Supplementary Information

Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots

Fan Yang^{1,2}, Han Cui^{1,2}, Xiang Wu^{1,2}, Seong-Jong Kim³, and Guosong Hong^{1,2,*}

¹ Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA

² Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA

³ Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea

* Corresponding author: guosongh@stanford.edu

This PDF file includes:

Supplementary Note

Supplementary Figures 1 to 5

Supplementary References

Supplementary Note

Calculation of the quantum yield (QY) of PQD@SiO2

The QY of PQD@SiO₂ is calculated as follows:

$$QY = QY_{Ref} \cdot (\frac{Grad}{Grad_{Ref}}) \cdot (\frac{n}{n_{Ref}})^2$$

where QY_{Ref} is the QY of the reference, Rhodamine 6G dissolved in ethanol; Grad and Grad_{Ref} are the gradient of the linear-fitted integrated fluorescence intensity against absorbance for PQD@SiO₂ and reference, respectively; *n* and *n*_{Ref} are the refractive index of the solvent of the PQD@SiO₂ sample and the reference, respectively.¹

In this calculation, the QY of Rhodamine 6G in ethanol is 95%.² *n* and *n*_{Ref} are 1.49 and 1.36, corresponding to the solvent of toluene and ethanol, respectively. The gradient of fluorescence intensity against absorbance of each sample can be obtained from linear fitting (see **Fig. S2** below). The QYs of CsPbBr₃@SiO₂ and CsPb(Br_{0.3}I_{0.7})₃@SiO₂ are calculated to be 78% and 51%, respectively.

Fig. S1. Transmission spectra of PDMS overlaid with the emission windows of SMSO, SMSO/CsPbBr₃, and SMSO/CsPb(Br_{0.3}I_{0.7})₃.

Fig. S2. UV-vis absorption spectra of Rhodamine 6G (**a**), CsPbBr₃@SiO₂ (**d**) and CsPb(Br_{0.3}I_{0.7})₃@SiO₂ (**g**); Fluorescence spectra of Rhodamine 6G (**b**), CsPbBr₃@SiO₂ (**e**) and CsPb(Br_{0.3}I_{0.7})₃@SiO₂ under an excitation wavelength of 465 nm (**h**); The linear fitting of integrated fluorescence intensity against absorbance of Rhodamine 6G (**c**), CsPbBr₃@SiO₂ (**f**) and CsPb(Br_{0.3}I_{0.7})₃@SiO₂ (**i**); The absorbance values associated to each sample correspond to absorbance at 465 nm.

Fig. S3. Photoluminescence spectra of $CsPbBr_3@SiO_2$ and $CsPb(Br_{0.3}I_{0.7})_3@SiO_2$.

Fig. S4. Luminescence decay curves of three primary color pixels containing SMSO colloids alone (**a**), SMSO/CsPbBr₃@SiO₂ composites (**b**), and SMSO/CsPb(Br_{0.3}I_{0.7})₃@SiO₂ composites (**c**).

Fig. S5. Mechanoluminescence intensity of the flexible pixel array with different bending angles under FUS. Each group contains n=3 independent measurements. Data are presented as mean \pm standard deviation (S.D.).

Reference:

- 1 P. P. Sorokin, J. R. Lankard, V. L. Moruzzi and E. C. Hammond, *The Journal of Chemical Physics*, 1968, 48, 4726–4741.
- 2 R. F. Kubin and A. N. Fletcher, *J. Lumin.*, 1982, **27**, 455–462.