Supporting Information

Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases

Linfeng Li,[†] Bala C. Chenna,[†] Kai S. Yang,[‡] Taylor R. Cole,[†] Zachary T. Goodall,[†] Miriam Giardini,[§] Zahra Moghadamchargari,[‡] Elizabeth A. Hernandez,[†] Jana Gomez,[†] Claudia M. Calvet,[§] Jean A. Bernatchez,[§] Drake M. Mellott,[†] Jiyun Zhu,[†] Andrew Rademacher,[†] Diane Thomas,[§] Lauren R. Blankenship,[‡] Aleksandra Drelich,^{II} Arthur Laganowsky,[‡] Chien-Te K. Tseng,^{II} Wenshe R. Liu,^{†,‡} A. Joshua Wand,[†] Jorge Cruz-Reyes,[†] Jair L. Siqueira-Neto,[§] and Thomas D. Meek^{*,†}

[†]Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77843, USA

[‡]Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA

[§]Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA

^{II}Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA

Table of Contents

Supplementary Tables	·····S2
Supplementary Figures	······S4
NMR Spectra	S9
HPLC traces and MS data	·····S28

Compound	l_{1} (> 10 ⁻⁴ c ⁻¹)	Residence time	Estimated k_4
Compound	K_{obs} (× 10 S)	τ (s) ^a	$(\times 10^{-4} \text{ s}^{-1})^{b}$
1	3.18 ± 0.24	3141	2.89
2	30.2 ± 1.9	331	27.5
6	67.4 ± 4.8	148	61.3
7	54.3 ± 3.5	184	49.4
8	62.4 ± 2.5	160	56.8
9	32.1 ± 1.3	312	29.2
10	53.1 ± 5.7	188	48.3
11	3.71 ± 0.21	2695	3.37
12	6.33 ± 0.42	1580	5.75

Table S1. Kinetic parameters obtained from rapid dilution assays

^aResidence time $\tau = 1/k_{obs}$; ^b k_4 values were estimated from k_{obs} based on eq. 3

Table S2. The details of peaks in ¹H-¹³C HSQC NMR

peak	¹ H (ppm)	¹³ C (ppm)	Width 1	Width 2	Volume
<u>12 only</u>					
Α	5.34	90.84	192.6	31.4	40225129.1
В	5.13	90.80	192.59	26.24	52937692.9
<u>12 + cruzain</u>					
A'	6.13	76.25	137.58	49.49	5030193.12
В'	5.91	79.69	165.06	63.22	6245466.52
A (residual)	5.33	90.81	192.6	40.23	1725522.38

Table S3. Anti-CoV-2 activity of 18 on SARS-CoV-2 infected A549/ACE2 cells^a

	A549/ACE2 cells	A549/ACE2 cells	A549/ACE2 cells	A549/ACE2 Cells
Compound 18 (μM)	+ CoV-2 infection	+ CoV-2 infection	+ CoV-2 infection	no CoV-2 infection
	+ inhibitor	+ inhibitor	no inhibitor	+ inhibitor
20	Viable	Viable	CPE	Viable
10	Viable	Viable	CPE	Viable
5	CPE	Viable	CPE	Viable
2.5	CPE	CPE	CPE	Viable
1.25	CPE	CPE	CPE	Viable
0.625	CPE	CPE	CPE	Viable
0.313	CPE	CPE	CPE	Viable
0.156	CPE	CPE	CPE	Viable

^aViable cells or CPE: microscopic examination of treated cells indicated a majority of either fully viable cells, or a majority of cells which exhibited SARS-CoV-2-induced cytopathic effect (CPE).

Table S4. Statistic summary of co-crystal structure of 3CL^{pro} complexed with 18.

	3CL ^{pro} -18
Data collection	
Space group	I 1 2 1
Cell dimensions	
a, b, c (Å)	54.20, 80.74, 85.76
α, β, γ (°)	90.00, 97.12, 90.00
Resolution (Å)	48.25-1.70 (1.76-1.70)
R _{merge}	0.084 (1.632)
$< I/\sigma I >$	1.18 (at 1.70Å)
CC _{1/2}	0.996 (0.475)
Completeness (%)	99.8 (99.3)
Redundancy	6.4 (5.6)
Refinement	
Resolution (Å)	48.25-1.70
No. Reflections	40267 (4001)
R_{work}/R_{free}	0.186/0.206
RMSD in bond lengths (Å)	0.008
RMSD in bond angles (°)	1.17
No. atoms	
Protein	2395
Ligand	40
Water	173
B factors	
Protein	41.6
Ligand	43.4
Water	44.9

Figure S1. Kinetic data of cruzain inhibition by 6 - 11 and 13 - 17, and $3CL^{pro}$ inhibition by 18. (A) Concentration-inhibition curves for SMAIs and their prodrugs. (B) Time-courses of cruzain inhibition by free aldehyde 11. The k_{obs} values were obtained by fitting progress curves to eq. 1. Replot of k_{obs} vs. [11] with the line drawn through data points from fitting to eq. 3 which afforded $k_4 = (3.8 \pm 0.4) \times 10^{-4} \text{ s}^{-1}$. (C) Time-courses of cruzain inhibition by 13.

Figure S2. Compound **12** (magenta) was covalently docked to cruzain, and was superimposed with compound **2** (green). The intramolecular hydrogen bond between P_1 phenol and P_3 carbonyl group was drawn as magenta dashed lines.

Figure S3. LC-MS of ¹³C-labeled 12. Calculated m/z for molecular ion is 440.24 for hemiacetal and 458.25 for hydrate.

Figure S4. Native mass spectra of cruzain pre-incubated with selected SMAIs. The deconvoluted mass spectra are shown for 25 μ M cruzain (A) alone or treated with 50 μ M compounds (B) **12**, (C) **2**, (D) **7** and (E) **9**. The addition of compound **12** shows that compound is bound to apo-enzyme with a measured mass of 438.8 Da, consistent with the theoretical mass of **12** (438 Da).

Figure S5. Growth curves for *T. b. brucei* BSFs treated with SMAIs and their prodrugs. Each diagram only represents one of the duplicate experiments.

Figure S6. Cell viability of *T. cruzi*-infected murine cardiomyoblasts in presence of **1**, **2**, **7**, **9**, **10**, **12**, **13**, **15**, **K777**, and benznidazole.

NMR spectra

(Note: The presence of lactol anomers in many SMAIs led to complicated splitting/overlapping and lowquality NMR spectra; therefore, the NMR spectra of corresponding precursors (the second last products) were provided.)

S9

¹³C-labeled **12** in chloroform- d_3 :

 1 H- 13 C HSQC NMR of 13 C-labeled **12** with and without cruzain in buffer (full view):

HPLC traces and MS data

2: exact mass = 446.18

3: exact mass = 436.25

4: exact mass = 448.20

5: exact mass = 460.20

6: exact mass = 476.19

7: exact mass = 460.20

8: exact mass = 480.16

9: exact mass = 464.17

10: exact mass = 504.19

S36

11: exact mass = 436.25

12: exact mass = 438.23

13: exact mass = 480.24

14: exact mass = 494.25

15: exact mass = 508.27

S41

16: exact mass = 466.26

S42

17: exact mass = 480.27

18: exact mass = 552.29

