
Open Access This file is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 
attribution to the source work.  The images or other third party material in this file are included in the 
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

First fully-automated AI/ML virtual screening cascade 
implemented at a drug discovery centre in Africa



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The paper “First fully-automated AI/ML virtual screening cascade implemented at a drug discovery 

centre in Africa” by Turon et al describes the development of ZairaChem an automated AL/ML platform 

for training QSAR models with potential application for drug discovery, with a potential emphasis on 

malaria and mtb research. The platform incorporates 15 models created on in-house and literature 

datasets and demonstrated adequate performance with various AUROC parameters in >0.7 range, when 

individually benchmarked against the state of the art tolls. 

While the developed binary models are not particularly novel, and rely on established QSAR descriptors 

and algorithms, the idea of developing an open source platform for researchers from African continent 

is far-reaching and deserving. Authors also retrospectively simulated the discovery of a series of 2,4-

disubstituted imidazopyridines as antiplasmodial agents and demonstrated that ZnairaChem could 

qualify them with AROC=0.74. This example is important. 

However, while the paper is technically sound and the goal is noble, authors might need to consider 

adding more ‘punchline’ materials in order to make it attractive for the Nature series readership (while 

this paper would certainly already be welcomed by journals like JCIM). Thus, this works needs some 

original discoveries, such as identification and validation of novel, previously untested agents active 

against mtb or plasmodium. The corresponding experimental section would significantly strengthen the 

paper and would add needed impact. 

Authors should also provide more user guidance, as the platform is intended for public use and relies on 

the open source concept. Ideally, some simple to use web implementation with user-friendly GUI should 

be provided in order to fully capture the value for the proposed platform. 

But overall, this is an important initiative that will be well received by the cheminformatics community. 

Reviewer #2 (Remarks to the Author): 

The paper of Turon et al describes de development of AI/ML or prediction of whole-cell growth 

inhibition assays for malaria and tuberculosis as well as for some pharmacokinetic and toxicity 

properties, main using proprietary datasets from H3D center, but also using some public available 

datasets. The paper is very well written and easy to follow. In my opinion, the paper deserves 

publication, but I have some comments and issues that should be taken in consideration before 

publication. 



In the field of drug discovery and the computer-aided drug discovery, this task is known as Quantitiative 

Structure Activity/Property Relationship Modeling (QSAR/QSPR). So, first, authors should avoid using 

fashion names such as AI/ML and use the correct name of what they are using / developing. 

Also, since the beginning of the paper, it should be stated that the developed models and the pipeline 

are available for the community. This is not clear in the text. 

I did not find the datasets in the git. Are they available? 

Also, authors should compare their models and pipeline with the the established literature, for instance, 

there are many models for hERG, for CYP, for cytotoxicity, and also for Mtb and Pf. Also, they should 

compare with other pipelines. 

Unfortunately, the manuscript has a very limited impact on other researchers, as the datasets used for 

the models are very limited, some have around 100 compounds, which is considered low data 

nowadays. Where data is scarce, authors should have tried to use transfer learning or few-shot learning. 

In my opinion, the major flawn of this work is that the authors did not test their pipeline for a “real-

world” example, which is a bit disappointing. They have only demonstrated the effectiveness of the 

cascade by trying to reproduce an already described discovery of antimalarial compounds. So, in my 

opinion, to worth the publication in Nat Comms, authors should really validate their pipeline by testing 

and proving that their models are really able to accelerate the drug discovery process. 

The abstract is not very accurate and informative - for example: in the abstract is stated that the 

datasets used involve drug metabolism properties. However, the manuscript used besides the Pf and 

Mtb datasets, cytotoxicity data in two cell lines (CHO, HepG2) and some pharmacokinetics properties 

such as aqueous solubility (Aq. sol.), Caco-2 permeability (Caco-2) and intrinsic clearance (CLint) for 

human (H), mouse (M), and rat (R) microsomes., CYP inhibition and hERG cardiotoxicity. Therefore, the 

Abstract should be fully revised to give a better overview of the work. 

Did the authors tried to use some DL architheture? Why not? 

Page 03 - line 78 - Authors start the results with figure 2a. But Figure 1 has not been cited in the text 

before this. 

Authors built only classification models. It would be beneficial for the community to have also some 

regression models. 



Page 04, line 130. When data points were scarce, why didn’t the authors tried transfer learning or few 

shot learning? 

* 10%  of the data was held as a test set. This seems to me too little compounds in the test set. Usually, 

it is kept with 20% of the whole data set. 

* Moreover, did the authors used an external test set? 

* Datasets were very unbalanced (eg. ~15% actives to 85% of inactive). How did the authors deal with 

this? Did the authors tried to balance the datasets? 

* How were the activity cut-offs selected? Are there any rational why for Pf it was 0.1 uM and for Mtb it 

was 5 uM? 

* How were the descriptors chosen? 

* Compounds seem to have many chiral centers. How did the authors deal with the stereochemistry of 

the compounds? Did the activity or biological endpoint was measured on the pure stereoisomers or 

racemic mixture? 

* Why did the authors chose to use both PCA and UMAP for analyzing the chemical space? this should 

be better explained and discussed. 

* Methods section: In my opinion, it is very general and brief and impossible to reproduce the work. 

* Authors should make all files, datasets and scripts available in a git hub so we could test the pipeline 

and all the community could benefit from this work. 

* how were the compounds curated? And how about the duplicates were analyzed? In case that the 

same compound was tested on two or more different assays, how was this analyzed and deal? 

* For the benchmarking, other datasets should be used. 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Response to Reviewers’ Comments 

Reviewer #1 

The paper “First fully-automated AI/ML virtual screening cascade implemented at a drug 

discovery centre in Africa” by Turon et al describes the development of ZairaChem an 

automated AL/ML platform for training QSAR models with potential application for drug 

discovery, with a potential emphasis on malaria and mtb research. The platform incorporates 

15 models created on in-house and literature datasets and demonstrated adequate 

performance with various AUROC parameters in >0.7 range, when individually benchmarked 

against the state of the art tools. 

While the developed binary models are not particularly novel, and rely on established QSAR 

descriptors and algorithms, the idea of developing an open source platform for researchers 

from African continent is far-reaching and deserving. Authors also retrospectively simulated 

the discovery of a series of 2,4-disubstituted imidazopyridines as antiplasmodial agents and 

demonstrated that ZairaChem could qualify them with AUROC=0.74. This example is 

important. 

Response: We would like to thank the Reviewer for the positive and encouraging remarks,  

in particular highlighting (a) the adequate performance of our AI/ML pipeline, (b) the scope of 

our work and mission with respect to drug discovery in Africa, and (c) the importance of the 

experimental validation example.  

As suggested by the Reviewer, we have extended our study with additional examples. 

However, while the paper is technically sound and the goal is noble, authors might need to 

consider adding more ‘punchline’ materials in order to make it attractive for the Nature series 

readership (while this paper would certainly already be welcomed by journals like JCIM). Thus, 

this work needs some original discoveries, such as identification and validation of novel, 

previously untested agents active against mtb or plasmodium. The corresponding 

experimental section would significantly strengthen the paper and would add needed impact. 

Response: We thank the Reviewer for bringing this to our attention. We acknowledge and 

agree with the Reviewer that documenting prospective, original discoveries would significantly 

strengthen this paper. Hence, we have accordingly now included in the revised manuscript 

two prospective studies on active projects at the H3D Centre, and are pleased to reveal the 

general chemical structures for these chemotypes representing novel, previously-untested 

agents in both the malaria (P. falciparum) and tuberculosis (M. tuberculosis) disease areas. 

While detailed experimental values and protocols will be documented in separate publications, 

we are able to share how our AI/ML tools were validated with previously unseen compounds 

and how the agreement between predicted and experimentally-obtained values was 

favourable. We believe that, collectively, this provides strong evidence of a ‘real-world’ 

application of the presented AI/ML toolbox. 

In addition to a new paragraph in the text, which we have highlighted in the revised manuscript, 

we have expanded Figure 4 to include the prospective application of the virtual screening 

cascade models to novel analogues from two active medicinal chemistry programmes at H3D. 

We show the model performance for assays with sufficient experimental data to provide 
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meaningful model validation; specifically, whole-cell activity (Pf NF54 and Mtb, respectively) 

and solubility. Our models show satisfactory performance for these previously untested 

compounds in terms of precision (P) and recall (R) at stringent (s) and more permissive (p) 

cutoffs. For the so-called naphthyridine series: Pf NF54 Ps = 0.667, Rs = 0.118, Pp = 0.333, 

Rp = 0.529; Solubility Ps = 0.765, Rs = 0.703, Pp = 0.648, Rp = 0.946. For the pyrazole series: 

Mtb Ps = 0.778, Rs = 0.298, Pp = 0.577, Rp = 0.872; Solubility Ps = 0.814, Rs = 0.625, Pp = 

0.727, Rp = 1.0. Swarm plots showing the difference in scores between active and inactive 

compounds can be found in the updated Figure 4. This ‘real-world’ example illustrates the 

capacity of the ZairaChem pipeline to produce AI/ML models that significantly accelerate the 

drug discovery process in a resource-constrained setting by prioritising prospective 

compounds for synthesis that are much more likely to progress through the drug discovery 

pipeline.  

Authors should also provide more user guidance, as the platform is intended for public use 

and relies on the open source concept. Ideally, some simple to use web implementation with 

user-friendly GUI should be provided in order to fully capture the value for the proposed 

platform. 

Response: We thank the Reviewer for acknowledging the open source model we adhere to 

throughout the paper. Accessibility and reproducibility are especially essential in the context 

of low-resource settings, and we agree with the Reviewer that an easy-to-use interface would 

benefit researchers outside H3D and increase the usability of the models. To that end, we 

have deployed a light version of the models through a graphical user interface (GUI). We invite 

the Reviewer to try it out on: h3dscreening.ersilia.io [link]. 

Achieving this deployment demanded substantial additional work, which is now included in the 

manuscript. In brief, after developing the Ersilia Compound Embedding, a data-driven 

embedding descriptor optimised for transfer and few-shot learning (https://github.com/ersilia-

os/compound-embedding), we have trained lightweight versions of the H3D models based on 

the tabular FLAML AutoML framework. We have observed that, systematically, these light 

models retain >95% of the performance of the fully-equipped ones (Extended Data Table 6). 

We have also developed a simple StreamLit app (https://github.com/ersilia-os/h3d-screening-

cascade-app) as a backend to serve model predictions through the web app interface from 

which users can submit their queries as a list of SMILES strings. In addition, the models have 

been incorporated in the Ersilia Model Hub to enhance discoverability and so that they can be 

used together with other models in the Hub. 

Importantly, full versions of the models are now also available for download: 

https://github.com/ersilia-os/h3d-screening-cascade-models. In this case, to respect H3D IP 

protection over training set compounds, models have been “anonymised” to avoid chemical 

structure disclosure. We expect the addition of the “Anonymisation” feature in the ZairaChem 

pipeline will also enhance the use of the AutoML tool by other researchers concerned with the 

privacy of their training sets, as is the case for H3D. 

Moreover, we have substantially extended the user CLI documentation in the README file of 

the repository and the official ZairaChem documentation. Both documents are cited in the 

manuscript. 

https://h3d-screening-cascade-app-fikzu.ondigitalocean.app/
https://h3d-screening-cascade-app-fikzu.ondigitalocean.app/
https://github.com/ersilia-os/compound-embedding
https://github.com/ersilia-os/compound-embedding
https://github.com/ersilia-os/h3d-screening-cascade-app
https://github.com/ersilia-os/h3d-screening-cascade-app
https://ersilia.io/model-hub
https://github.com/ersilia-os/h3d-screening-cascade-models
https://github.com/ersilia-os/zaira-chem
https://ersilia.gitbook.io/ersilia-book/chemistry-tools/automated-activity-prediction-models/accurate-automl-with-zairachem
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Overall, we are grateful to this Reviewer for raising this valid point. We feel that these 

necessary improvements to usability have notably expanded the reach of our work. 

But overall, this is an important initiative that will be well received by the cheminformatics 

community. 

Response: We thank the Reviewer for their positive feedback and for highlighting the impact 

of our work on the chemoinformatics community. We would also like to emphasise that the 

end-to-end implementation in a Global South institution in Africa demonstrates that AI/ML tools 

can be developed and implemented without extensive infrastructure. This should encourage 

researchers outside the chemoinformatics community to increase the adoption of the 

technology in their projects. 

Reviewer #2 

The paper of Turon et al describes the development of AI/ML or prediction of whole-cell growth 

inhibition assays for malaria and tuberculosis as well as for some pharmacokinetic and toxicity 

properties, mainly using proprietary datasets from H3D center, but also using some public 

available datasets. The paper is very well written and easy to follow. In my opinion, the paper 

deserves publication, but I have some comments and issues that should be taken into 

consideration before publication. 

Response: We thank the Reviewer for their appreciation of the manuscript and the work 

presented. We are grateful to the Reviewer for recommending the publication of our work, and 

the Reviewer's constructive feedback has contributed to the improvement in the overall quality 

of the manuscript. Though the publication describes a relatively complex computational 

framework, we have intentionally emphasised clarity and conciseness in the hope of making 

it accessible and interesting to a wider audience, with the end goal of increasing uptake of 

AI/ML tools by experimental researchers working in low-resource settings. We have carefully 

discussed the Reviewer’s comments below, and reviewed the work to address their concerns. 

In the field of drug discovery and computer-aided drug discovery, this task is known as 

Quantitiative Structure Activity/Property Relationship Modeling (QSAR/QSPR). So, first, 

authors should avoid using fashion names such as AI/ML and use the correct name of what 

they are using / developing. 

Response: We agree with the Reviewer that the synonymia between QSAR/QSPR and AI/ML 

was not clear in the original manuscript. We now make it more clear throughout the revised 

manuscript with revisions highlighted in yellow. We acknowledge the Reviewer’s comment 

that, indeed, molecular activity/property prediction based primarily on chemical structure (as 

we do here) falls within the QSAR/QSPR approach. ZairaChem is a flexible, extensible 

framework where new descriptors can be included, as well as new supervised learning tools 

(classifiers, in the current case). Some of the by-default descriptors used are deep learning 

embeddings, like GROVER, ChemGPT or Chemical Checker descriptors, and others can be 

easily included from the Ersilia Model Hub catalogue, such as MolBERT. As for the classifiers, 
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we use a set of AutoML techniques, both via a “classical” set of tools (e.g. XGBoost in FLAML 

and AutoGluon) as well as neural network exploration via e.g. Keras Tuner. The MolMapNet 

convolutional network is also used. 

To address the Reviewer’s concern, we have made two substantial additions to ZairaChem, 

both of them falling within the state-of-the-art of AI/ML. First, we have developed a novel 

compound descriptor, the Ersilia Compound Embedding (https://github.com/ersilia-

os/compound-embedding), focused on transfer and few-shot learning. In brief, this embedding 

descriptor follows the FS-Mol approach based on ChEMBL data 

(https://github.com/microsoft/FS-Mol), with modifications to capture GROVER and Mordred 

descriptors which, in our hands, are highly performant in many of the classification tasks. The 

resulting Ersilia Compound Embedding has 1,024 dimensions and has been successfully 

incorporated into the ZairaChem pipeline in a distilled (lightweight) form. Second, we have 

incorporated a genuinely new classifier to the ensemble of AutoML tools. In particular, the 

ZairaChem ensemble now uses TabPFN (https://github.com/automl/tabpfn), a fully-trained 

transformer network for tabular classification that performs Bayesian inference with a single 

forward pass. To the best of our knowledge, the recently published TabPFN (Hollman, 2022) 

has not been previously used in QSAR/QSPR. 

Collectively, the ZairaChem pipeline thus involves a significant number of AI/ML 

methodologies. We have included mentions to the new AI/ML methods with hopes that a better 

and more appropriate use of the QSAR/QSPR and AI/ML terms in the text will be found. 

Also, since the beginning of the paper, it should be stated that the developed models and the 

pipeline are available for the community. This is not clear in the text. 

Response: We would like to thank the Reviewer for raising this valid point. In line with Ersilia’s 

mission of equipping laboratories in the Global South with AI/ML tools for infectious disease 

research, we have developed a light version of the models for deployment, and we have 

created an easy-to-use Graphical User Interface (GUI) to improve their usability and to 

encourage uptake at other institutions outside H3D. This can be accessed via the web-based 

version of the app: h3dscreening.ersilia.io [link]. Correspondingly, the code for producing this 

app can be found in this new GitHub repository: https://github.com/ersilia-os/h3d-screening-

cascade-app. In addition, the H3D models have been included in the Ersilia Model Hub 

(https://ersilia.io/model-hub) and a downloadable version is available here: 

https://github.com/ersilia-os/h3d-screening-cascade-models. This has also been clarified in 

the revised version of the manuscript, and the links to the models and usage instructions can 

be found in the Code and Data Availability section. 

In sum, in the manuscript revision process, we put significant emphasis on improving the 

accessibility of our H3D models.  

I did not find the datasets in the git. Are they available? 

Response: The majority of the models are developed with proprietary data and compound 

collections from the H3D Centre which, due to intellectual property (IP) constraints, cannot be 

publicly disclosed. In our opinion, these constraints advocate for the release of open-source 

AI/ML models, especially when they are built on IP-sensitive data, since these models can 

then act as a “surrogate” way of releasing the information accumulated at the H3D Centre over 

the last decade without threatening their IP position. Similar initiatives have been undertaken 

https://github.com/ersilia-os/compound-embedding
https://github.com/ersilia-os/compound-embedding
https://github.com/microsoft/FS-Mol
https://github.com/automl/tabpfn
https://github.com/automl/TabPFN
https://h3d-screening-cascade-app-fikzu.ondigitalocean.app/
https://h3d-screening-cascade-app-fikzu.ondigitalocean.app/
https://github.com/ersilia-os/h3d-screening-cascade-app
https://github.com/ersilia-os/h3d-screening-cascade-app
https://ersilia.io/model-hub
https://github.com/ersilia-os/h3d-screening-cascade-models
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by large pharmaceutical companies and consortia, and have been well received by the 

scientific community. For example, the MAIP model, a predictor of antimalarial activity, has 

been developed thanks to a public-private partnership between five pharmaceutical 

companies and non-profit partners, and the model is available online at EMBL-EBI, but the >7 

M compounds used to train it has not been disclosed (Bosc et al, 2021). Another example 

would be the MELLODDY consortium, that centralises private bioactivity data from multiple 

stakeholders by means of AI/ML modelling. Along these lines, in the process of this revision, 

we have added an “anonymisation” flag in the ZairaChem pipeline that allows us to safely 

release the fully-trained models for the community. All models are now available for download, 

as mentioned in the previous comment. 

The cytochrome P450 AI/ML models have been built using publicly-available data (ChEMBL 

and PubChem) on cytochrome inhibition, as described in the manuscript. Public curated data 

for the CYP P450 models is available here. 

Also, authors should compare their models and pipeline with the established literature, for 

instance, there are many models for hERG, for CYP, for cytotoxicity, and also for Mtb and Pf. 

Also, they should compare with other pipelines. 

Response: We agree with the Reviewer that benchmarking our AutoML pipeline (ZairaChem) 

against established datasets and tools is important to demonstrate its performance outside 

the H3D chemical space. Indeed, in Figure 2 we report two use-cases outside the H3D 

datasets. First, the CYP P450 AI/ML models have been built using public data from ChEMBL 

and PubChem, and then used to predict the activity of H3D compounds (Figure 2 and 

Extended Data Figure 2 and 3). Second, the hERG model used to predict hERG activity in the 

H3D dataset is a deep learning model developed by Karim et al, 2021, that demonstrates good 

predictive potential on the H3D chemical space (Figure 2). In addition, the ZairaChem pipeline 

was benchmarked with the Therapeutics Data Commons (TDC) set of 13 ADMET binary 

classification tasks, which include predictions for standardised datasets for: bioavailability, P-

glycoprotein inhibition, hERG inhibition, CYP inhibition, blood-brain-barrier permeation, 

mutagenicity, and liver toxicity. The benchmarking results can be found in Extended Data 

Table 2, where out-of-the-box ZairaChem models scored between 1st and 4th place on the 

TDC ADMET leaderboard in a five-fold cross-validation. We have included additional text in 

the revised manuscript to make the importance of this benchmarking result more explicit. 

Finally, as suggested by the Reviewer, we have further extended the benchmarking to include 

available open source models in the literature. To understand to what extent models 

developed with external data and different AI/ML methods can be applied to the H3D use-

case, we have selected a version of the MAIP model  available from the Ersilia Model Hub 

(https://github.com/ersilia-os/eos2gth) (Bosc et al, 2021) and the ChemTB model (Ye et al, 

2021). These models predict the bioactivity against P. falciparum and M. tuberculosis, 

respectively, and are publicly available. We observe how they retain some predictive potential 

in the H3D dataset (AUROCs between 0.74 and 0.62) but they do not attain the same level of 

performance as the models developed with ZairaChem (Pf NF54 0.902, Mtb 0.903). For the 

ADMET properties, we have chosen the NCATS@ADME toolbox, which offers AI/ML models 

for P450 cytochrome inhibition (CYP3A4, CYP2C9, CYP2D6), aqueous solubility and human 

and rat metabolic clearance. Again, AUROCs for H3D datasets in the ADME@NCATS toolbox 

range between 0.76 and 0.62, yielding inferior performances to the ZairaChem models 

reported in Extended Data Table 3. This allows us to conclude that developing models with 

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00487-2
https://github.com/ersilia-os/open-data-cleaning
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00541-z
https://tdcommons.ai/
https://www.ebi.ac.uk/chembl/maip/
http://cadd.zju.edu.cn/chemtb/
http://cadd.zju.edu.cn/chemtb/
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in-house data using automated AI/ML pipelines adds significant value to modelling efforts and 

enables the selective identification of potential bioactive, drug-like compounds in the H3D 

collection. These results have been added in Extended Data Figure 1 and are referenced in 

the text.  

Unfortunately, the manuscript has a very limited impact on other researchers, as the datasets 

used for the models are very limited, some have around 100 compounds, which is considered 

low data nowadays. Where data is scarce, authors should have tried to use transfer learning 

or few-shot learning. 

Response: While the majority of the AI/ML models have been trained with datasets containing 

over a thousand compounds, we agree that some models, like the Caco-2 permeability model, 

are low data (Extended Data Table 1). In any case, it is true that the number of “actives” is 

limited in some datasets, which necessarily limits the domain of applicability of the tools. The 

Reviewer’s suggestion to include transfer and few-shot learning in our dataset is an excellent 

one and, indeed, this is the main driver behind the newly added Ersilia Compound Embedding. 

By design, this embedding captures bioactivity data from ChEMBL and, conjointly, uses pre-

trained (transfer-learning) embeddings such as GROVER. This embedding procedure is now 

incorporated in the default ZairaChem configuration, along with another transfer learning 

approach (Chemical Checker, Duran-Frigola et al, 2020). In addition, as mentioned in an 

earlier response, we have also incorporated TabPFN, a classifier specifically developed to 

resolve small classification tasks. 

In addition, in cases where in-house data are scarce, we have integrated data from external sources, 

like in the case of the hERG and CYP models. We leverage a combination of CYP data from public 

databases (~15 000 compounds) and 30 H3D compounds to improve CYP model performance in the 

H3D chemical space and we demonstrate the resulting improvement in model performance in 

Extended Data Figure 6. For the hERG use-case, we leverage CardioToxNet, a ready-made AI/ML model 

developed by Karim et al, 2021. In a broader sense, the Ersilia Model Hub (a resource plugged to 

ZairaChem) is an ever-growing repository of ready-to-use AI/ML models. As more models are 

incorporated in this resource, we envisage that they can be selectively used as auxiliary inputs for 

ZairaChem, thus providing yet another means to perform transfer learning.

Finally, to provide guidance for model users (e.g. medicinal chemists), we have investigated 

the contribution of general data versus specific chemical series data points to model 

performance by training models on datasets consisting of 100 series-specific compounds 

(Figure 3c, 3g). The data drop-out study shows how, while the addition of local training points 

improves model performance (as expected), the presence of ~30 compounds from a specific 

chemical series to the “global” dataset is often sufficient to provide good predictive 

performance. This exercise can provide a valuable guide for researchers who want to apply 

the ZairaChem pipeline to their own datasets. 

In my opinion, the major flaw of this work is that the authors did not test their pipeline for a 

“real-world” example, which is a bit disappointing. They have only demonstrated the 

effectiveness of the cascade by trying to reproduce an already described discovery of 

antimalarial compounds. So, in my opinion, to worth the publication in Nat Comms, authors 

should really validate their pipeline by testing and proving that their models are really able to 

accelerate the drug discovery process. 

https://www.nature.com/articles/s41587-020-0502-7
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00541-z
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Response: We thank the Reviewer for this feedback and agree with the valid point they have 

raised vis-à-vis testing the pipeline against a ‘real-world’ example. To address this point, we 

have included two prospective studies in the revised manuscript. We have included an 

additional supplementary figure (Extended Data Figure 7) showing the prospective 

performance of the in-house models, which were trained on data up to 2021, for data produced 

across all H3D Centre projects in 2022. Furthermore, we have expanded Figure 4 to include 

a prospective study for two specific chemical series, spanning both malaria (P. falciparum) 

and tuberculosis (M. tuberculosis) disease areas, for assays in which sufficient experimental 

data are available for model validation. These include Pf NF54 and Mtb predictions for the so-

called naphthyridine and pyrazole chemical series, respectively, as well as aqueous solubility 

predictions. 

As previously described in response to Reviewer 1, the model predictions show satisfactory 

prediction performance in terms of precision (P) and recall (R) at stringent (s) and more 

permissive (p) cutoffs. For the naphthyridine series: Pf NF54 Ps = 0.667, Rs = 0.118, Pp = 

0.333, Rp = 0.529; Solubility Ps = 0.765, Rs = 0.703, Pp = 0.648, Rp = 0.946. For the pyrazole 

series: Mtb Ps = 0.778, Rs = 0.298, Pp = 0.577, Rp = 0.872; Solubility Ps = 0.814, Rs = 0.625, 

Pp = 0.727, Rp = 1.0. Figure 4 of the manuscript has been updated to show these results, 

including swarm plots to show the difference in scores between active and inactive 

compounds. The implication of these results is that by applying these models, medicinal 

chemists at H3D now have a computational aid to develop the structure-activity relationships 

much more efficiently and, therefore, more quickly identify promising compounds to advance 

through the drug discovery pipeline. As we describe in the revised version of the manuscript, 

these projects have yielded compounds with improved pharmacokinetic and efficacy profiles 

relative to those previously reported for this chemotype (in the case of the antimalarial series) 

and compounds with improved potency, aqueous solubility and cardiotoxicity margins (in the 

case of the antituberculosis series). Experimental details relating to the specific compounds 

are beyond the scope of this manuscript and will be described in separate publications. 

The abstract is not very accurate and informative - for example: in the abstract it is stated that 

the datasets used involve drug metabolism properties. However, the manuscript used besides 

the Pf and Mtb datasets, cytotoxicity data in two cell lines (CHO, HepG2) and some 

pharmacokinetics properties such as aqueous solubility (Aq. sol.), Caco-2 permeability (Caco-

2) and intrinsic clearance (CLint) for human (H), mouse (M), and rat (R) microsomes., CYP 

inhibition and hERG cardiotoxicity. Therefore, the Abstract should be fully revised to give a 

better overview of the work. 

Response: We agree and thank the Reviewer for this comment. We have revised the text in 

the Abstract to better and more accurately reflect the focus of this work within the word limit; 

that is, stating explicitly the assays for which models have been developed. Edits to the revised 

manuscript are highlighted in yellow.

Did the authors try to use some DL architecture? Why not? 

Response: Yes, indeed. ZairaChem used DL architectures and, as mentioned above, we 

have made new additions in this direction. Amongst the by-default DL architectures included 

are: GROVER (a graph-based transformer); ChemGPT; Chemical Checker “signaturizers”; 

TabPFN; KerasTuner MLPs; MolMapNet (convolutional), one of the AutoGluon components; 

and the Ersilia Compound Embedding, which capitalises on prototypical networks. 
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Page 03 - line 78 - Authors start the results with figure 2a. But Figure 1 has not been cited in 

the text before this. 

Response: We thank the reviewer for pointing out this mistake. We have removed the 

reference to Figure 2a on the third page and have instead explicitly written out the whole-cell 

and biochemical ADMET properties to which we are referring. 

Authors built only classification models. It would be beneficial for the community to also have 

some regression models. 

Response: We agree with the Reviewer that regression tasks can be valuable to the 

community. In this study, we have focused on binary classifications since the goal is to speed 

up the decision-making process at the H3D Centre, which employs go/no-go decisions based 

on expert-determined experimental cut-offs. A sentence about selection of cut-offs through 

consultation with experts has been added in the text. Our next steps include the development 

of ZairaChem regression models, but this is outside the scope of the present manuscript. 

Page 04, line 130. When data points were scarce, why didn’t the authors try transfer learning 

or few shot learning? 

Response: We have addressed this point in our response to the comment above with respect 

to datasets of 100 compounds, few-shot learning and transfer learning. We have improved the 

manuscript to include explicit mention of transfer learning and few-shot learning. 

* 10%  of the data was held as a test set. This seems to me too little compounds in the test 

set. Usually, it is kept with 20% of the whole data set.

Response: We thank the Reviewer for this valid point and agree that a 20% test set is the 

standard used in most chemoinformatic studies. We have devoted a significant computational 

effort to re-train the fold validations using a 80-20% data split. The text has been modified 

accordingly and the figures show the updated results. 

* Moreover, did the authors use an external test set? 

Response: The ZairaChem pipeline has been validated using external datasets from the 

Therapeutics Data Commons (https://tdcommons.org) benchmark. Our AutoML pipeline 

shows an excellent out-of-the-box performance, ranking between the 1st and 4th for various 

ADMET prediction tasks (Extended Data Table 2). For a more comprehensive explanation, 

please see our previous answer to this Reviewer. 

* Datasets were very unbalanced (eg. ~15% actives to 85% of inactive). How did the authors 

deal with this? Did the authors try to balance the datasets? 

Response: We thank the Reviewer for raising this very important point. Data imbalance is a 

well-known phenomenon in early-stage drug discovery (hit-to-lead), as one scopes out the 

chemical space around the minimum pharmacophore. This will of course be different in more 

‘mature’ projects, in which robust structure-activity relationships have been established, and 

so, the relative proportion of active compounds is expected to increase as a project 

progresses. In any case, to clarify the imbalance in the datasets, we have added the 

percentage of active and inactive molecules in Extended Data Table 1. Furthermore, to 

address the imbalance issue we have added a combination of three balancing techniques, 

https://tdcommons.org/
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including oversampling the positive class (K-Means SMOTE), undersampling the negative 

class (edited nearest neighbours) and a combination of over and under sampling with SMOTE-

Tomek. We have used the imbalance-learn python library to that end. Methods have been 

updated accordingly. 

* How were the activity cut-offs selected? Are there any rational why for Pf it was 0.1 uM and 

for Mtb it was 5 uM? 

Response: Activity cut-offs were determined according to the H3D Centre screening cascade 

checkpoints and in consultation with relevant experts. Potency and efficacy values typically 

vary across disease areas and pathogens, in agreement with different target product profiles 

(TPPs). For example, therapeutic agents against P. falciparum are typically efficacious at 

nanomolar IC50 in vitro potencies while, for Mtb – until more efficacious therapies are 

developed – much higher doses (in the micromolar range) are typically required for in vitro

potency. Therefore, laboratory assays for these two disease areas use different cut-off values 

to determine if a molecule should progress in the cascade. Hence, the activity cut-off for P. 

falciparum is currently lower than for M. tuberculosis. To allow for flexible selection of 

compounds based on the assay criteria (typically, more restrictive in the advanced drug 

discovery stages) we provide not only the binarised (0: inactive, 1: active) outcome for the 

prediction but also the probability of belonging to the active class. The probability is a 

continuous value that allows independent researchers to set a threshold that suits their 

requirements (by default, the probability threshold is set at 0.5). We have made this clearer in 

the text. 

* How were the descriptors chosen?

Response: ZairaChem contains a set of by-default descriptors, which is configurable via a 

simple configuration file where descriptors from the Ersilia Model Hub can be specified. 

Selection of descriptors were done following two criteria: 

On one hand, given the broad range of tasks to be covered (from solubility prediction to whole-

cell assay bioactivity, or interaction with drug-metabolising enzymes), we tried to cover the 

taxonomy of small-molecule descriptors available to the community. Thus, we selected 

Mordred (a comprehensive descriptor physicochemical properties), ECFP counts 

(representing the 2D topology), a graph-based transformer pre-trained on a large chemical 

space (Grover), a chemical language model (ChemGPT), and a bioactivity profile descriptor 

(Chemical Checker). We have now added another type of descriptor, the Ersilia Compound 

Embedding, as a representative of the transfer learning and few-shot learning strategies. 

On the other hand, specific selection criteria within the relatively large marketplace of 

descriptors within these categories were based on (a) ease of implementation, (b) 

dimensionality, (c) computing speed, (d) popularity, and (e) observed overall performance 

across tasks, including previous expertise from our team. 

Generally, we found the selected set of descriptors to be a reasonable choice, with none of 

them being consistently better, or worse, than the rest across tasks. Importantly, ZairaChem 

contains a “blending” meta-prediction step at the end where prediction results from each 

descriptor are aggregated in a weighted manner, depending on the task. This effectively 

upweights descriptors that are more performant for the task of interest. Also, please note that 
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within ZairaChem, dimensionality reduction is often performed to retain essential components 

of a descriptor array. 

An improved explanation of descriptor choice has been added to the Methods section and is 

highlighted in yellow in the revised manuscript. 

* Compounds seem to have many chiral centers. How did the authors deal with the 

stereochemistry of the compounds? Did the activity or biological endpoint was measured on 

the pure stereoisomers or racemic mixture? 

Response: We thank the Reviewer for raising this point. Biological experiments and endpoints 

correspond to the annotations recorded in the H3D library, according to whether they are pure 

stereoisomers, a mixture of diastereomers, etc. This granularity in stereochemistry is 

subsequently lost during the MELLODY-Tuner standardisation protocol where different 

enantiomers collapse to the same flattened SMILES string. While we acknowledge that 

different stereochemistry may elicit different biological responses and that this is a limitation 

in the pipeline, the vast majority (>90%) of compounds in this work are achiral. Of the 

remaining chiral compounds, at least 50% are racemic mixtures. It is also noteworthy that in 

some cases, there is no activity difference between the racemic mixture and respective 

enantiomers, which explains why some antimalarial drugs such as chloroquine were 

developed as racemates for low cost of goods. 

In addition, given the additional resource cost associated with synthesising pure enantiomers, 

drug discovery programs in the early stages of the pipeline prioritise making broad chemical 

modifications to establish the SAR/SPR trends in the chemical space of interest. Furthermore, 

chirality is of less concern for phenotypically-driven projects which form the majority of the 

H3D Centre’s portfolio. It is within this context that the models have been developed and that 

we envisage the models in this work making the greatest impact toward accelerating drug 

development.  

* Why did the authors chose to use both PCA and UMAP for analyzing the chemical space? 

this should be better explained and discussed. 

Response: We believe these methods are complementary approaches to visualising 

chemical space. A PCA is a linear rescaling of the dataset that preserves the overall global 

relationship between data points (i.e. long-range or global distances) while a UMAP is a 

nonlinear rescaling that preserves local clustering between structurally-related compounds 

and provides better insight into the homogeneity of a dataset in chemical space. The current 

caption of Figure 3 indicates these differences and we have added a similar, succinct 

explanation to the methods section. 

* Methods section: In my opinion, it is very general and brief and impossible to reproduce the 

work. 

Response: We thank the Reviewer for pointing this out and agree with the Reviewer. We 

have improved the Methods section to include more information. Importantly, we have also 

extended the available online documentation of the ZairaChem pipeline (README file and 

official Ersilia code documentation).  

https://github.com/ersilia-os/zaira-chem
https://ersilia.gitbook.io/ersilia-book/chemistry-tools/automated-activity-prediction-models/accurate-automl-with-zairachem


11 

* Authors should make all files, datasets and scripts available in a git hub so we could test the 

pipeline and all the community could benefit from this work. 

Response: As noted above, in this revision we have put special emphasis in making our work 

available to the community. While there are intellectual property restrictions regarding the 

open sharing of H3D’s proprietary chemical library, we have found a workaround to release 

ZairaChem models in ‘anonymised’ form (i.e. excluding any traces of small molecule structure 

data in the internal files stored by the model), and they are now available for download. In 

addition, and following a related comment by Reviewer 1, we have built a web-based interface  

(h3dscreening.ersilia.io [link]) to quickly run predictions on light models based on H3D data. 

ZairaChem scripts, and auxiliary repositories containing source code used in the screening, 

are all publicly available as part of Ersilia’s GitHub organisation profile.  

* how were the compounds curated? And how about the duplicates were analyzed? In case 

that the same compound was tested on two or more different assays, how was this analyzed 

and deal? 

Response: The H3D chemical library is held in a database built on the Dotmatics software 

platform. All compounds in this database with registered experimental results were collected 

into raw datasets for each assay of interest, which spans compounds synthesised since the 

founding of the H3D Centre in 2010. Indeed, most compounds had replicate assay 

measurements, ensuring data reliability, that needed to be accounted for in order to 

standardise data to have a single label for each SMILES. 

For each compound, first the variability between replicates was determined by calculating the 

mean of the differences for every pair of assay measurements, followed by taking this as a 

ratio of the overall mean measurement to calculate a relative error. All compounds that had a 

relative error >1 were discarded from the dataset, i.e. those compounds with highly variable 

differences between experimental data points that would cause an unreliable label 

(approximately 10% of all compounds). For the remaining compounds, the mean of the 

experimental values was assigned as the corresponding final label. This provided a flexible 

approach across virtual screening cascade assays whose outcomes spanned several orders 

of magnitude. 

Compounds were further curated by selecting experimental values corresponding to a single 

set of assay conditions to reduce noise in the data. This was particularly relevant in the case 

of, for example, Mtb, in which cells exhibit differing growth characteristics under different cell 

culture conditions. The assay conditions and activity cut-offs were both selected in 

consultation with experimental scientists at H3D to ensure relevance of the resulting models. 

We have expanded the methods section to include further discussion of the data curation as 

highlighted in yellow in the revised manuscript. 

* For the benchmarking, other datasets should be used. 

Response: We agree and, indeed, during this revision we have expanded our external 

validations substantially. As explained in an earlier response, we have benchmarked the 

ZairaChem pipeline using the Therapeutics Data Commons which provides ready-to-use 

datasets for easy benchmarking of AI/ML pipelines. Our models have ranked amongst the top 

three in all classification problems, except for BBB_Martins and CYP3A4_Veith (4th) 

https://github.com/ersilia-os/h3d-screening-cascade-models
https://h3d-screening-cascade-app-fikzu.ondigitalocean.app/
https://h3d-screening-cascade-app-fikzu.ondigitalocean.app/
https://github.com/ersilia-os/h3d-screening-cascade-code
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(Extended Data Table 2). In addition, to further address the Reviewer’s comment, we have 

included additional benchmarking for P. falciparum and M. tuberculosis, as well as a selection 

of ADME assays, evaluating the performance of third-party models on H3D data and 

comparing it to the ZairaChem performance. Overall, we have found ZairaChem to be a state-

of-the-art, fully automated pipeline that can be confidently applied across a broad range of 

tasks. 

As instructed, we have electronically resubmitted a revised manuscript incorporating the 

various revisions as outlined above. We remain available to further edit/revise the manuscript 

as you may require. In the meantime, we trust that these revisions meet with your approval. 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

Authors provided substantial revisions to the manuscript that address reviewer's comments. They 

provided some examples of prospective analysis, developed a public tools for using 'light' versions of 

their models. These revisions are sufficient for publication. 

Reviewer #2 (Remarks to the Author): 

In this revised version of the manuscript, authors have improved their manuscript accordingly to the 

reviewers comments, specially improving the methods section, making all data available and more 

importantly, benchmarking their models with other previously published and applying their pipeline for 

a “real-world” example. 

Moreover, they have devoted a significantly computational effort to fully accomplish most of all 

requests made by the two reviewers. The tone manuscript is now broader, to making it accessible and 

interesting to a wider audience. 

So, I strongly recommend this paper for publication in Nature Communications. 



Response to Reviewers’ Comments

NCOMMS-23-01494-T: First fully-automated AI/ML virtual screening cascade 
implemented at a drug discovery centre in Africa

We’d like to thank the Reviewers for their positive feedback. We are grateful for the 
opportunity to publish our work at Nature Communications. 

Reviewer #1 (Remarks to the Author): 

Authors provided substantial revisions to the manuscript that address reviewer's comments. 
They provided some examples of prospective analysis, developed a public tools for using 
'light' versions of their models. These revisions are sufficient for publication. 

We’d like to thank the Reviewer for acknowledging the effort in addressing his/her comments 
and, especially, developing an easy-to-use interface that will increase the impact of our 
work.

Reviewer #2 (Remarks to the Author): 

In this revised version of the manuscript, authors have improved their manuscript 
accordingly to the reviewers comments, specially improving the methods section, making all 
data available and more importantly, benchmarking their models with other previously 
published and applying their pipeline for a “real-world” example. 
Moreover, they have devoted a significantly computational effort to fully accomplish most of 
all requests made by the two reviewers. The tone manuscript is now broader, to making it 
accessible and interesting to a wider audience. 
So, I strongly recommend this paper for publication in Nature Communications. 

We’d like to thank the Reviewer for his/her recommendation to publish our work in Nature 
Communications. We are indeed convinced that the improvements made following 
Reviewers’ comments have increased the reach and interest of our manuscript. 
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