Supplemental Figures

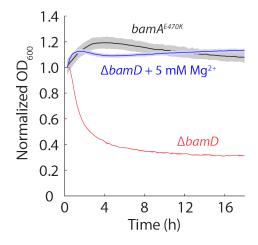


Figure S1: Mg²⁺ addition prevents lysis of $\Delta bamD$ cells in spent LB. OD was measured after log-phase cells in LB were transferred to spent LB. OD measurements were normalized to the value upon transfer at *t*=0. Curves are mean values and shading represents 1 standard deviation. *n*=2 biological replicates.

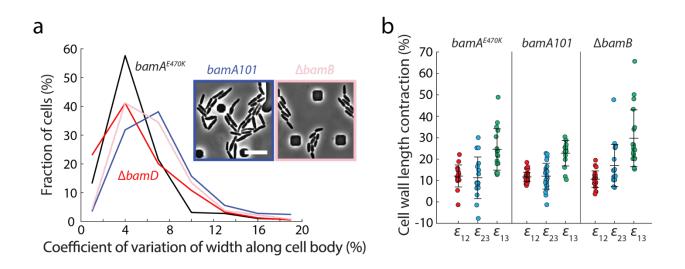


Figure S2: Introduction of the *bamA101* allele or deletion of *bamB* causes cell shape defects without compromising OM stiffness.

- a) Similar to $\Delta bamD$ cells, bamA101 and $\Delta bamB$ cells exhibit more width defects than $bamA^{E470K}$, as indicated by the increased fraction of cells with larger coefficient of variation of cell width. Cells were grown in a microfluidic device; square regions are pillars in the device. Scale bar: 10 µm. *n*>260 cells for each strain.
- b) *bamA101* and Δ*bamB* cells have similar OM stiffness to *bamA^{E470K}* cells, as indicated by the similar length contractions (ε₁₂, ε₂₃, and ε₁₃) upon plasmolysis, lysis, and in total, respectively. Data are presented as mean values ±1 standard deviation. Sample sizes: *n*=17 cells for ε₁₂, ε₂₃, and ε₁₃ for *bamA^{E470K}*; *n*=39, 15, and 24 for ε₁₂, ε₂₃, and ε₁₃, respectively, for *bamA101*; *n*=23, 19, and 19 for ε₁₂, ε₂₃, and ε₁₃, respectively, for Δ*bamB*.

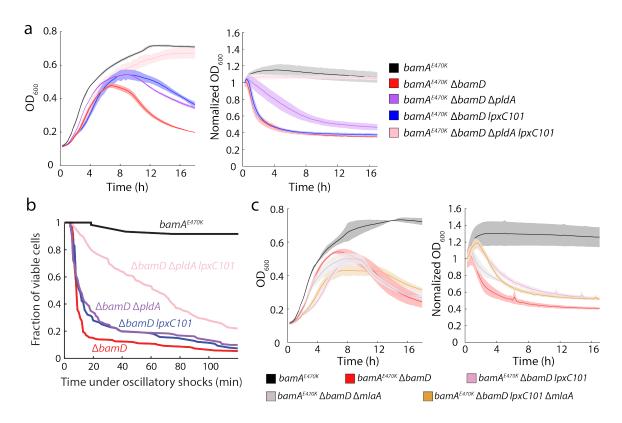


Figure S3: Introduction of the *lpxC101* allele to $\Delta bamD$ cells improves cell growth and rescues lysis in spent media similar to deletion of *mlaA*.

- a) Lysis of Δ*bamD* cells in stationary phase (left) and spent LB (right) was rescued by introduction of the *lpxC101* allele and deletion of *pldA*, while *lpxC101* alone did not suppress lysis in spent LB. *n*=3 biological replicates. Curves are mean values, and shading represents 1 standard deviation.
- b) Cell lysis due to oscillatory hyperosmotic shocks (cycles of 1 min in LB and 1 min in LB+400 mM sorbitol) (Methods) was partially rescued by the *lpxC101* allele and deletion of *pldA*, while *lpxC101* alone did not suppress lysis. *n*=60 for *bamA*^{E470K}; *n*>100 cells for all other strains.

c) Lysis of ∆*bamD* cells in stationary phase (left) or spent LB (right) was not suppressed by the *lpxC101* allele, deletion of *mlaA*, or both. *n*=3 biological replicates and shading represents 1 standard deviation.

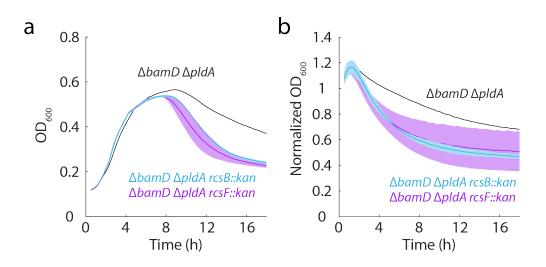


Figure S4: Disruption of the Rcs pathway does not reduce cell lysis due to *bamD* deletion.

a,b) Disruption of the Rcs pathway by deleting either *rcsB* or *rcsF* from $\Delta bamD \Delta pldA$ cells did not reduce cell lysis in stationary phase cultures (a) or in log-phase cultures transferred to spent LB (b). Shading represents 1 standard deviation. *n*=2 biological replicates for $\Delta bamD \Delta pldA \ rcsB::kan$ and $\Delta bamD \Delta pldA \ rcsF::kan; n = 1$ biological replicate for $\Delta bamD \Delta pldA$.

Supplementary Table

Strain	Genotype	Source/reference Ref. 41			
MC4100	F-araD139 (argF-lac)U169 rpsL150 relA1 flb5301 deoC1 ptsF25 thi				
JCM158	MC4100 ara ^R	Ref. 42			
HC687	MC4100 ara $^{+}$ mlaA * $\Delta yfdI$	Ref. ¹⁵			
IMB1047	JCM158 bamA ^{E470K}	This study			
IMB1056	JCM158 bamA ^{E470K} \DamD	This study			
IMB1132	JCM158 $bam A^{E470K} \Delta bam D \Delta pld A$	This study			
IMB1089	JCM158 bamA ^{E470K} \DamD lpxC101 leuB::kan	This study			
IMB1090	JCM158 bamA ^{E470K} \DamD lpxC101 leuB::tn10	This study			
IMB1139	JCM158 $bam A^{E470K} \Delta bam D \Delta pldA lpxC101$ leuB:: $tn10$	This study			
IMB1199	JCM158 $bam A^{E470K} \Delta bam D \Delta m la A lpxC101 leu B::tn10$	This study			
IMB1235	JCM158 $bamA^{E470K} \Delta bamD \Delta m laA$	This study			
IMB1231	JCM158 $bam A^{E470K} \Delta bam D \Delta pld A \Delta mla A$	This study			
IMB1233	JCM158 $bamA^{E470K} \Delta bamD \Delta pldA \Delta mlaC$	This study			
IMB1130	JCM158 bamA ^{E470K} lptD-3xFLAG	This study			
IMB1131	JCM158 bamA ^{E470K} \DamD lptD-3xFLAG	This study			
IMB1241	JCM158 bamA ^{E470K} ΔbamD lptD-3xFLAG lpxC101 leuB::kan	This study			
IMB1242					

IMB1243	JCM158 bamA ^{E470K} \DamD lptD-3xFLAG	This study
	pldA::kan	
IMB1247	JCM158 $bamA^{E470K} \Delta bamD lptD-3xFLAG \Delta pldA$	This study
	lpxC101 leuB::kan	
IMB1248	JCM158 $bamA^{E470K} \Delta bamD lptD-3xFLAG \Delta pldA$	This study
	mlaA::kan	
IMB1143	JCM158 bamA ^{E470K} attHK::Plac-mCherry	This study
	pZS21kan::GFP	
IMB1144	JCM158 bamA ^{E470K} ΔbamD attHK::Plac-mCherry	This study
	pZS21kan::GFP	
IMB1210	JCM158 bamA ^{E470K} Δ bamD lpxC101 leuB::tn10	This study
	attHK::Plac-mCherry pZS21kan::GFP	
IMB1211	JCM158 bam A^{E470K} $\Delta bamD \Delta pldA$ attHK::Plac-	This study
	mCherry pZS21kan::GFP	
IMB1212	JCM158 bamA ^{E470K} ΔbamD lpxC101 leuB::tn10	This study
	attHK::Plac-mCherry pZS21kan::GFP	-
IMB1239	JCM158 bam A^{E470K} $\Delta bamD \Delta m laA attHK::Plac-$	This study
	mCherry pZS21kan::GFP	-
IMB1240	JCM158 bam A^{E470K} $\Delta bamD \Delta pldA \Delta mlaA$	This study
	attHK::Plac-mCherry pZS21kan::GFP	
IMB1202	JCM158 $bamA^{E470K} \Delta bamD \Delta pldA rcsB::kan$	This study
IMB1203	JCM158 $bamA^{E470K} \Delta bamD \Delta pldA rcsF::kan$	This study
IMB479	B479 JCM158 bamA101	
BH92	JCM158 bamB::kan (Blattner allele)	This study
Plasmids		
pCP20	Temperature sensitive vector expressing	Ref. ⁴³
1	yeast Flp recombinase	
pZS21	Low-copy vector with kanamycin resistance	Ref. 44
pZS21::GFP	Vector expressing cytoplasmic GFP	Ref. ⁴⁵

Supplementary Table 1: *E. coli* strains and plasmids used in this study.

	ΔbamD,	bamA ^{E470K} ,	ΔbamD,	bamA ^{E470K} ,	ΔbamD,	bamA ^{E470K} ,	ΔbamD,	ΔbamD,
	CV:	CV: (4,8)	CV:	CV: (8,12)	CV:	CV:	CV:	CV:
	(0,4)		(4,8)		(8,12)	(12,16)	(12,16)	(16,30)
bamA ^{E470K} ,	8.2×10-8	0.040		0.31		0.18		
CV: (0,4)								
ΔbamD,			0.52		0.061		0.0068	1.2×10-7
CV: (0,4)			0.02		0.001		0.0000	1.2.10
bamA ^{E470K} ,			7.4×10-7	0.94		0.41		
CV: (4,8)			7.1710	0.71		0.11		
ΔbamD,					0.0036		0.027	1.8×10-7
CV: (4,8)					0.0000		0.002	10 10
bamA ^{E470K} ,					0.0025	0.56		
CV: (8,12)								
ΔbamD,							0.21	1.9×10-5
CV: (8,12)								
bamA ^{E470K} ,								
CV:							0.64	
(12,16)								
ΔbamD,								
CV:								0.0057
(12,16)								

Supplementary Table 2: Pairwise *p*-values from two-sample Kolmogorov-Smirnov

tests in Figure 2b.