theyderive fromwouldprovide

additional confidence in their penetrance estimates.

For DCM, 17 rare variants (29% of variants) observed 45

times (2% case frequency; 5% of observations) met this cri-

terion. None of the 17 variants were curated as P/LP.

Penetrance estimate simulations of increased cohort

sizes

We anticipate two benefits to estimating the penetrance of

rare variants from increasing cohort sizes: (1) there will be

more variants that are observed recurrently in affected in-

dividuals and populations, permitting AF estimates and

hence penetrance estimates, and (2) the precision of our

penetrance estimates will increase as AF of rare variants is

ascertained with greater precision.

We sought to understand whether it would be more

valuable to focus resources on aggregating data from larger

numbers of affected individuals (�100,000 plausible

affected individuals with global collaboration efforts),

and/or from larger numbers of population participants

with near-term publicly available population datasets

(�5,000,000 participants).

Efforts to increase reference population sample size will

provide additional confidence in penetrance estimates

once case aggregation to 10,000 affected individuals is

reached (Figure S6). There is substantial confidence to be

gained by increasing the population cohort size: we found

that increasing the population dataset from 300,000 par-

ticipants to 4.5 million participants could provide �20%

certainty, depending on the penetrance of the variant

(Figures S7–S11). The increase in confidence gained from
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Figure 5. Variant-specific estimates of penetrance by age can now be derived
The plot depicts the age-related cumulative penetrance of five HCM-associated rare variants across age deciles from variant group 2. Pre-
sented is the estimated penetrance and 95% confidence interval. The x axis starts in the decade of the 20s as the analysis of these variants
was underpowered for teens and younger. ‘‘20s’’ here means ‘‘by 30 years old.’’
increasing the case cohort sample size from 10,000 affected

individuals to 100,000 affected individuals was limited

(with the caveat that more variants will be identified).
Discussion

We show that some subgroups of rare variants in the pop-

ulation are penetrant and for these it may be reasonable

to return as SFs. These include ultra-rare variants, predicted

PTCs in certain genes where loss of function is a

known disease mechanism, and variants with enough evi-

dence to have been classified previously as definitively

pathogenic.

There is still uncertainty regarding the penetrance of in-

dividual ultra-rare variants, and the implications of return-

ing SFs in healthcare systems have yet to be estimated.

While we have previously attempted to assess the burden

of long-term surveillance for DCM,5 cost-effect analyses

are vital to fully understand the risks and benefits of report-

ing SFs in different healthcare systems. For variant types

with low penetrance, it is very uncertain that the benefit

of returning SFs will outweigh harms and justify costs.

Here, we provide at-scale estimates of variant-specific

penetrance for variants in CM-associated genes that

include those likely to be most frequently identified as
The American Jour
SFs. Most have low estimated penetrance, where an asymp-

tomatic individual without family history of disease may

choose no or less-frequent surveillance depending on the

healthcare system and follow-up cost.

Population penetrance estimates derived from unse-

lected individuals (with certain caveats54) that are agnostic

to personal or family history of disease should provide a

better estimate of the probability of manifesting disease

when a variant is identified as an SF. Importantly, the pene-

trance of variants found in individuals with CM and rela-

tives in a clinical setting is increased compared to the pene-

trance of variants estimated for those identified through

SFs (e.g., MYBPC3 c.1504C>T [p.Arg502Trp] [GenBank:

NM_000256.3] with estimated penetrance of 50% in indi-

viduals with HCM and 6% here in the population).

While published data are sparse and heterogeneous,

overall estimates of penetrance by adulthood in the gen-

eral population are lower than family-based studies. We

used unpublished data to assess the penetrance of asymp-

tomatic individuals with variants referred to hospital for

predictive testing after identification of a genotype- and

CM-positive relative. For HCM, 17 of 65 individuals with

variants (26.2%) were diagnosed with HCM (ten on first

clinical evaluation, seven during 2 years of follow up).

For DCM, two of 22 individuals with variants (9.1%)

were diagnosed with DCM (two on first clinical evaluation,
nal of Human Genetics 110, 1482–1495, September 7, 2023 1489



Box 1. Case study: The MYBPC3 c.1504C>T (p.Arg502Trp) Northwestern European variant

The variant MYBPC3 c.1504C>T (p.Arg502Trp) (GenBank: NM_000256.3) was found in our cohort 159 times in in-

dividuals referred for HCM genetic panel sequencing (3.7% of total observations; 1.5% total case frequency). To date,

the variant has been classified on ClinVar 15 times as pathogenic (ClinVar ID 42540). Penetrance has been previously

estimated as �50% (increased relative risk of 340) by 45 years old in a clinical setting, and major adverse clinical

events in heterozygotes are significantly more likely when another sarcomeric variant is present.52

In our case cohort, heterozygotes of this variant were reported as broadly European ancestry (Oxford, n ¼ 59; Lon-

don, n ¼ 11; Belfast, n ¼ 30; LMM, n ¼ 45; GDX, n ¼ 14). In gnomAD, the variant was identified ten times, of which

seven heterozygotes were non-Finnish Northwestern Europeans (NWE; plus one African; one South Asian, and one

other), and in the UK Biobank, the variant was found 77 times, of which 68 heterozygotes were NWE (plus eight other

Europeans and one other). The population frequency of the variant in Ensembl population genetics showed that the

variant (rs375882485) is only found multiple times in NWE ancestry sub-cohorts. Thus, the variant is most common

in NWE populations: the UK, Ireland, Belgium, the Netherlands, Luxembourg, Northern France, Germany, Denmark,

Norway, Sweden, and Iceland.

We use this relatively common variant to highlight the effect of ancestry on estimated variant penetrance (see

related figure in this text box):

we estimated the penetrance as 6.4% (4.6%–9.0%) with the UK Biobank cohort (93% European) and this is inflated

to 35.1% (18.2%–67.5%) when we estimated the penetrance with the gnomAD dataset (45% European) as a result of

the difference in the proportion of individuals with NWE ancestry. In individuals of NWE ancestry only, the pene-

trance of this variant is 6.4% (4.6%–9.0%). Penetrance estimated from the NWE subset of gnomAD or UKBB do

not differ significantly.

As access to larger genomic datasets becomes available, including more diverse ancestries, we can increase the pre-

cision of these variant-specific penetrance estimates by gaining further confidence in maximum population allele fre-

quencies.53

A

B

Penetrance estimates are inflated with underestimated population frequency
(A) The map of the world emphasizes the large proportion of observations of MYBPC3 c.1504C>T (p.Arg502Trp) in HCM-affected
individuals of Northwestern European (NWE) ancestry. The numbers on the map are the counts of rare-variant-genotype-positive
observations (n z cohort participants) from each cohort with the specified ancestry, and the percentages derive the proportion
of observations that are due to the MYBPC3 c.1504C>T (p.Arg502Trp) variant. (B) The graph shows the estimated penetrance
and 95% confidence interval for the variant on the basis of subgroups of reference dataset participants included. The penetrance
is inflated when estimated with gnomAD because the variant is most common in participants with NWE ancestry (which dominates
the UKBB dataset). Population frequency of gnomAD, UK Biobank, and Ensembl population genetics showed that this variant
(rs375882485) is only foundmultiple times in NWE ancestry sub-cohorts. Themap excludes Antarctica for figure clarity. A limitation
is the low sample sizes for AFR, SAS, and EAS ancestries.26
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0 during 2 years of follow up [excluding five with hypoki-

netic non-dilated cardiomyopathy and four with isolated

left ventricular dilatation]). Additionally, a study of indi-

viduals with variants identified during family screening

who did not fulfill diagnostic criteria for HCM at first eval-

uation identified HCM or an abnormal ECG in 127 of 285

individuals with variants (44.6%; 82 at baseline, 45 over a

median of 8 years follow-up).25 First degree relatives in the

same household may be at increased risk of disease due to

shared environment and other genetic factors.

The ACMG guidelines for reporting ‘‘medically action-

able’’ variants in 78 genes come with the caution that eval-

uating SFs requires an increased amount of supportive ev-

idence of pathogenicity given the low prior likelihood that

variants unrelated to the indication are pathogenic.55

Here, we show that variants with a definitive pathogenic

assertion in ClinVar had the highest penetrance estimates.

This may be because penetrant variants are more likely to

yield sufficient evidence for confident interpretations,

especially family segregation data.

Genetic laboratories communicate their confidence on

whether a variant has a role in disease (i.e., pathogenicity)

but do not consistently indicate the penetrance. Pathoge-

nicity addresses whether a variant explains the etiology

of an individual with disease. In comparison, penetrance

addresses the probability of future disease in individuals

with variants. The ClinGen consortium Low-Penetrance/

Risk Allele Working Group recommends providing pene-

trance estimates on clinical reports (aggregate gene-level

or individual variants) and noting when penetrance is

assumed or where current information is limited/

unavailable.

Individually rare TTNtvs are collectively common in the

general population (�1 in 250 for variants in exons consti-

tutively expressed in the adult heart; likely due to the size

of TTN and only moderate constraint [loss-of-function

observed/expected upper bound fraction (LOEUF) of 0.35

in gnomAD]), and we show that the penetrance in

aggregate of TTNtvs is reduced compared to predicted

loss-of-function variants in other CM-associated, haploin-

sufficient genes. While recent work has increased our un-

derstanding of the functional mechanisms of TTNtvs in

disease,56,57 future work is required to identify modifiers

of TTNtvs to understand this reduced penetrance in the

population.

The penetrance of a variant may depend on characteris-

tics of the variant itself and modulating effects of genetic

background and environment. This study characterizes in-

dividual variants, while ongoing work is dissecting the role

of secondary genetic influences. Polygenic scores may

identify individuals at particular risk of disease, modifying

the estimated penetrance of a single dominant variant.

We present two dimensions to estimates of penetrance:

the penetrance in the general population and variant-spe-

cific penetrance. As described, the results of this method

are concordant with previous population estimates of

aggregate penetrance in the UKBB population derived
The American Jour
with independent approaches, providing confidence in

the methods. In addition, we provide updated estimates

for the population prevalence of HCM and DCM and strat-

ify by sex. The addition of future, publicly available, large-

scale, global population datasets and biobanks will aid this

area of research by allowing for increased confidence in

ancestry-specific population allele frequencies and CM

prevalence. We provide the summary counts for each

variant via an online browser and the function to estimate

penetrance in R for transferability and use in other diseases

and datasets.

Limitations

This study has not been undertaken without careful

consideration of the limitations. This method cannot

quantify the penetrance of pathogenic variants that are ab-

sent/singleton in the population, while in aggregate the

penetrance of this group of variants is significant.

Comparisons of case and control allele frequency are

vulnerable to confounding by population stratification,

and we have explored some examples in this manuscript.

We do not have genome-wide variation data to directly

assess genetic ancestry for the case cohort, so this is based

on data reported by the referring clinician. As the EUR par-

ticipants dominate our case and population datasets,

greater representation of diverse ancestral backgrounds is

essential for equitable access to genomic medicine. Esti-

mates of the penetrance of variants and the prevalence of

cardiomyopathies in more ancestral groups are required.

The current data for both comes from UKBB, which has

limitations.54

In the absence of genome-wide data, we cannot exclude

the possibility of unrecognized or cryptic relatedness

within the case cohort. As described by Minikel et al.,26

when a variant is highly penetrant, cryptically related indi-

viduals are likely included in case series and, if a disease is

fatal, population cohorts are likely depleted of causal

variants.

Case allele frequency in unrelated affected individuals

may not be a fair estimate of the case allele frequency in

all cases observed in the clinic. Our estimate of case allele

frequency, and therefore of penetrance, is influenced by

genetic testing referral practice. If clinicians are cautious

and only refer selected high confidence affected individ-

uals for testing, case allele frequency and estimated pene-

trance will be high, whereas if clinicians were to test widely

and indiscriminately, then our apparent case allele fre-

quency would be lower, resulting in lower penetrance

estimates.18

Current diagnostic data assume that the testing center

obtained complete coverage of the gene. Limited data

were available on age and sex for large portions of the

case cohorts. Our DCM-referred cohort was only moderate

in size, and thus increases in sample size here through

global collaboration would aid our estimates of penetrance

for variants in DCM-associated genes. We have estimated

penetrance for rare variants that are reported by diagnostic
nal of Human Genetics 110, 1482–1495, September 7, 2023 1491



laboratories and have not estimated penetrance for more

common variants of smaller effect that may contribute to

risk in combination.

Finally, the UKBB volunteer population cohort is health-

ier than the average individual,54 and the gnomAD con-

sortium includes some individuals with severe disease

but likely at a frequency equivalent to or lower than the

general population.31 The proposed penetrance model is

an approximation since in reality the three parameters

used on the right-hand side of the penetrance equation

share some degree of dependence.

Conclusion

We present an evaluation of the penetrance of individual

rare variants in CM-associated genes at scale. These recur-

rent variants are those that are likely to generate SFs. Vari-

ants previously annotated as pathogenic, loss-of-function

variants in specific genes susceptible to haploinsufficiency,

and those that are the rarest in the population, have high

penetrance, similar to observations from family studies.

This initial attempt at estimating the penetrance of rare

variants has highlighted the requirement for large case

and population datasets with known genetic ancestry.

We are now able to start putting bounds on the estimate

of penetrance for a specific variant identified as a second-

ary finding: for some, including those expected to be

most penetrant, we do not currently have enough data;

for others, we can provide asymptomatic individuals

with variants with an estimated probability of manifesting

disease.
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1 Supplementary notes 
 

1.1 Aggregate penetrance by sex and age 
Estimates of the penetrance of rare variants in CM-associated genes by sex and age 
were undertaken in a subgroup of the HCM and DCM case cohorts where data on 
reported sex or age was available. Thus, it is not directly comparable to the aggregate 
penetrance analyses of all samples, although not statistically different. For example, the 
aggregate penetrance of rare variants in HCM- and DCM-associated genes when 
calculated in the subgroup of cases with reported sex information available, and using the 
UK Biobank as reference population, was 27.3% (20.9%-35.5%) for HCM pathogenic 
variants and 21.6% (10.7%-43.9%) for DCM pathogenic variants. The same for the 
subgroup of cases with age information available, was 28.3% (21.7%-36.8%) for HCM 
pathogenic variants and 21.6% (10.4%-45.1%) for DCM pathogenic variants. 
 

1.2 Aggregate penetrance of variant consequences 
The penetrance estimates for specific variant consequences had many notable findings: 
i) NMDc PTCs (nonsense-mediated decay competent premature termination codons or 
predicted loss of function or truncating variants) and variants expected to lead to splicing 
in MYBPC3, BAG3, DSP, and LMNA, were most penetrant, ii) pathogenic TNNT2 inframe 
deletions, found in abundance in CM cases but absent from reference cohorts, drove an 
increased penetrance signal for both HCM and DCM, and iii) TTNtvs had an estimated 
penetrance of <20%. The specific inframe deletions in TNNT2 that caused the “other 
protein altering variant” subgroup of TNNT2 variants to have high penetrance for disease 
were: the variant TNNT2:c.659_661del, identified in 28 DCM cases (1% total cases; 3% 
G+ cases; 89% have EUR ancestry) and the variant TNNT2:c.517_519del, identified in 
15 HCM cases (0.1% total cases; 0.4% G+ cases; 100% EUR ancestry). REVEL software 
(threshold of 0.75) predicted significantly different penetrance between missense variants 
in MYH7, MYL3, TNNI3, TPM1, DSP, LMNA, MYH7, and RBM20. 
 

1.3 Simulations 
The simulations showed that penetrance estimates for highly penetrant variants (e.g., 
>50% penetrance) have large confidence intervals. However, if a variant has at least 10% 
population penetrance (via the lower bound of the confidence interval), it is unlikely that 
the carrier will be released from future clinical follow up. For variants with a more modest 
estimated penetrance (e.g., <50%), we show that we are now able to estimate penetrance 
more confidently for variants likely to be identified as secondary findings. 
 
The rate of change of the “error” to the limit confirmed that the gain in confidence from 
increasing case samples is negligible (the plot plateaus) but increases in future population 
participants would provide a substantial gain in confidence surrounding the penetrance 
estimates. 
 
We assessed the size of the confidence interval when varying population allele frequency 
and case allele frequency. As described by the penetrance equation through the ratio of 
𝑃(𝐴|𝐷)/𝑃(𝐴) and observed in the simulations, the rarer the variant is in the population 
(e.g., observed twice in 300,000 participants) and the more common the variant is in the 



  

case cohort, the larger the confidence interval. The penetrance equation promotes the 
increase of the confidence interval in such cases when the penetrance is high due to the 
unbalanced allele frequency between the smaller case cohort and very large population 
cohort. In addition, through assessment of simulations within the allele frequency ranges 
of the variants observed in this study, variants with a very high penetrance and can have 
an estimated penetrance of >100%. While theoretically this could be the case, we did not 
observe any real variants in our dataset that had a combination of case and population 
allele frequencies that resulted in an estimated penetrance of >100% (maximum 
penetrance was 66.8% for HCM, 78.6% for DCM). Such variants are unlikely to be 
observed several times in the population reference cohort. 
  



  

2 Supplementary figures 
 

 

Figure S1 Meta-analysis of population prevalence estimated for DCM in literature. 

(Left panel) Forest plot depicting the prevalence and associated binomial confidence 
interval for each literature reference. (Right panel, zoom) The same forest plot with the x-
axis shortened to between 0 and 0.008. Coding system, prevalence estimates that were 
derived using large population datasets with International Classification of Diseases (ICD) 
or other coding systems and have decreased prevalence estimates; Imaging, prevalence 



  

estimates that were derived using imaging data such as cardiac MRI or echocardiography 
and provide estimates that better reflect the true DCM prevalence; Selection bias, patients 
referred for imaging measures based on previous symptoms and have increased 
prevalence, or, participants are active, selected for being young or athletic and have 
decreased prevalence, or, participants are elderly and the prevalence estimate is 
substantially increased. 



  

 

Figure S2 Meta-analysis of population prevalence estimated for HCM in literature. 

(Left panel) Forest plot depicting the prevalence and associated binomial confidence 
interval for each literature reference. (Right panel, zoom) The same forest plot with the x-
axis shortened to between 0 and 0.005. Coding system, prevalence estimates that were 
derived using large population datasets with International Classification of Diseases (ICD) 
or other coding systems and have decreased prevalence estimates; Imaging, prevalence 
estimates that were derived using imaging data such as cardiac MRI or echocardiography 
and provide estimates that better reflect the true HCM prevalence; Selection bias, patients 



  

referred for imaging measures based on previous symptoms and have increased 
prevalence, or, participants are active, selected for being young or athletic and have 
decreased prevalence, or, participants are elderly and the prevalence estimate is 
substantially increased. References12,13,28–37,14,78,79,15,20,23–27. 
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Figure S3 Meta-analysis for binomial proportions of four population prevalence estimates 
of hypertrophic cardiomyopathy. 

Four studies were included that had assessed for the prevalence of HCM using imaging 
for population screening. The heterogeneity indexes are not significant (P>0.05).  
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Figure S4 Assessment of nine methods to estimate the 95% confidence interval of 
penetrance. 

The method of choice is DM on 𝑝(𝐷) × 𝑝(𝐴|𝐷)/ 𝑝(𝐴) mean approx. d. SCAS, skewness-

corrected asymptotic score; DM, Delta method; mean approx., improved mean 
approximation; cc, continuity correction; d, adjustment for degeneracy; 𝑝(𝐷), probability 
of disease; 𝑝(𝐴|𝐷), probability of disease given the allele; 𝑝(𝐴), probability of the allele in 
the population.  
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A)                                                                      B) 

 
Figure S5 A fully Bayesian approach is not suitable for estimating penetrance. 

A) Based on real data parameter specifications, the Beta distribution of the prevalence 𝐷 

and the posterior Beta distribution of the penetrance 𝐷|𝐴 have marginal overlap. B) The 
divergence between the known distribution of 𝐴 (Beta-Binomial) once 𝐷 and 𝐴|𝐷 are 
specified (beta and Binomial densities, respectively) and the Binomial distribution of 𝐴 
(independent from 𝐷 and 𝐴|𝐷) are very different. 

  



  

 

Figure S6 With 10,000 cases, increasing population participants aids penetrance 
estimates. 

Efforts to increase reference population sample size will provide additional confidence 
(i.e., narrower confidence intervals) than further case aggregation after 10,000 cases is 
reached (with the caveat that more variants will be identified). The graph denotes the 
results of a simulation of a variant with 10% estimated penetrance and 55% estimated 
penetrance. The x-axis varies population reference cohort size, and the legend varies 
case cohort size. Black line, 100% penetrance; pink line, penetrance estimate. 
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Figure S7 Negligible gains in confidence will be provided by increasing case sample 
size, while substantial gains will be observed by incorporation of future large-scale 
population datasets. 

Example variants had a penetrance of ~10%, ~20%, ~55%, and ~75% (popAF=0.000013, 

caseAF=0.0008, 0.0016, 0.004, 0.0056, respectively). The penetrance estimate is shown 

as a black line, the UCI are coloured above the penetrance estimate and the LCI coloured 

below. The grey horizontal line denotes depicts a penetrance of 1.0 or 100% for 

assessment of the UCI. The grey vertical line denotes the sample size used in this study. 

The sizes of population reference cohorts are depicted as coloured points. The x-axis 

describes case cohort samples, and the legend describes the number of gnomAD and 

UKB participants.  
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Figure S8 Simulation of the gain in confidence of the penetrance estimate with 
increasing sample size. 

Example variants had a penetrance of ~10%, ~20%, ~55%, and ~75% (popAF=0.000013, 

caseAF=0.0008, 0.0016, 0.004, 0.0056, respectively). Estimates of the percentage 

decrease in uncertainty (or gain in certainty/error) with increasing sample size are shown 

on the left. Estimates of the rate of convergence of the error are shown on the right. The 
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grey vertical line denotes the sample size used in this study. The size of population or 

case cohort are depicted as coloured points and indicated by the legend. The x-axis 

describes cohort size. 
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Figure S9 As the probability of the allele increases, precision increases, and the 
estimate of penetrance decreases. 

Example variants had a population AC/AN (depicted as title of each plot) where 
popAF=0.000003-0.0009. Y-axis, estimates of penetrance; x-axis, caseAF=0.0001–
0.008. The grey horizontal dashed line denotes a penetrance of 1.0 or 100%. The size of 
cases cohort is depicted as coloured points and indicated by the legend. Probability of 
the allele (𝒑𝑨). 
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Figure S10 As the probability of the allele given disease increases, penetrance increases, 
and the precision of the estimate of penetrance has less confidence. 

Example variants had a case AC/AN (depicted as title of each plot) where 
caseAF=0.0001–0.008. Y-axis, estimates of penetrance; x-axis, minor allele frequency in 
case cohorts ranging from 0.000003–0.0009. The grey horizontal dashed line denotes a 
penetrance of 1.0 or 100%. The size of population cohort is depicted as coloured points 
and indicated by the legend. Probability of the allele given disease (𝒑𝑨|𝑫). 
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Figure S11 Simulations of the expected penetrance estimates in the range of the 
probability of the allele and the probability of the allele given disease, observed in this 
study. 

The maximum 𝒑𝑨|𝑫 observed was 0.008, the median was 0.0003, and the minimum was 

0.0001 for the variants included in this study. Y-axis, estimates of penetrance; X-axis, four 
𝒑𝑨 tested. The coloured points represented population reference sample size. The UCI is 

above the estimate of penetrance (black points) and the LCI below. The grey horizontal 
lines depict an estimated penetrance of 1.0 or 100%. While theoretically shown here, 
variants with a very high penetrance can have an estimated penetrance of >100, we did 
not observe any real variants in our dataset that had a combination of case and population 
allele frequencies that resulted in an estimated penetrance of > 100% (maximum 
penetrance was 66.8% for HCM, 78.6% for DCM).  
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Figure S12 Aggregated penetrance of loss of function variants is highest. 

The plot depicts estimated penetrance of rare variants in HCM-associated (left) and DCM-
associated (right) genes. LoF and non-LoF variant groups are plotted in green and blue, 
respectively. LoF, predicted loss of function variants; *, TTNtv that are PSI>90%. This plot 
provides additional stratification for missense variants predicted as deleterious (using 
REVEL). 
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Figure S13 Variants with significantly decreased penetrance in females compared to 
males from Group 2. 

The plot depicts the sex-specific estimates of penetrance of seven rare variants in HCM-
associated genes with decreased penetrance in females. The variants are more common 
in females in our data. The variants on the right side of the plot were variants observed in 
male cases but not in males of the population reference datasets. Overlapping confidence 
intervals was observed for the sex-specific penetrance estimates of all other variants. 
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Figure S14 Aggregate penetrance of variants in CM-associated genes grouped by rarity 
and consequence. 

This figure was used to inform the flow chart of the graphical abstract. The figure depicts 
ClinVar curation for four subgroups of variants based on rarity (ultra-rare, gnomAD AC = 
0; rare, gnomAD AC > 0) and whether the variants are predicted to be loss of function 
(LoF, frameshift, stop gained, essential splice; non-LoF, missense, indels, start and stop 
lost). There was only one observation of one rare pathogenic LoF variant for DCM 
(PLN:c.116T>G:p.L39*; DCM AC = 1; gnomAD AC = 4), thus penetrance could not be 
estimated for this subgroup. 50% of the LP ultra-rare non-LoF group for DCM consisted 
of variants in LMNA. 

Curation Likely pathogenic Pathogenic VUS

0.00

0.25

0.50

0.75

1.00

ra
re

 L
o
F

ra
re

 n
o

n
−

L
o
F

u
lt
ra

 r
a
re

 L
o
F

u
lt
ra

 r
a

re
 n

o
n
−

L
o
F

Variants

P
e
n

e
tr

a
n

c
e

HCM

0.00

0.25

0.50

0.75

1.00

ra
re

 L
o
F

ra
re

 n
o

n
−

L
o
F

u
lt
ra

 r
a
re

 L
o
F

u
lt
ra

 r
a

re
 n

o
n
−

L
o
F

Variants

DCM



  

Figure S15 An interactive widget for browsing the individual variants in Figure 4. 

Variant-specific estimates of penetrance for the 316 recurrently observed rare variants 
in CM-associated genes from group 2. The variants depicted (HCM n=257 (top), DCM 
n=59 (bottom)) were identified multiple times in cases and population reference 
datasets and penetrance could therefore be estimated. The x-axis denotes the number 
of times the variant was observed in each case cohort. AC, allele count; B/LB, 
benign/likely benign; VUS, variant of uncertain significance; LP, likely pathogenic; P, 
pathogenic. 

  



  

3 Supplementary tables 
 
 
Table S1 Articles assessed in literature review of the prevalence of DCM. 

See excel file. 
 
Table S2 Articles assessed in literature review of the prevalence of HCM. 

See excel file. 
 
Table S3 Selection of the Agresti-Coull method and comparison of binomial proportion 
methods for deriving parameters from the meta-analysis results. 

𝒙𝑫 and 𝒏̂𝑫 were derived from the meta-analysis results 𝒑̂𝑫, 𝐋𝐋̂ and 𝐔𝐋̂. 𝑝̂̂𝐷 = 𝑥̂𝐷/𝑛̂𝐷 , LL̂̂ 

and UL̂̂ are the estimated lower and upper 95% confidence interval obtained by each 

method, using the corresponding estimated values of 𝑥̂𝐷 and 𝑛̂𝐷. Relative error (%) with 

sign associated with each method is defined as the difference between the meta-analysis 

value minus the corresponding estimated one divided by the meta-analysis value. 

 Wald Arcsine Agresti-Coull Clopper-Pearson 

𝑝̂𝐷 1.841×10-3 

𝑥̂𝐷 97 97 97 101 

𝑛̂𝐷 52,554 52,328 52,660 55,146 

𝑝̂̂𝐷 1.846×10-3 1.854×10-3 1.842×10-3 1.832×10-3 

𝑝̂̂𝐷 relative error 

(%) 
−0.26 −0.69 −0.06 0.52 

LL̂ 1.492×10-3 

LL̂̂ 1.479×10-3 1.503×10-3 1.492×10-3 1.492×10-3 

LL̂̂ relative error 

(%) 
0.89 −0.75 0.00 -0.002 

UL̂ 2.225×10-3 

UL̂̂ 2.213×10-3 2.241×10-3 2.228×10-3 2.225×10-3 

UL̂̂ relative error 

(%) 
0.55 −0.72 −0.14 0.00 

  



  

Table S4 Genes analysed in this study and the allele number sequenced in each 
disease cohort. 

Allele number is twice the cases included in the study. *, TNNI3 exons 7 and 8 only; , 

truncating variants in TTN only; -, not measured. 

 LMM LMM2 OMGL BRGL GDx RBHT SLD NHCS AHCE max AN 

HCM 

ACTC1 5300 - 3070 - 4740 836 510 182 914 15342 

MYBPC3 5824 - 6534 1260 4740 836 510 182 914 20590 

MYH7 5824 - 6400 1260 4740 836 510 182 914 20456 

MYL2 5300 - 3070 - 4740 836 510 182 914 15342 

MYL3 5300 - 3070 - 4740 836 510 182 914 15342 

TNNI3 5824 - 6270 1260* 4740 836 510 182 914 20326 

TNNT2 5824 - 6382 1260 4740 836 510 182 914 20438 

TPM1 5824 - 3070 - 4740 836 510 182 914 15866 

max AN 5824 - 6534 1260 4740 836 510 182 914 20800 

DCM 

BAG3 - 366 - - - 1758 - 214 160 2498 

DES 1180 366 608 - - 1758 - 214 160 4286 

TTN 312 366 608 - - 1758 - 214 160 3418 

MYH7 1512 366 1118 - - 1758 - 214 160 5128 

TNNC1 312 366 - - - 1758 - 214 160 2810 

TNNT2 1512 366 996 - - 1758 - 214 160 5006 

LMNA 1480 366 608 - - 1758 - 214 160 4586 

FLNC - - - - - - - - - - 

PLN 1480 366 710 - - 1758 - 214 160 4688 

SCN5A - 366 608 - - 1758 - 214 160 3106 

RBM20 312 366 - - - 1758 - 214 160 2810 

DSP 246 366 608 - - 1758 - 214 160 3352 

Max AN 1512 366 1118 - - 1758 - 214 160 5128 

 

  



  

Table S5 Ancestry, age, and sex; case cohort participant summary information. 

See excel file. 
 
Table S6 Variant counts in the aggregated dataset per gene and variant consequence 
for HCM. 

See excel file. 
 
Table S7 Variant counts in the aggregated dataset per gene and variant consequence 
for DCM. 

See excel file. 

Table S8 Summary information of 1,332 rare variants in HCM-associated genes. 

See excel file. 

Table S9 Summary information of 663 rare variants in DCM-associated genes. 

See excel file. 

Table S10 Penetrance estimates for 257 rare variants in HCM-associated genes. 

See excel file. 

Table S11 Penetrance estimates for 59 rare variants in DCM-associated genes. 

See excel file. 

Table S12 Estimated penetrance of eleven variants more common in non-EUR 
ancestry. 

See excel file. 

Table S13 Variant counts in the aggregated UKBB dataset per gene and variant 
consequence for HCM. 
 
See excel file. 
 
Table S14 Variant counts in the aggregated UKBB dataset per gene and variant 
consequence for DCM. 
 
See excel file. 
 
Table S15 Aggregated penetrance by curation. 
 
See excel file. 
 
Table S16 Aggregated penetrance by rarity. 



  

 
See excel file. 
 
Table S17 Aggregated penetrance by age. 
 
See excel file. 
 
Table S18 Aggregated penetrance by gene for HCM. 
 
See excel file. 
 
Table S19 Aggregated penetrance by gene for DCM. 
 
See excel file. 
 
Table S20 Aggregated penetrance by sex. 
 
See excel file. 
  



  

4 Supplementary methods 
 

4.1 Overview of the estimation of penetrance and its confidence interval 
 
In this study, we adapted the estimate of penetrance from Minikel et al. (2016)1 

 P(𝐷|𝐴) = P(𝐷)
P(𝐴|𝐷)

P(𝐴)
, (Eq. S1) 

where P(𝐷|𝐴) is the penetrance of the variant (by adulthood), i.e., the probability of 
disease given a risk allele; P(𝐷) is the prevalence of the disease, i.e., the baseline risk in 
the general population; P(𝐴|𝐷) is the frequency of individuals with the disease who have 

the allele, i.e., the allele frequency in cases; and P(𝐴) is the frequency of the allele in the 
general population, i.e., the population allele frequency. 
 
An alternative approach would be to estimate penetrance via a likelihood ratio test, i.e., 
the probability of disease given a risk allele divided by a positive test. However, this 
requires healthy controls, i.e., the identification of healthy controls instead of population 
cohorts. This is erroneous without known cardiac status.  
 
In the following, we indicate with 𝐷|𝐴, 𝐷, 𝐴|𝐷 and 𝐴, the random variables (r.v.s) for the 

penetrance of the variant, the prevalence of the disease, the allele frequency as a 
proportion in cases, and the allele frequency as a proportion in the general population, 
respectively. We indicate with 𝑝𝐷|𝐴 ≡ P(𝐷|𝐴), 𝑝𝐷 ≡ P(𝐷), 𝑝𝐴|𝐷 ≡ P(𝐴|𝐷) and 𝑝𝐴 ≡ P(𝐴), 

the probability of the corresponding events. Finally, we specify with 𝜋(𝐷|𝐴), 𝜋(𝐷), 𝜋(𝐴|𝐷) 
and 𝜋(𝐴), the distribution of the corresponding (discrete or continuous) r.v.s. 
 
To estimate the confidence interval surrounding the estimate of penetrance, we assessed 
several methods: 
 

• Minikel et al. (2016)1 used binomial confidence intervals to estimate the uncertainty 

regarding the penetrance. The authors estimated the binomial proportion (1 − 𝛼)% 

confidence interval for 𝐴|𝐷 and independently for 𝐴, divided separately the lower 

limits (LL) and the upper limits (UL) of the confidence intervals and multiply them 

by estimated 𝑝𝐷. In this framework, the penetrance confidence interval could be 

outside the interval [0,1] (“overshooting”2) and was therefore truncated in the 

interval [0,1]. 

• We considered using the above estimate of uncertainty and tested other methods 

proposed in literature for the confidence interval of binomial proportions (e.g., 

simple asymptotic or Wald method, Wilson score method, etc. see for instance3,4 

and references therein) and adjusted the nominal level of significance such that 

the coverage probability aligns with the (1 − 𝛼)% nominal level5. 

• We also wanted to fully estimate the uncertainty surrounding the penetrance 

estimate. To do this, we aimed to undertake a fully Bayesian approach to estimate 

the confidence interval for penetrance including an estimate of uncertainty 

regarding the prevalence of cardiomyopathy described in the literature. In our 



  

framework, this was not possible. When a joint beta-binomial model is specified 

for 𝜋(𝐷|𝐴)  ∝ 𝜋(𝐴|𝐷)𝜋(𝐷), where 𝐴|𝐷 follows a binomial distribution with the 

probability of success 𝜋(𝐷), and 𝐷 is distributed as a beta density, the marginal 

distribution 𝜋(𝐴) is given6. Thus, a Bayesian approach cannot be used to quantify 

the uncertainty of penetrance. In our cross-sectional approach, 𝐴 is assumed 

independent from 𝐴|𝐷 and follows a binomial distribution, whereas from a 

Bayesian perspective, 𝜋(𝐴) is derived by marginalizing out 𝐷 form the joint 

distribution 𝜋(𝐴, 𝐷), i.e., 𝜋(𝐴) = ∫𝜋(𝐴|𝐷)𝜋(𝐷)𝑑𝐷.  

For comparison, we plotted (see Figure S5) the beta-binomial distribution derived 

from the marginalization of the joint distribution against the corresponding binomial 

distribution assuming 𝐴 and 𝐴|𝐷 are independent. 

• We also tested a Monte Carlo approach to overcome the problem of the fully 

Bayesian formulation by using an inverse logit transformation of a normal 

distribution as the prior density for 𝐷, while retaining the above specification for 

𝜋(𝐴|𝐷) (binomial distribution with probability of success 𝜋(𝐷)) and 𝜋(𝐴) (binomial 

distribution) and sampled independent realisations from (𝐷, 𝐴|𝐷) and 𝐴 to derive 

the (1 − 𝛼)% Monte Carlo confidence interval for penetrance. To avoid 

overshooting, each realisation of the Monte Carlo simulation was checked and, if 

necessary, truncated in the interval [0,1]. 

• Our final approach, and the approach used here, was to assume the independence 

of the r.v.s 𝐷, 𝐴|𝐷, and 𝐴, to derive the (1 − 𝛼)% confidence interval for penetrance 

as the product and ratio of binomial proportions. Our method of choice used the 

specialised version of the Central Limit Theorem, the Delta method7 on the log-

transformed random variable log(𝐷|𝐴) = log(𝐷) + log(𝐴|𝐷) − log(𝐴) with an 

improved mean approximation and adjustment for degeneracy3. The 

parameterisation of the binomial distribution 𝜋(𝐷) was derived from a meta-

analysis of literature-based estimates of the prevalence of HCM, while UK Biobank 

CMR-derived estimate of 𝑝𝐷 was used in the penetrance equation for DCM where 

few published studies were available for inclusion in the meta-analysis. 

4.2 Estimation of penetrance 
 
Following Minikel et al. (2016)1, penetrance is defined as the probability of developing 
disease given a risk allele 𝑝𝐷|𝐴 and can be estimated by Bayes’ rule (Eq. S1). Three 

parameters were used to define penetrance by adulthood: i) the prevalence 𝑝𝐷 of the 
disease, i.e., the baseline lifetime risk in the general population, ii) the proportion 𝑝𝐴|𝐷 of 

individuals with the disease who have the allele, i.e., the allele frequency in cases, and 
iii) the frequency 𝑝𝐴 of the allele in the general population, i.e., the population allele 
frequency. The allele frequency is used in 𝑝𝐴|𝐷 and 𝑝𝐴 and it is estimated as the probability 

𝑝 of success in a binomial experiment by using the allele counts 𝑥, i.e., the binomial 

number of successes, and allele number 𝑛, i.e., the binomial number of trials. We estimate 
the penetrance of an allele under a dominant genetic model8 as 



  

𝑝𝐷|𝐴 = 𝑝𝐷

𝑝𝐴|𝐷

𝑝𝐴
=

𝑥𝐷𝑥𝐴|𝐷

𝑥𝐴

𝑛𝐴

𝑛𝐷𝑛𝐴|𝐷
. (Eq. S2) 

The penetrance 𝑝(𝐷|𝐴) of an allele is estimated using three parameters: 𝑝𝐷, the fixed 
probability of disease calculated by meta-analysis of reported prevalence of disease from 
literature (with 𝑥𝐷, allele count, and 𝑛𝐷, the allele measure, both estimated, see below), 
𝑝𝐴|𝐷, the probability of the allele given disease, estimated from allele frequency in cases 

(with 𝑥𝐴|𝐷 and 𝑛𝐷|𝐴 observed), and 𝑝𝐴, the probability of the allele, estimated from the 

allele frequency in population cohorts (with 𝑥𝐴 and 𝑛𝐴 observed).  
 

4.3 Probability of the disease: cardiomyopathy prevalence estimates 
 
The prevalence of cardiomyopathy has been previously estimated and reported as the 
most simplified ratio of 1 in 500 for hypertrophic cardiomyopathy (HCM) and 1 in 250 for 
dilated cardiomyopathy (DCM)9. To identify the true confidence with our current 
knowledge of the prevalence of cardiomyopathy, a literature review was undertaken to 
identify population-based prevalence estimates of cardiomyopathy (Table S1). 
 
For the prevalence of DCM, 12 cohorts were identified from literature10–19 (Figure S1). 
We have previously found the use of cardiac imaging to have higher sensitivity in 
estimating cardiomyopathy prevalence than ICD codes20. Only one article used imaging 
in identifying DCM prevalence. We therefore assessed the prevalence of clinical DCM 
(LVEDV > 232ml in males and > 175ml in females, plus LVEF < 50%, in the absence of 
a record of CAD or HCM) in the imaging tranche of the UK Biobank21. This criterion was 
adapted from Mestroni et al. with UK Biobank imaging reference ranges21. 177 DCM 
cases were identified from cardiac imaging of 39,003 participants (𝑝𝐷 = 0.45% (binomial 

95% CI𝐷 = 0.39%-0.53%) or 1 in 220)22. As a meta-analysis cannot be undertaken with 
only two cohorts, we were restricted to using the UK Biobank estimate only, which is 
similar to the expected DCM prevalence of 1 in 2509.  
 
For the prevalence of HCM, 22 cohorts were identified in literature12,13,28–36,14,15,20,23–27 
(Figure S2, Table S2). As expected, a combined meta-analysis of all 22 cohorts identified 
from literature showed high heterogeneity (P-value = 0, heterogeneity index I2 = 100%). 
Four articles used cardiac imaging in identifying HCM prevalence20,25,26,37. A meta-
analysis of the binomial proportions was undertaken using the meta38 and metafor39 R 
packages. This resulted in an estimated 𝑝𝐷 of 0.18% (95% CI𝐷 = 0.15%-0.23%) (Figure 
S3). 
 
From the meta-analysis estimate of 𝑝𝐷 and its confidence interval, we derived the values 
for 𝑥𝐷 and 𝑛𝐷 (solving two unknown values in two equations, one describing the estimation 

of 𝑝𝐷 and the other, its confidence interval). However, since several ways to estimate the 
confidence interval for binomial proportions have been proposed in literature3,4, different 
values of 𝑥𝐷 and 𝑛𝐷 can also be obtained. We assessed four popular methods: the Wald 
method, based on a simple asymptotic normal approximation (Eq. S4), the Arcsine 

method, based on the Delta method for variance stabilization using the sin−1 √𝑝𝐷 



  

transformation (Eq. S5), the Agresti-Coull method40, which relies on the asymptotic 
normal approximation centred in 

 𝑝̃𝐷 =
𝑝̂𝐷 +

𝑧1−𝛼/2
2

2𝑛𝐷

1 +
𝑧1−𝛼/2

2

𝑛𝐷

, (Eq. S3) 

where 𝑝̂𝐷 is the meta-analysis estimate of 𝑝𝐷 and 𝑧1−𝛼/2 is the 1 − 𝛼/2 quantile of the 

standard normal distribution (Eq. S6), and the Clopper-Pearson method, an exact method 
for the confidence interval of a binomial proportion (Eq. S7).  
 
The best method chosen was the one that minimizes the Euclidian distance between the 

meta-analysis estimates (𝑝̂𝐷 , LL̂𝐷, UL̂𝐷), where LL̂𝐷 and UL̂𝐷 are the lower and upper limit 

of the (1 − 𝛼)% confidence interval for the prevalence of the disease, and (𝑝̂̂𝐷 , LL̂̂𝐷, UL̂̂𝐷), 
i.e., the same quantities estimated by each method after the corresponding estimates of 
𝑥𝐷 and 𝑛𝐷 are obtained. At 𝛼 = 0.05, given the results of the meta-analysis, the Agresti-
Coull method performed the best with the lowest L2 norm and with low relative errors, 
defined as the relative difference between the meta-analysis values and their estimated 
values calculated by each method (Table S3). See List S1 for details. This derived 𝑥𝐷= 

97 and 𝑛𝐷 = 52,660 for HCM. 
 
Using the same methods and included studies, we derived estimates for male- and 
female-specific CM prevalence. For DCM, population prevalence was estimated as ~1 in 
340 females (𝑝𝐷 = 0.30% (95% CI𝐷 = 0.23%-0.38%); 𝑥𝐷= 60 in 20,316) and ~1 in 160 

males (𝑝𝐷 = 0.63% (95% CI𝐷 = 0.52%-0.75%); 𝑥𝐷= 117 in 𝑛𝐷 = 18,687). For HCM, 
population prevalence was estimated as ~1 in 1,300 females (𝑝𝐷 = 0.08% (95% CI𝐷 =
 0.04%-0.12%); 𝑥𝐷= 15 in 𝑛𝐷 = 19,646) and ~1 in 360 males (𝑝𝐷 = 0.28% (95% CI𝐷 =
 0.22%-0.35%); 𝑥𝐷= 68 in 𝑛𝐷 = 24,411). To estimate the penetrance of variants by age, 
the prevalence of disease was adjusted for the proportion of total cases that were 
measured by each decade and it was assumed that the population allele frequency is 
fixed. 
 
List S1 Selection of the Agresti-Coull method and other methods assessed to estimate 
the number of cases and the population size for the disease prevalence. 

For each method considered, the estimated values of 𝑥𝐷 and 𝑛𝐷 are derived as shown 
below. The best method was selected by assessment of the Euclidean distance between 
(𝑝̂𝐷, LL(𝑝̂𝐷), UL(𝑝̂𝐷)), the estimated value, and the lower and upper limits of the 95% 

confidence interval of the prevalence obtained from the meta-analysis, and 

(𝑝̂̂𝐷, LL(𝑝̂̂𝐷), UL(𝑝̂̂𝐷)) obtained by each method, using the corresponding estimated values 

of 𝑥̂𝐷 and 𝑛̂𝐷. For simplicity of notation, we omit the subscript 𝐷 and set LL̂ = LL(𝑝̂), UL̂ =

UL(𝑝̂) , 𝑝̂̂ = 𝑥̂/𝑛̂ , LL̂̂ = LL(𝑝̂̂) and UL̂̂ = UL(𝑝̂̂). 
 

A) Wald method 



  

 

𝜎̂ = (
UL̂ − LL̂

2𝑧1−𝛼/2
)

2

, 

𝑛̂ = ⌈
𝑝̂𝑞̂

𝜎̂
⌉, 

𝑥̂ = ⌈𝑛̂𝑝̂⌉, 

(Eq. S4) 

where 𝜎̂ is the estimated standard error of 𝑝̂ obtained from the meta-analysis, 𝑧1−𝛼/2 is 

the 1 − 𝛼/2 quantile of the standard normal distribution, 𝑞̂ = 1 − 𝑝̂ and ⌈𝑦⌉ indicates the 
smallest integers not less than 𝑦. 
 

B) Arcsine method 

 
𝑛̂ = ⌈[

𝑧1−𝛼/2

2(sin−1 √LL̂ − sin−1 √𝑝̂)
]

2

⌉, 

𝑥̂ = ⌈𝑛̂𝑝̂⌉. 

(Eq. S5) 

C) Agresti-Coull method 

 

𝑛̂ =

⌈
⌈
⌈
⌈
 

𝑝𝑞̃

(
𝑝̃ − LL̂
𝑧1−𝛼/2

2 )

2 − 𝑧1−𝛼/2
2

⌉
⌉
⌉
⌉
 

, 

𝑥̂ = ⌈(𝑛̂ + 𝑧1−𝛼/2
2 )𝑝̃ −

𝑧1−𝛼/2
2

2
⌉, 

(Eq. S6) 

where 𝑝̃ is defined (Eq. S2) and 𝑞̃ = 1 − 𝑝̃. However, the quantity 𝑝̃ is not available from 

the meta-analysis and depends on unknown value 𝑛. For this reason, the solution (Eq. 
S6) is obtained numerically. Using the fact that 𝑝̃ > 𝑝̂ if 𝑝̂ < 0.5, the solution is attained by 
finding the positive constant 𝑐0 such that 𝑝̃ = 𝑝̂ + 𝑐0 for which 𝑥̂/𝑛̂ = 𝑝̂ under the constraint 
that 𝑝̂ < 0.5, i.e., 𝑥̂ < ⌈𝑛̂/2⌉. 
 

D) Clopper-Pearson method 

 
LL = 𝐹Beta

−1 (𝛼/2; 𝑥, 𝑛 − 𝑥 + 1), 

UL = 𝐹Beta
−1 (1 − 𝛼/2; 𝑥 + 1, 𝑛 − 𝑥), 

(Eq. S7) 

where LL and UL are the theoretical exact lower and upper limits of the 95% confidence 

interval and 𝐹Beta
−1 (∙) is the inverse of the cumulative density function of the Beta density. 

The solution for 𝑥 and 𝑛, with 𝑥 ≤ 𝑛, is obtained numerically as the values that minimise 

the Euclidean distance between (LL,UL) defined (Eq. S7) and (LL̂, UL̂), the lower and 
upper limits of the 1 − 𝛼 confidence interval of the prevalence obtained from the meta-



  

analysis, respectively. To reduce the computational cost of the exhaustive search, we 
also assume 𝑥̂ < ⌈𝑛̂/2⌉ as in the Agresti-Coull method. 
 

4.4 Probability of the allele given disease: allele frequency in the case cohort 
 
The allele frequency of variants in the case cohort was used in the penetrance calculation 
for 𝑝𝐷|𝐴. The allele count and allele number were used for 𝑥𝐴|𝐷 and 𝑛𝐴|𝐷, respectively. See 

Section 4.10 for further information. 
 

4.5 Probability of the allele: allele frequency in the population reference datasets 
 
The allele frequency of variants in the combined population cohort of UK Biobank and 
gnomAD was used in the penetrance calculation for 𝑝𝐴. The allele count and allele 
number were used for 𝑥𝐴 and 𝑛𝐴, respectively. It is assumed that the population datasets 
include individuals who will later die of cardiac disease, thus enabling direct use of the 
gnomAD and UK Biobank allele frequencies combined as 𝑝𝐴. See Section 4.9 for further 
information. 
 

4.6 Confidence intervals 
 
Since it is not possible to undertake a fully Bayesian analysis to estimate the confidence 
interval for penetrance, we used a different approach; the specialised version of the 
Central Limit Theorem, the Delta method7, on the log-transformed random variable 
log(𝐷|𝐴) = log(𝐷) + log(𝐴|𝐷) − log (𝐴) (Eq. S1), assuming the independence between 
the binomial random variables 𝐴|𝐷, 𝐴 and 𝐷, with an improved mean approximation and 

adjustment for degeneracy3. The Delta method concerns the approximate distribution of 
a function of random variables which is asymptotically normal where the mean and 
variance are obtained by a first-order Taylor approximation expanded around the means. 
The improved mean involves a better approximation of the first moment of the asymptotic 
normal distribution by using a second-order Taylor expansion. To address the problem of 
degeneracy, i.e., the confidence interval’s width is 0 when the probability of success is 0, 
we added the constant 𝑑 = 𝑑𝑥 = 𝑑𝑛 = 0.5 to all 𝑥 and 𝑛, respectively41,42, as the allele 

frequencies 𝑝𝐴 and 𝑝𝐴|𝐷 of rare variants will always tend towards zero. 

 
We compared this approach with seven other methods for deriving the confidence 
intervals of penetrance (List S2). In the first group of methods (G1), we derived the 
confidence interval for penetrance as the (1 − 𝛼)% confidence interval of the ratio of 

binomial proportions 𝐴|𝐷 and 𝐴, similar to the derivation of confidence intervals for the 
relative risk43, and multiplied it by the estimated value of 𝑝𝐷. In the second group (G2), 
we considered 𝐷 as a random variable subject to uncertain quantification. We assessed 
the methods in groups G1 and G2 using an example variant with the following parameters: 
97/52,660 for 𝑥𝐷/𝑛𝐷 obtained from the HCM meta-analysis, 10/20,000 for 𝑥𝐴|𝐷/𝑛𝐴|𝐷 and 

3/600,000 for 𝑥𝐴/𝑛𝐴. For all methods, we tested with degeneracy adjustment or by adding 
a continuity correction3. Our method of choice (part F in List S2) fully encompasses the 



  

uncertainty regarding 𝑝𝐷 (Figure S4). An example of a Bayesian approach where the 
prior and posterior have little overlap is depicted (Figure S5).  
 
List S2 Methods assessed to derive the confidence intervals of penetrance. 

We consider two groups of methods to assess the confidence interval of the penetrance. 
In the first group (G1), the confidence interval for the ratio of the random variables 𝐴|𝐷 
and 𝐴  (Eq. S1) is obtained similarly to the derivation of the confidence interval for relative 

risk5. Most of the methods are readily available in the R package ratesci71 unless stated 
otherwise. The upper and lower limit of the (1 − 𝛼)% confidence interval is then multiplied 
by the estimated value of the prevalence 𝑝𝐷.  
 
The second group (G2) of methods consider the prevalence 𝐷 as a random variable and 
the confidence interval is derived assuming the independence of all the quantities 
involved. The second group of methods rely on the Delta method applied on the log-
transformed random variable 𝐷|𝐴 or directly on 𝐷|𝐴 (Eq. S1) with/without improved mean 
approximation.  
 
To address the problem of degeneracy, i.e., the confidence interval’s width is 0 when the 
probability of success is either 0 or 1, we added the constant 𝑑𝑥 = 0.5 and 𝑑𝑛 = 0.5 to 𝑥 
and 𝑛, respectively, in the binomial random variables 𝐴|𝐷, 𝐴 and 𝐷41,42 or add a continuity 

correction3 to the confidence interval. To avoid “overshooting”2, i.e., the confidence 
interval of penetrance could be outside the interval [0,1] and the results are truncated in 

the interval [0,1]. The CI(𝑝𝐷|𝐴) is obtained as follows: 

 
A) The product of 𝑝𝐷 and the (1 − 𝛼)% confidence interval of the ratio of binomial 

proportions using the with Delta method on log(𝐴|𝐷 / 𝐴) = log(𝐴|𝐷) −
log(𝐴)41,42,72 without degeneracy 

 CI(𝑝𝐷|𝐴) = 𝑝𝐷exp {log
𝑝𝐴|𝐷

𝑑

𝑝𝐴
𝑑 ± 𝑧1−𝛼/2√

1 − 𝑝𝐴|𝐷
𝑑

𝑝𝐴|𝐷
𝑑 𝑛𝐴|𝐷

𝑑 +
1 − 𝑝𝐴

𝑑

𝑝𝐴
𝑑𝑛𝐴

𝑑 }, (Eq. S8) 

where 𝑛𝐴
𝑑 = (𝑛𝐴 + 𝑑𝑛), 𝑝𝐴

𝑑 = (𝑥𝐴 + 𝑑𝑥)/(𝑛𝐴 + 𝑑𝑛) and similarly for 𝑛𝐴|𝐷
𝑑  and 𝑝𝐴|𝐷

𝑑 . 

 

B) The product of 𝑝𝐷 and the (1 − 𝛼)% confidence interval of the ratio of binomial 

proportions using the “method of variance estimates recovery” (MOVER)2,73,74 

method with continuity correction implemented in the function moverci included 

in the R package ratesci. 

 

C) The product of 𝑝𝐷 and the (1 − 𝛼)% confidence interval of the ratio of binomial 

proportions using the approximate Bayesian “method of variance estimates 

recovery” (MOVER-B)2,73–75 with beta priors and continuity correction 

implemented in the function moverbci included in the R package ratesci. 

 



  

D) The product of 𝑝𝐷 and the (1 − 𝛼)% confidence interval of the ratio of binomial 

proportions with “skewness-corrected asymptotic score” (SCAS)43,76,77 with 

continuity correction implemented in the function scasci included in the R 

package ratesci. 

 

G2.A) (1 − 𝛼)% confidence interval of the product and ratio of binomial proportions 

using the with Delta method on log(𝐷|𝐴) = log(𝐷 × 𝐴|𝐷 ∕ 𝐴) =
log(𝐷) + log(𝐴|𝐷) − log(𝐴) without degeneracy 

 CI(𝑝𝐷|𝐴) = exp {log
𝑝𝐷

𝑑𝑝𝐴|𝐷
𝑑

𝑝𝐴
𝑑 ± 𝑧1−𝛼/2√

1 − 𝑝𝐷
𝑑

𝑝𝐷
𝑑𝑛𝐷

𝑑 +
1 − 𝑝𝐴|𝐷

𝑑

𝑝𝐴|𝐷
𝑑 𝑛𝐴|𝐷

𝑑 +
1 − 𝑝𝐴

𝑑

𝑝𝐴
𝑑𝑛𝐴

𝑑 }. (Eq. S9) 

 

G2.B) (1 − 𝛼)% confidence interval of the product and ratio of binomial proportions 

using the with Delta method on log(𝐷|𝐴) = log(𝐷 × 𝐴|𝐷 ∕ 𝐴) =

log(𝐷) + log(𝐴|𝐷) − log(𝐴) with improved mean approximation and without 

degeneracy 

 

CI(𝑝𝐷|𝐴) = exp {log
𝑝𝐷

𝑑𝑝𝐴|𝐷
𝑑

𝑝𝐴
𝑑 −

1

2
(
1 − 𝑝𝐷

𝑑

𝑝𝐷
𝑑𝑛𝐷

𝑑 +
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(Eq. S10) 

 

G2.C) (1 − 𝛼)% confidence interval of the product and ratio of binomial proportions 

using the with Delta method on 𝐷|𝐴 = 𝐷 × 𝐴|𝐷 ∕ 𝐴 without degeneracy 
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G2.D) (1 − 𝛼)% confidence interval of the product and ratio of binomial proportions 

using the Delta method on 𝐷|𝐴 = 𝐷 × 𝐴|𝐷 ∕ 𝐴 with improved mean approximation 

and without degeneracy 
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(Eq. S12) 

 

4.7 Statistical power simulations 
 
To assess how the model responds in different test cases based on allele frequency for 
𝑝𝐴 and 𝑝𝐴|𝐷, four sets of simulations were undertaken. Firstly, an assessment of the 

sample size required for 𝑝𝐴|𝐷 and 𝑝𝐴 was undertaken to define the penetrance estimate 

(Figure S7). Example variants that had ~10%, ~20%, ~50%, and ~75% estimated 
penetrance. In each example, smaller 𝑛𝐴 and 𝑛𝐴|𝐷 had larger CIs, however the difference 

was negligible in the ranges of, and greater than, the 𝑛𝐴 and 𝑛𝐴|𝐷 used in this project. 

Thus, the 𝑛𝐴 from current publicly available data (gnomAD (n = 126,000) and UKB (n = 

200,000)) and the 𝑛𝐴|𝐷 in our HCM case series of 10,000 participants, provides enough 

precision to estimate penetrance of variants. 
 
Secondly, increasing case samples through international effort provides negligible gain in 
confidence surrounding the penetrance estimates (Figure S8). Increases in publicly 
available population datasets provides a substantial gain in confidence (Figure S8, 
Figure S9). Thirdly, as the penetrance equation becomes unbalanced (through increased 
𝑝𝐴|𝐷 and decreased 𝑝𝐴 ratio) and a variant is more penetrant, the confidence intervals 

increase. 
 
Fourthly, the model was used to assess the expected penetrance results in the range of  
𝑝𝐴 and 𝑝𝐴|𝐷 observed in this study, using the minimum, median, and maximum allele 

frequencies (Figure S11). Observations were excluded where 𝑥𝐴|𝐷 or 𝑥𝐴 were <= 1. For 

the maximum 𝑝𝐴|𝐷, identification of a highly penetrant variant (i.e., 𝑝𝐴|𝐷 = 0.008, 𝑝𝐴<2×106) 

resulted in a penetrance and 95% CI > 1. At the median and minimum 𝑝𝐴|𝐷 (0.0003 and 

0.0001, respectively), all variants had a penetrance of <25%, with the 95% CI increasing 
with increase in 𝑝𝐴. For all 𝑝𝐴|𝐷, variants with 𝑝𝐴 > 0.00001 have a penetrance estimate 

that tends to 0, similar to the concept of filtering allele frequency44. 
 

4.8 Estimation of penetrance and confidence intervals as an R language script 
 
penetrance <- function(x_D, n_D, x_AgD, n_AgD, x_A, n_A) 

{ 

  set.seed(28061971) 

  digits <- 6 

  alpha <- 0.05 

  p_D <- x_D / n_D 



  

  p_AgD <- x_AgD / n_AgD 

  p_A <- x_A / n_A 

  d <- 0.5 

  p_D_wod <- (x_D + d) / (n_D + d) 

  p_AgD_wod <- (x_AgD + d) / (n_AgD + d) 

  p_A_wod <- (x_A + d) / (n_A + d) 

  log_AR <- log(p_D_wod * p_AgD_wod / p_A_wod) + 

            1/2 * ((1 / p_A_wod) * (1 - p_A_wod) / (n_A + d) - 

            (1 / p_D_wod) * (1 - p_D_wod) / (n_D + d) - 

            (1 / p_AgD_wod) * (1 - p_AgD_wod) / (n_AgD + d)) 

  Var_log_AR <- (1 / p_D_wod) * (1 - p_D_wod) / (n_D + d) + 

                (1 / p_AgD_wod) * (1 - p_AgD_wod) / (n_AgD + d) 

                +(1 / p_A_wod) * (1 - p_A_wod) / (n_A + d) 

  log_LCI <- log_AR - qnorm(1 - alpha / 2) * sqrt(Var_log_AR) 

  log_UCI <- log_AR + qnorm(1 - alpha / 2) * sqrt(Var_log_AR) 

  penetrance <- pmin(1, pmax(0,exp(log_AR))) 

  log_lCI <- pmin(1, pmax(0,exp(log_LCI))) 

  log_uCI <- pmin(1, pmax(0,exp(log_UCI))) 

  my_list <- list("penetrance" = penetrance, "lci" = log_lCI, 

                  "uci" = log_uCI) 

  return(my_list) 

} 

 
See also 
https://github.com/ImperialCardioGenetics/variantfx/tree/main/PenetrancePaper 
 

4.9 Population reference cohort summary information 
 

The UK Biobank (UKBB) recruited 500,000 participants aged 40–69 years across the 

United Kingdom between 2006 and 2010 (National Research Ethics Service - 

11/NW/0382)45. This study was conducted under terms of access approval number 

47602. Written informed consent was provided. UKBB participants underwent whole 

exome sequencing (WES) as previously described46. The WES data is in GrCh38 and 

left-aligned. Participants that had withdrawn were excluded from the analysis. The 

maximal subset of unrelated participants was used, identified by those included in the 

UKBB PCA analysis (S3.3.247; QCed). Two sets of data were created, a dataset 

representing the whole QCed cohort and a dataset representing genetically white British 

individuals only (NWE). 167,478 participants remained, of which 137,998 were genetically 

white British, mean age of 56 years old at recruitment, 75,727 were male, and 91,751 

were female.  

The Genome Aggregation Database (gnomAD) is the result of a coalition effort to 

aggregate and harmonize exome sequencing data from a variety of large-scale 

sequencing projects48. The version 2.1 short variant dataset spans 125,748 exomes from 

unrelated individuals sequenced as part of various disease-specific and population 



  

genetic studies and lifted over to GrCh38. 57,787 were female and 67,961 were male. 

Ancestry is provided for global super-populations: i.e., African/African American (AFR), 

American Admixed/Latino (AMR), East Asian (EAS), Non-Finnish European (NFE), and 

South Asian (SAS), and some sub populations such as Northwestern Europeans (NWE). 

Individuals known to be affected by severe paediatric disease have been removed, as 

well as their first-degree relatives, however, some individuals with severe disease may 

still be included in the data sets, albeit likely at a frequency equivalent to or lower than 

that seen in the general population. The data released by gnomAD are available free of 

restrictions under the Creative Commons Zero Public Domain Dedication. The 

aggregation and release of summary data from the exomes collected by the Genome 

Aggregation Database has been approved by the Partners IRB (protocol 2013P001339, 

"Large-scale aggregation of human genomic data"). The gnomAD dataset was 

incorporated into the analysis through the Ensembl Variant Effect Predictor49 plugin. 

4.10 Cardiomyopathy case cohort summary information 
 
Datasets created in closely collaborating centres (described below – RBHT, NHCS, 

AHCE) of which access has been granted for sequencing BAM files, are denoted “internal 

datasets”. Datasets summarised and aggregated by external sequencing centres 

(described below – OMGL, LMM, BRGL, GDx) of which only summary counts were 

provided, are denoted “external datasets”. 

Internal datasets 

Royal Brompton and Harefield NHS Foundation Trust, London, UK (RBHT) provided 

panel sequencing on HCM and DCM diagnosed patients, as previously published50–52. 

The patients were identified by consecutive referrals to the imaging unit from the 

dedicated cardiomyopathy service and a network of 30 regional hospitals, forming the 

National Institute for Health Research Biobank. Patients were referred for diagnostic 

evaluation, family screening, or assessment of CM severity. All patients were 

prospectively enrolled for research purposes and underwent cardiac phenotyping with 

either cardiovascular magnetic resonance (CMR) or trans-thoracic echocardiography, 

with CM diagnosed according to standard criteria50. Further information regarding the 

inclusion criteria of the patients, targeted sequencing protocol, and data quality control, 

can be found in previously published articles50. All participants gave written informed 

consent, and the study was approved by the relevant regional research ethics 

committees. Samples were sequenced on the NextSeq 500, the MiSeq and the HiSeq 

Illumina platforms using the TruSight Cardio Sequencing Kit from Illumina (which includes 

174 genes associated with inherited cardiac conditions (ICCs)). Additional samples were 

sequenced on the 5500xl SOLiD platform (SLD) from Life Technologies using a custom 

Agilent SureSelect panel of genes associated with ICCs. 

National Heart Centre Singapore (NHCS), Singapore, provided panel sequencing on 

HCM and DCM patients via the NHCS Biobank, as previously published50,51,53. Patients 

were sequenced using the Illumina TruSight Cardio targeted panel. All patients were 



  

prospectively enrolled for research purposes and underwent cardiac phenotyping with 

either cardiovascular magnetic resonance (CMR) or transthoracic echocardiography, with 

cardiomyopathy diagnosed according to standard criteria. 

Aswan Heart Centre, Egypt (AHCE) provided panel sequencing on HCM and DCM 

patients54,55. A series of Egyptian patients with CM were assessed at Aswan Heart Centre 

(AHC) by echocardiography and/or magnetic resonance imaging. Patients were 

sequenced using the Illumina TruSight Cardio targeted panel on the Illumina MiSeq or 

NextSeq platforms. 

All samples included in the internal datasets were consolidated and joint-genotyped using 

GATK v4.1.9 GenomicsDBImport and GenotypeGVCFs. Variant calls were hard filtered 

using GATK Best Practises guidelines for germline short variant discovery. Particularly, 

variants with quality-by-depth (QD)<3 and read depth <10x were not included in our 

counts due to the high likelihood of being false positives. All variants were converted to 

biallelic using bcftools v1.10.2 (htslib 1.10.2) and variants with AC=0 and star (*) 

alternative alleles were discarded. 

External datasets 

Laboratory of Molecular Medicine, Partners HealthCare, Massachusetts, US (LMM) 

provided aggregated summary sequencing information on patients with reported 

cardiomyopathy and consecutive diagnostic referrals for clinical genetic testing, i.e., HCM 

and DCM (no phenotypic confirmation), as previously published50,51,56–58. The LMM HCM 

cohort comprised unrelated probands referred for HCM clinical genetic testing59. Any 

individuals with an unclear clinical diagnosis of HCM, or with left ventricular hypertrophy 

due to an identified syndrome such as Fabry or Danon disease, or unaffected individuals 

with a family history of HCM were excluded. The LMM DCM cohort comprised individual 

probands referred for DCM clinical genetic testing. According to the published report, all 

patients had DCM or clinical features consistent with DCM based on the medical and 

family history information provided by ordering providers. Additionally, any cases with 

confirmed diagnoses of other cardiomyopathies, structural heart disease, congenital 

heart disease or syndromic or environmental causes were not included in the study. Only 

rare variants were included in the aggregated data. Briefly, various sequencing 

technologies were used across time (Sanger; targeted next-generation sequencing) but 

with complete coverage (Sanger used to fill gaps in NGS). The LMM2 dataset is a small 

subset of the LMM cohort that contains ancestry information for the reported variants. 

Oxford Molecular Genetics Laboratory, Oxford University Hospitals NHS Foundation 

Trust, Oxford, UK (OMGL), provided aggregated summary sequencing data on HCM and 

DCM apparently unrelated patients that were referred from Clinical Genetics centers 

across the UK for clinical genetic testing with initial clinical diagnosis of HCM or DCM 

made by a consultant cardiologist. The data included in this analysis is previously 

published51,58. All samples received for diagnostic genetic testing of HCM or DCM genes 



  

were eligible and analysis was undertaken in a routine clinical setting using clinical 

consent. 

Belfast Regional Genetics Laboratory, Belfast, UK (BRGL), provided aggregated 

summary sequencing data on HCM diagnosed patients that had been referred for a 

Sanger screen. They provided information on four genes, including TNNI3 of which only 

information on exons 7 and 8. 

GeneDx, Maryland, US (GDx), provided aggregated summary sequencing data on HCM 

diagnosed patients using panel data between 2016-2017. The data included information 

on referrals for full panel sequencing. To our knowledge, GDx do not perform further 

analysis to rule out unrecognised relatedness. 

See summary information for the number of participants analysed for each gene of 

interest (Table S4). Actual numbers of samples included in the case cohort varies by 

gene. The number reported represents the maximum number of samples sequenced 

across for any gene. Institutional review board–approved protocols were used in this 

study and all included patients provided written, informed consent for their data to be 

included in research. 

Ancestry, age at scan and sex 

For the internal cohorts of RBHT, NHCS, AHCE and the LMM2 cohort, ancestry was 

determined via self-report at sample recruitment (Table S5). Local ancestry codes were 

assigned to one of the eight population codes used in gnomAD to allow ancestry matching 

across all cohorts. Age at scan was recorded and used in all age-based analyses for the 

case cohorts. Sex was self-reported at recruitment for all internal datasets, except NHCS. 

GDx provided age at scan and sex information only for the variants that were reported.  

4.11 Data merging 
 

Technical differences and curation of aggregated datasets 

The datasets included in this study have intra sequencing technology differences, e.g., 

Illumina and SOLiD technology have separate filtering, inter sequencing technology 

differences, e.g., NextSeq has higher resolution and depth than HiSeq and MiSeq, and 

intra panel differences, e.g., WES or target panel which vary in depth (i.e., WES has lower 

depth) and coverage. The NHCS provided data that was pre-filtered on bam level to a 

conservative quality of reads which reduced the number of reads. 

The external data was shared in multiple different formats (e.g., excel, text, tab- or 

comma-separated values) with different variant identifiers (HGVSc or genomic position). 

All variants were confirmed and harmonised to variant call format (vcf) genomic 

coordinates using VEP v104, and bcftools v1.10.2 (htslib 1.10.2) was used to normalize 

variants (left align and parsimonious). Quality control or pre-filtering to the reported 

variants of the external datasets prior to this was subjective to the genetic centres. 



  

4.12 Variant curation 
 
All data (case cohort aggregated data, gnomAD, and UKB) was analysed in GrCh38. The 
aggregated data of the case cohorts was lifted over from GrCh37 using Picard Tools 
(version 2.23.1). The resulting vcf file was annotated using Ensembl Variant Effect 
Predictor (VEP; version 105)49 with plugins and additional data for ClinVar (version 
20220115)60, gnomAD (version r2.1)48, SpliceAI (1.3.1)61, REVEL62, and LOFTEE48. The 
VEP output was analysed using R (version 4.1.2) and Rstudio. The UKBB WES data was 
incorporated into the analysis using the --frq and --frq counts file formats from PLINK 
(version 1.9)63. Variants identified in the gnomAD data as AC0 (AC=0) were set as 
missing in the analyses and therefore could only be assessed using the UKBB WES data. 
The aggregate frequency and count data from gnomAD and UKB were summarised in an 
additive manner. 

Variants identified in the case cohorts were analysed. MANE, protein altering variants of 
genes of interest that had a MAF of < 0.1% in gnomAD and UKBB were identified. Protein 
altering variants were included if specified as high or moderate impact by Sequence 
Ontology64 and ENSEMBL65, with the addition of splice region variants for further curation. 
The genes of interest represent a list of 8 sarcomere-encoding genes with definitive 
evidence of an association with HCM (MYBPC3, MYH7, MYL2, MYL3, TNNI3, TNNT2, 
TPM1, ACTC1)66 and 11 genes with definitive or strong evidence of an association with 
DCM (BAG3, DES, LMNA, MYH7, PLN, RBM20, SCN5A, TNNC1, TNNT2, TTN, DSP)67. 
FLNC was not included in this study as it was not present on the clinical panels analysed 
in the case cohort. Analysis was restricted to robustly disease-associated variant classes 
for each gene: all PAVs of MYBPC3; non-truncating variants (non-tvs; inframe indels, 
missense variants, start/stop lost variants, and nonsense-mediated decay incompetent 
premature termination codons (NMDi-PTCs)) for the other 7 HCM-associated genes20 
(MYH7, MYL2, MYL3, TNNI3, TNNT2, TPM1, ACTC1); all PAVs for BAG3, LMNA, PLN, 
RBM20, SCN5A, and DSP; TTNtvs (cardiac PSI >90%52); non-tvs in DES, MYH7, 
TNNC1, and TNNT2. 

Splice region variants (in the region of the canonical splice donor and acceptor sites, 
within 1-3 bases of the exon or 3-8 bases of the intron) with a non-protein altering flag 
(i.e., synonymous and intron variants) that would otherwise be excluded were assessed 
in a number of ways; via ClinVar report: those found pathogenic or likely pathogenic with 
at least 2 star evidence for HCM and DCM in ClinVar and reported functional evidence 
for splicing were termed “splice confirmed” or if the functional evidence was unclear for 
splicing were termed “splice likely”; via prediction threshold: the remaining variants were 
included in the analysis met a recommended SpliceAI threshold for “high precision” of > 
0.8. For TTN, splice region, missense variants were analysed by Splice AI to identify 
those variants predicted to cause splicing that would otherwise be excluded. 

LOFTEE was incorporated in the analysis to exclude loss of function (LoF) variants that 
were flagged as “low confidence” (LC) such as “NAGNAG site” requiring reannotation to 
non-LoF variant status and removal of 5’UTR and 3’UTR splice variants. Essential splice 
variant LoF occurs in the UTR of the transcript. Additional positional annotation included 
nonsense-mediated decay (NMD), to identify variants that introduce protein-truncating 
variants (PTCs) that are insensitive to NMD: i) < 50 coding bases68 from a final splice 



  

boundary (final coding exon or 3’UTR exon), (ii) in the final exon, or (iii) in the first 100 
coding bases of the transcript. For single coding exon PLN, all LoF variants were denoted 
as NMD escaping. Furthermore, variants flagged “coding sequence variant” or “protein 
altering variant” were manually curated, as were “stop_lost” and “start_lost” which were 
examined via ENSEMBL sequence and UCSC Genome Browser69 to identify in-frame 
rescues nearby. Where there was no obvious rescue to assess, the variant was denoted 
as “inframe insertion”. 

Variants were classified as pathogenic/likely pathogenic (P/LP) if reported as P/LP for the 
correct CM multiple times in ClinVar and confirmed by manual review, or if annotated as 
P/LP according to ACMG criteria, using the semi-automated CardioClassifier decision 
support tool70 (similar curation previously published20). The primary ACMG classification 
was derived from ClinVar via VEP. All P/LP annotations and variants flagged as 
“conflicting interpretations of pathogenicity” were manually assessed via the ClinVar 
website to confirm curation for the specific cardiomyopathy and assess the date of 
reports, the evidence in comments, and the number of reports agreeing reports. 
CardioClassifier was used as a support tool for determining curations for variants not 
reported in ClinVar (i.e., UK Biobank variants). We note the duplication of definitive 
evidence for MYH7 and TNNT2 for both HCM and DCM, variants in these genes were 
treated as having a role in either HCM or DCM. 

We did not manually adjudicate all variant classifications for this analysis. Of 2,005 
variants observed in cases with HCM or DCM, 1,578 had a ClinVar accession, and 427 
did not. Variants with no ClinVar accession were annotated using the CardioClassifier 
decision support software, following the ACMG framework. 168 loss-of-function variants 
in genes where LoF is a mechanism of disease for the presenting phenotype that were 
also rare were annotated as LP for the purposes of this analysis (PVS1 + PM2). Two 
further variants were prioritised as potentially P/LP by CardioClassifier (both missense 
variants in MYH7). These were manually adjudicated, and both were confirmed as 
fulfilling ACMG criteria for LP. The remaining variants without ClinVar accessions, did not 
have sufficient available evidence for us to formally recurate, and were grouped with the 
VUS for this analysis. An equivalent approach was applied to UKB. Of 6,321 variants, 
3,603 had a ClinVar accession, and 2,717 did not. 306 were rare LoF variants where 
PVS1 & PM2 would be applicable, and they would be reported as LP if observed in a 
patient with disease.  While we would not formally label these as P/LP, since this requires 
them to be observed at least once in an individual with disease, for the purpose of this 
analysis they were grouped with the LP variants. 

Additional allele frequency filtering was used to adjust for potential pre-filtering 
undertaken for the external datasets: the HCM cohorts (case and population) were filtered 
to include variants that have a MAF less than the maximum population AF (gnomAD and 
UKBB) of the external datasets (of which GDx and OMGL had the most filtering, and 
lowest maximum population allele frequency, for HCM and DCM, respectively). This was 
a MAF <0.00036598 in gnomAD and MAF <0.0007344 in UKBB for HCM (via GDx) and 
a MAF <0.000552987 in gnomAD and MAF <0.0006031 in UKBB for DCM (via OMGL). 
This dataset made up the total variants depicted in this study (Table S8, Table S9). To 
estimate penetrance, only variants that were observed more than once in both the case 



  

cohort and population reference dataset were included in the analysis (Table S10, Table 
S11).  

For aggregate penetrance estimates of all rare cardiomyopathy variants by subgroup, the 
UKBB WES data underwent the same variant curation pipeline and filtering thresholds. 
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