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Supplementary Notes:

Supplementary Note 1. Evaluating the efficiency of CRISPRi repression

Two approaches were used to evaluate the repression efficiency of CRISPRi in our library. First,
we examined sequences in the promoter library that can be directly targeted by sgRNAs, thus the
CRISPRIi repression efficiency of a TF can be estimated by the fold of repression on its own
promoter. Totally 41 TFs have their promoters in our library, and 39 of them (95%) showed
repression (Student’s t-test P value < 0.05) (Supplementary Fig 5a). Second, additional RT-qPCR
experiments were performed to examine the CRISPRi repression efficiency. The nine TFs that
were used to examine individual responses (Supplementary Fig 6) and another five TFs (HipB,
NarP, OmpR, YefM, and YeoB) randomly selected were chosen as representatives. The RT-qPCR
results showed clear repression for 12 out of 14 TFs, representing 86% is effective (Supplementary
Fig 5b).

Supplementary Note 2. Global effects of TFs and definition of variable promoters

A few TFs might cause global effects on the GFP expression level rather than TF-specific effects
on promoter activities. Considering this factor, the global effect of a TF was quantified as the
median fold change of all promoter activities caused by the TF, and this global effect was
subtracted from the original fold change value to get the specific effect on a promoter. Promoters
with at least one substantial specific effect (i.e., >1.7-fold change) from a TF on the promoter
activity were defined as variable promoters. Among 978 promoters with significant activity change
under at least one TFKD condition, we found 42 promoters with promoter activity changes by only

global effects from TFs and classified them as constant promoters.



Supplementary Note 3. Mutual regulation and repressilator from different growth
conditions

PPTP-seq date collected in LB medium revealed mutual regulation for two pairs of TFs: 1) UlaR
represses agaR, and AgaR activates ulaR; 2) GlcC represses a/lR, and AlIR represses glcC. AgaR
activation of u/aR, and GlcC repression of allR are present in both M9 glucose and LB media,
while UlaR repression of agaR, and AlIR repression of glcC are absent in M9 glucose. We also
found AlIR, GlcC, and AtoC form a repressilator in LB: AlIR represses glcC, GlcC represses atoC,
and AtoC represses allR. But these regulations are absent in M9 glucose and M9 glycerol media.
No binding evidence has been found for these regulatory responses, suggesting indirect
interactions mediated by other molecules. We noticed that AIIR and GlcC are regulated by
glyoxylate and glycolate respectively!-2. Thus, genes in this repressilator may not have direct
regulation and may display different dynamic properties with those from synthetic repressilators>.
Supplementary Note 4. Context-dependent regulation of arnB and fadE promoters

arnB promoter controls the arnBCADTEF operon that mediates the biosynthesis and transfer of 4-
amino-4-deoxy-L-arabinose to lipid A, which causes cell resistance to polymyxin. DAP-seq
identified two binding sites on the arnB promoter, one for activator (BasR) and one for repressor
(H-NS) with similar binding strength. However, PPTP-seq revealed that only knockdown of Ans,
but not basR, changed arnB promoter activity (Supplementary Fig. 10a). Our PPTP-seq results are
consistent with those from TF titration, where only overexpression of H-NS, but not BasR,
decreased arnB promoter activity (Supplementary Fig . 10b). We further ruled out the possibility

34 we titrated

of low BasR activity. Because BasR’s activity can be enhanced by either Fe?* or Fe
both H-NS and BasR in the presence of these metal ions (Supplementary Fig. 10c, d). Under both

conditions, arnB promoter’s activity was not significantly changed. The results further confirmed



the context-dependent regulation where BasR does not regulate the arnB promoter due to
repression of the arnB promoter by H-NS binding.

To investigate whether deactivating an active repressor on a promoter can make the promoter
respond to other TFs, we selected the fadE promoter, which can be bound by two metabolite-
responsive TFs, FadR and PdhR, according to DAP-seq results (Supplementary Fig. 10e).
However, PPTP-seq revealed that fadE was up-regulated by the knockdown of only fadR, but not
pdhR, in minimal glucose medium. Our PPTP-seq result is consistent with that from the tunable
TF library, where overexpression of PdhR did not repress the fadE promoter (Supplementary Fig.
10f). Because PdhR binding to DNA can be potentially antagonized by high concentrations of
pyruvate inside the cell’. We then tested whether the lack of activation by pdhR knockdown was
caused by the high concentration of pyruvate. To do so, succinate was fed to cells to block pyruvate
supply®. However, fadE promoter activity remained constant over a wide range of PdhR
concentrations in succinate media (Supplementary Fig. 10g). Next, because the binding sites of
FadR and PdhR on fadE promoter overlap, we tested whether FadR binding prevents PdhR from
binding to the fadE promoter. To test so, FA was added to the growth medium to antagonize FadR
binding to DNA’!0, Indeed, in both FA and glycerol/FA media, PdhR overexpression repressed
fadE promoter by 6.4- and 5.0-fold, respectively (Supplementary Fig. 10h, 1). Therefore, PdhR
does not regulate fadE promoter in minimal glucose medium because FadR binding to fadE
promoter interferes with PdhR binding.
Supplementary Note 5. Estimation of false positive and false negative rates
PPTP-seq is based on gene response to TF perturbation, thus false positives can be caused by off-
target and polarity of CRISPRI (i.e., response to unexpected perturbations!!'4). Previous genome-

scale CRISPRi screens in E. coli showed an off-target probability of 10.7%!! and a polarity



probability is 8.0%!2. Our sgRNA design eliminated bad-seed effects !! that cause off-target in the
previous CRISPRi screens, thus is expected to have reduced off-target rate (<10.7%). Additionally,
if the unexpectedly perturbed gene was not a TF gene, it is less likely to cause any promoter activity
changes. Considering these, the expected false positive rate should be substantially less than 1-(1-
10.7%)*(1-8%)=17.8%, if we treat off-target and polar effects independently, but the real false
positive rate should be much lower than this number.

False negatives can arise from inefficient TF repression (i.e., not creating an effective
perturbation). CRISPRi repression tested in minimal glucose condition (Supplementary Note 2)
showed that 4 out of 52 TFs (41+14-3; 41 from promoters directly targeted by sgRNAs, 14 from
RT-gPCR, and 3 shared by both methods) were not significantly repressed by CRISPRi, which
gives an expected false negative rate about 8%, if we equally treat every TF.

Supplementary Note 6. Choice of replication origin

The replication origin of the reporter plasmid was carefully chosen. Preliminary tests performed
using pMB1 (~20 copies per cell) as the replication origin showed that a few promoter-reporter
strains, such as Pg;.4 and Ppew, cloned to this plasmid could not grow in the M9 medium. Because
glyA and metA are essential genes when cells are growing in the M9 medium'>, we speculated that
the high copy number of promoter sequences in the pMB1 plasmid sequestered too many
regulators, thus leading to impaired cell growth. When low copy number plasmids pSC101 (~4
copies) and pBAC (single copy) were used, strains with Pg.4 and Pes reporter plasmids can grow
in the M9 medium (Supplementary Fig. 15). To ensure high sensitivity in the fluorescence

measurements, a plasmid with the pSC101 replication origin was used for library cloning.
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Supplementary Figure 1. FACS gate settings and sequencing results of PPTP-seq.

a FACS gate setting for the combinatorial library. The library was first selected for a homogenous
cell population (P1) by side-angle scattering (SSC-A) and forward-angle scattering (FSC-A).
Subpopulation (Q2) from P1 were selected based on GFP and mCherry fluorescence. Q2
population were finally sorted into 16 equally sized contiguous bins according to their GFP
fluorescence intensity on a log scale. Two positive controls and a negative control indicated that
strains with different GFP intensities were sorted into different bins. b The number of cells
collected in each bin for three replicates. ¢ The number of reads sequenced from each bin for three

replicates. Source data are provided in Supplementary Data 3.
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Supplementary Figure 2. Representative PPTP-seq results.

a and b Reconstructed GFP distributions expressed from metE promoter (a) and fadE promoter (b)
with a non-targeting sgRNA (grey) or a sgRNA targeting to their corresponding regulators (red).
The bar plots show the estimated cell fraction in each bin for a sgRNA-promoter pair. A log-
normal distribution was fitted into the estimated cell fractions for each sgRNA-promoter pair using

maximum likelihood estimation. MetR is a known activator of the metE promoter and FadR is a

known repressor of the fadE promoter.
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Supplementary Figure 3. Data quality of PPTP-seq performed at different conditions.

a Evaluation on the biological reproducibility of PPTP-seq performed using M9 glucose, LB, and
M9 glycerol media. Measurements with a standard deviation of the log(GFP) larger than 0.7 were
discarded. b Coverage of PPTP-seq performed using M9 glucose, LB, and M9 glycerol media. In

the heatmap, each row represents a promoter, and each column represents a TF.
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Supplementary Figure 4. Promoter activity fold changes by TFKD.

The matrix was hierarchically clustered in both dimensions. Hierarchical clustering was performed
using the average linkage method with the distance matrix for Pearson correlation of promoter
activity fold changes by TFKD. Promoters without activity changes under any TFKD condition

were not shown. Missing data and non-significant fold changes were set zero in the matrix. Source
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data are provided as a Source Data file (the same as Figure 1d). The COG annotation is from COG

database 2020 update [https://ftp.ncbi.nih.gov/pub/COG/COG2020/data/].
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Supplementary Figure S. Evaluation of CRISPRIi repression efficiency.

a and b Repression of TF genes by CRISPRi measured by PPTP-seq (a) and RT-qPCR (b).
Columns show relative activities from three biological replicates. Error bars indicate standard
deviation. ¢ Relative TF expression level as measured by their promoter activities in PPTP-seq
using the strain with non-targeting control sgRNA. d Relationship between CRISPRi repression
activity and TF promoter activity without CRISPRIi repression. Source data are provided as a

Source Data file.
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Supplementary Figure 6. Benchmarks of PPTP-seq on five random promoters.

a Individual promoter activity measured from whole cell fluorescence using a plate reader. Three
replicates were performed for each strain on different days. b Correlation between individual
measurements by the plate reader and pooled measurements by PPTP-seq. ¢ Promoter activity

changes relative to the negative control measured by PPTP-seq matched known regulations in the
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RegulonDB. Data are presented as means + SD of at least two replicates from different days. a.u.,

arbitrary units. Source data are provided as a Source Data file.
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Supplementary Figure 7. Correlation of PPTP-seq data with published data sets.

a and b Promoter activity measured from PPTP-seq were compared to transcript level measured
from RNA-seq dataset in Macklin et al.!® (a) and promoter activity measured by flow cytometry
in Silander et al.!” (b). ¢ As a reference, data in Macklin et al. were compared to data in Silander
et al. Correlation in ¢ is weaker than correlations shown in a and b. d Comparison of fold changes
at the log2 scale (log2FC) measured from PPTP-seq to log2FC obtained from EcoMAC
microarray'®. Red line represents a fitting result of linear regression. For each plot, number of
values (n) and Pearson’s correlation coefficient (r) are displayed. TPM, transcript per million.

Source data are provided as a Source Data file.
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Supplementary Figure 8. Validation of TF auto-regulatory responses

Validation was performed in TF-tunable strains, where the endogenous TF gene copy is deleted.
TF expression levels were measured using mCherry fluorescence, and their promoter activities
were quantified by GFP fluorescence. Data are presented as means + SD of three replicates from

different days. a.u., arbitrary units. Source data are provided as a Source Data file.
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Supplementary Figure 9. Promoter activity changes in one-carbon metabolism.

a Pathway map of one-carbon metabolism. Hcy and SAM control the activity of MetR and MetJ,
respectively. NA, not applicable; GTP, Guanosine-5'-triphosphate; DHPPP, 6-hydroxymethyl-7,8-
dihydropterin pyrophosphate; PABA, para-aminobenzoic acid; DHP, dihydropteroate; DHF,
dihydrofolate; THF, tetrahydrofolate; dUMP, deoxyuridine monophosphate; dTMP,

deoxythymidine monophosphate; Met, L-methionine; fMet, N-formylmethionine; Hcy, L-
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homocysteine; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; Rib-Hcy, S-ribosyl-

L-homocysteine. b Heatmap of promoter activity changes.
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Supplementary Figure 10. Context-dependent regulatory functions for promoters controlled
by multiple TFs.

a Regulatory logic for the arnB promoter. Log2(FC Activity) is the promoter activity change by
TFKD in PPTP-seq results in minimal glucose medium. Log2(FC Binding) is binding strength in
DAP-seq results. b arnB promoter activity at different BasR or H-NS concentrations in glucose
minimal medium without Fe*" or Fe**. ¢ and d arnB promoter activity at different BasR or H-NS

concentrations in glucose minimal medium in presence of Fe?* (¢) or Fe** (d). e Regulatory logic
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for the fadE promoter. f-i fadE promoter activity at different PdhR concentrations in M9 medium
with different carbon sources, including glucose (f), succinate (g), fatty acid (h), and glycerol plus
fatty acid (i). Promoter activities at different TF expression levels were measured using TF-tunable
strains. Data are presented as means = SD of at least two replicates from different days. NA, not

applicable; a.u., arbitrary units. Source data are provided as a Source Data file.
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Number of promoters with different types of regulation
Single TF

[ Single repressor

B Single activator

Multiple TFs

[ Multiple repressors

[ Multiple activators

[ Activator(s) plus repressor(s)

Supplementary Figure 11. Various types of regulatory architectures on promoters according

to RegulonDB.

The number of promoters belonging to each type is indicated.
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Supplementary Figure 12. Promoter responses by TFKD in LB and M9 glycerol media.

a and b Promoter activity changes by TFKD in LB (a) and M9 glycerol (b) media. Dashed lines

indicate cutoffs for statistically significant (q < 0.01) and substantial (>1.7-fold change) effects.
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Each dot represents a TF-promoter pair. Up-regulation and down-regulation by TFKD are shown
in red and blue, respectively. ¢ and d Autoregulation of TFs identified by PPTP-seq in LB (¢) and
M9 glycerol (d) media. Promoter activity fold changes upon the knockdown of TF controlled by
the promoter. e Comparison of auto-regulatory responses measured by PPTP-seq in minimal

glucose, LB, and minimal glycerol media.
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Supplementary Figure 13. Potential extensions of PPTP-seq

a, Changing sgRNA targets to enzymes and transporters to study metabolism-related regulation.
b, Using sgRNA arrays to study effects from knockdown of multiple TFs. ¢, Replacing the native
promoter library with a synthetic promoter library containing various binding site combinations

to study detailed regulatory mechanism of complex promoters.
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Supplementary Figure 14. Data quality filters improved data consistency

a, Estimated cell count distributions of the library. b, KL divergence distributions of the fitting
result for each member in the library. ¢, Cumulative density function (CDF) of the standard
deviation of log(GFP) for data treated by different filtering rules. Applying the KL divergence

filter and cell count filter reduced the standard deviation.
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Supplementary Figure 15. Effects of plasmid copy number on cell growth

pBAC
pSC101
pMB1

a-d, Growth curves of reporter plasmids of four TF-promoter pairs, including PurR-met4 (a),

MetJ-metA (b), PurR-gly4 (c), and MetJ-glyA (d) constructed with different replication origins.

Strains containing a plasmid with pMB1 origin cannot grow in the M9 glucose medium during the

first 15 hours.
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Supplementary Tables:

Supplementary Table 1. Regulatory responses identified from PPTP-seq and known from

RegulonDB
M9 Glucose LB M9 Glycerol
Binding evidence With Without With Without With Without

In RegulonDB 78 0 53 1 43 0
New responses 403 3577 397 4828 230 3537

Total 481 3577 450 4829 373 3537

PPTP-seq significant
responses 4058 5279 3810
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Supplementary Table 2. The number of responses for selected TFs in different conditions

TF M9 Glucose LB MO glycerol known effector

birA 62 162 26 biotinyl-5'-adenylate
glcC 149 202 91 glycolate

hypT 107 246 66 hypochlorous acid

melR 70 192 22 melibiose

narL 65 201 16 nitrate (NarX)

rcnR 44 162 13 Ni(II) and Co(II)

ulaR 345 442 271 L-ascorbate-6-phosphate
Sum 842 1607 505
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