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Web Appendix 1

To illustrate the potential impact of event-prompted or infrequent testing on estimation of VE against

transmission, we compare the target estimand with the actual estimands under imperfect testing. We

assume a range of scenarios around SARS-CoV-2 infection and transmission that are intended to illustrate

the issues of symptom-prompted testing and infrequent testing in isolation; in practice there may be several

issues at play. We describe these scenarios below.

In the reference scenario, we assume that we have a prospectively defined group so that we correctly

identify the primary case if they are tested, and any active infection is always identified if they are tested.

For simplicity, all contacts are un-vaccinated and if infected the symptom presentation and duration of

infection is unrelated to attributes of the primary case or transmission unit. Therefore, symptom-prompted,

or infrequent testing of contacts does not change the estimand. Reflecting the high efficacy of COVID-19

vaccines against symptomatic infection, we fix vaccine efficacy against symptomatic infection at 0.9. Vaccine

efficacy against SARS-CoV-2 infection is set at 0.5, so that the proportion of symptomatic infections in the

vaccinated is 20% of that in the un-vaccinated. Given infection, the probability of symptoms among the

un-vaccinated is 0.5, and the reduction in SAR for asymptomatic vs. symptomatic infections, and the overall

VE against the SAR (the target estimand) are varied. Under infrequent testing, we assume that the duration

of infection is uniformly distributed over 14 days, with a mean of 14 days for the un-vaccinated, and 8 days

for the vaccinated. We vary the frequency of testing from once every 1 day to once every 14 days.
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Web Appendix 2

Symptom-Prompted Testing

Let T be an indicator for transmission, S be an indicator for being symptomatic, and V be an indicator for

vaccinated. Let µ represent the ratio of transmission probability between those vaccinated and un-vaccinated

with 0 ≤ µ ≤ 1, i.e.,

P (T = 1|V = 1) = µP (T = 1|V = 0).

Vaccine efficacy is then defined as 1 − µ. We can rewrite each of the probabilities in terms of symptom

development:

P (T = 1|V = 0) = P (T = 1|S = 1, V = 0)P (S = 1|V = 0) + P (T = 1|S = 0, V = 0)P (S = 0|V = 0)

P (T = 1|V = 1) = P (T = 1|S = 1, V = 1)P (S = 1|V = 1) + P (T = 1|S = 0, V = 1)P (S = 0|V = 1).

We now define the following five parameters, and we will rewrite the vaccine efficacy parameter 1 − µ as a

function of these parameters.

λ :=
P (S = 1|V = 1)

P (S = 1|V = 0)

δ :=
P (T = 1|S = 0, V = v)

P (T = 1|S = 1, V = v)

ν :=
P (T = 1|S = s, V = 1)

P (T = 1|S = s, V = 0)

ρ := P (S = 1|V = 0)

τ := P (T = 1|S = 1, V = 0).

That is, λ represents the reduction in symptoms given vaccination, δ represents the reduction in transmission

potential for asymptomatic individuals, holding vaccine status constant, and ν represents the reduction in

transmission potential for vaccinated individuals, holding symptom presence constant. The probability of

symptoms in an un-vaccinated person is ρ, and the probability of transmission for a symptomatic, un-

vaccinated person is τ . Our goal is to solve for µ given fixed values of these quantities. Replacing the earlier
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probabilities with these relationships,

P (T = 1|V = 0) = P (T = 1|S = 1, V = 0)P (S = 1|V = 0) + P (T = 1|S = 0, V = 0)P (S = 0|V = 0)

= ρP (T = 1|S = 1, V = 0) + (1− ρ)P (T = 1|S = 0, V = 0)

= ρP (T = 1|S = 1, V = 0) + (1− ρ)δP (T = 1|S = 1, V = 0)

= τ
!
ρ+ (1− ρ)δ

"

P (T = 1|V = 1) = P (T = 1|S = 1, V = 1)P (S = 1|V = 1) + P (T = 1|S = 0, V = 1)P (S = 0|V = 1)

= P (T = 1|S = 1, V = 1)P (S = 1|V = 1) + P (T = 1|S = 0, V = 1)(1− P (S = 1|V = 1))

= P (T = 1|S = 1, V = 1)λρ+ P (T = 1|S = 0, V = 1)(1− λρ)

= P (T = 1|S = 1, V = 1)λρ+ P (T = 1|S = 1, V = 1)δ(1− λρ)

= P (T = 1|S = 1, V = 0)νλρ+ P (T = 1|S = 1, V = 0)δ(1− λρ)ν

= τν
!
λρ+ δ(1− λρ)

"
.

Thus, using the relationship P (T = 1|V = 1) = µP (T = 1|V = 0), we can find the vaccine efficacy µ:

P (T = 1|V = 1)− µP (T = 1|V = 0) = τν
!
λρ+ δ(1− λρ)

"
− µτ

!
ρ+ (1− ρ)δ

"
≡ 0

=⇒ ν
!
λρ+ δ(1− λρ)

"
= µ

!
ρ+ (1− ρ)δ

"

=⇒ µ =
ν
!
λρ+ δ(1− λρ)

"

ρ+ δ(1− ρ)
(1)

With only symptomatic sampling of the index cases, we would instead have

P (T = 1|S = 1, V = 1)− µ̃P (T = 1|S = 1, V = 0) = τν − τ µ̃

so, in this case, µ̃ = ν, exactly the reduction in transmission given vaccination, holding symptom status

constant. Therefore, the parameter being estimated when we only sample symptomatic index cases is the

reduction in transmission with vaccination, only among cases that become symptomatic. If vaccination has

no effect on development of symptoms, λ = 1, and we can see that (1) reduces to µ = ν, so the estimands

µ and µ̃ agree. The estimands also agree when ν = 0, i.e., vaccinated individuals cannot transmit infection.

When ν = 0, then µ = µ̃ = 0, i.e., the vaccine efficacy 1− µ is 1.
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Web Appendix 3

Infrequent Testing

Let T be an indicator for transmission, N be a positive-valued random variable indicating duration of

infection, and V be an indicator for vaccinated. As before, let µ represent the ratio of transmission probability

between those vaccinated and un-vaccinated with 0 ≤ µ ≤ 1, i.e.,

P (T = 1|V = 1) = µP (T = 1|V = 0).

We can rewrite each of the probabilities in terms of duration of infectiousness:

P (T = 1|V = 0) =

#
P (T = 1|N = n, V = 0)dPN |V=0(n)

P (T = 1|V = 1) =

#
P (T = 1|N = n, V = 1)dPN |V=1(n).

Let PN |V=0(n) and PN |V=1(n) be the distribution function of infection duration for infected people who are

un-vaccinated and vaccinated, respectively. Let τ0 be the daily risk of transmission to a contact among the

un-vaccinated and τ1 = τ0ν, ν ≤ 1 be the daily risk of transmission to a contact among the vaccinated.

Define ν = τ1/τ0 ≤ 1. We assume that there is a constant risk of infection across the duration of infection

(P (T = 1|N = n, V = v) = 1− exp(−nτv) ≈ nτv for small τv). Then,

P (T = 1|V = 0) =

#
nτ0dPN |V=0(n)

P (T = 1|V = 1) =

#
nτ1dPN |V=1(n).

If we assume that PN |V=0(n) = Unif(ρ0−c, ρ0+c), PN |V=1(n) = Unif(ρ1−c, ρ1+c), and with λ = ρ1/ρ0 ≤ 1

(and in particular, to have a sensible minimum duration of infection among the vaccinated [i.e., ρ1 − c], we

need to have λ > c/ρ0), then we have,

P (T = 1|V = 0) = τ0 EN |V=0{N}

= τ0ρ0

P (T = 1|V = 1) = τ1 EN |V=1{N}

= τ1ρ1

= τ0ρ0λν.
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Therefore, we have µ = λν.

Let S be an indicator of the index case being included in the sample. Let k be the window of time

during which an infection may be sampled (e.g., k = 14 means there is a two-week period when someone

is infected during which a single test can be taken). In this testing scenario we consider P (S = 1|N =

n) = max(n/k, 1), i.e., the probability of being sampled is proportional to the duration of infection, and it is

dependent on no other variables. For fixed vaccine status (where we note that with PN |V=v defined above,

VarN |V=v{N} = c2/3), we have:

P (T = 1|V = v, S = 1) =

#
P (T = 1|V = v, S = 1, N = n)P (N = n, |V = v, S = 1)dn

=

#
P (T = 1|V = v,N = n)P (N = n|V = v, S = 1)dn since T ⊥ S|N

=

#
nτv

P (S = 1|N = n, V = v)P (N = n|V = v)

P (S = 1, V = v)
dn by Bayes formula

= τv

#
n

P (S = 1|N = n)$
P (S = 1|N = n, V = v)dPN |V=v(n)

dPN |V=v(n) since S ⊥ V |T

= τv

#
n

P (S = 1|N = n)$
P (S = 1|N = n)dPN |V=v(n)

dPN |V=v(n) since S ⊥ V |T

We first consider the case where k > ρ + c, i.e., no one has a probability of testing greater than 1. In that

case, we can have only one integral:

= τv

#
n
!
n/k

" 1

P (S = 1|V = v)
dPN |V=v

= τv

#
n
!
n/k

" 1$
P (S = 1|N = n, V = v)dPN |V=v

dPN |V=v

= τv

#
n2(1/k)

1$
(n/k)dPN |V=v

dPN |V=v

= τv EN |V=v{N2}/EN |V=v{N}

=
τv
ρv

!
EN |V=v{N}2 +VarN |V=v{N}

"

=
τv
ρv

!
ρ2v + (1/3)c2

"
. (2)

Interestingly, the parameter for the testing window size k drops out of the expression. Thus, the inferred
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parameter for µ, µ̃, when k > ρ0 (which implies k > ρ1 as well) is given by

µ̃ =
P (T = 1|V = 1, S = 1)

P (T = 1|V = 0, S = 1)

=
τ1/τ0
ρ1/ρ0

%
ρ21 + (1/3)c2

ρ20 + (1/3)c2

&

=
ν

λ

%
λ2ρ20 + (1/3)c2

ρ20 + (1/3)c2

&
.

Now consider the setting where k ∈ [ρv − c, ρv + c]. In this case people with duration n ≥ k will be sampled

with probability 1. The denominator in the probability is
$
P (S = 1|N = n)dPN |V=v(n), which can be

evaluated as (we use dP for simplicity):

#
P (S = 1|N = n)dPN |V=v(n) =

#
P (S = 1|N = n)1(n ≤ k)dP (n) +

#
P (S = 1|N = n)1(n > k)dP (n)

=

# k

ρv−c

(n/k)dP (n) +

# ρv+c

k

dP (n)

=
1

2ck

'# k

ρv−c

(n)dn
(
+

1

2c

'# ρv+c

k

dn
(

=
1

2ck

)
k2 − (ρv − c)2

2

*
+

1

2c

)
(ρv + c)− k

*

=
1

4ck

'
k2 − (ρv − c)2 + 2k(ρv + c)− 2k2

(

=
1

4ck

'
2k(ρv + c)− (ρv − c)2 − k2

(
=: Sk.

Making sure that this still equals ρv/k, we have when k = (ρv + c) that:

#
P (S = 1|N = n)dPN |V=v(n) =

1

4c(ρv + c)

'
2(ρv + c)2 − (ρv − c)2 − (ρv + c)2

(

=
1

4c(ρv + c)

'
(ρv + c)2 − (ρv − c)2

(

=
ρ2v + 2ρvc+ c2 − ρ2v + 2ρvc− c2

4c(ρv + c)

=
4ρvc

4c(ρv + c)

=
ρv

ρv + c
.

So, this is equivalent to what we got for the denominator expression in the first derivation when n < k. We

now derive the full expression for P (T = 1|V = v, S = 1) and check to make sure that we get the same thing

as in (2) when k = (ρv + c).
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Putting this together with the numerator we have:

P (T = 1|V = v, S = 1) =
τv
Sk

'#
n(n/k)1(n ≤ k)dP (n) +

#
n1(n > k)dP (n)

(

=
τv
Sk

'1

k

# k

ρv−c

n2dP (n) +

# ρv+c

k

ndP (n)
(

=
τv
Sk

'1

k

# k

ρv−c

n2dP (n) +

# ρv+c

k

ndP (n)
(

=
τv

Sk2c

'1

k

# k

ρv−c

n2dn+

# ρv+c

k

ndn
(

=
τv

Sk2c

)
1

3k

!
k3 − (ρv − c)3

"
+

(ρv + c)2 − k2

2

*

=
τv

12ckSk

'
2k3 − 2(ρv − c)3 + 3k(ρv + c)2 − 3k3

(

=
τv

12ckSk

'
3k(ρv + c)2 − k3 − 2(ρv − c)3

(
.

When k = (ρv + c),

P (T = 1|V = v, S = 1) =
τv(ρv + c)

12cρv(ρv + c)

'
3(ρv + c)3 − (ρv + c)3 − 2(ρv − c)3

(

=
τv

12cρv

'
2(ρv + c)3 − 2(ρv − c)3

(

=
τv

6cρv

'
(ρv + c)3 − (ρv − c)3

(

=
τv

6cρv

'
ρ3v + 3ρ2vc+ 3ρvc

2 + c3 − ρ3v + 3ρ2vc− 3ρvc
2 + c3

(

=
τv

6cρv

'
6ρ2vc+ 2c3

(

=
τv
ρv

!
ρ2v + (1/3)c2

"
.

A third scenario is where k < ρv − c, such that all infections are captured with probability 1. In this case,
$
P (S = 1|N = n)dP (n) = 1, and P (T = 1|V = v, S = 1) = τv

$
ndP (n) = τvρv. Therefore,

µ̃ =
P (T = 1|V = 1, S = 1)

P (T = 1|V = 0, S = 1)

=
µ̃1

µ̃0

where

µ̃v = τv

)
ρv1(k < ρv − c) +

!
ρv + (1/3ρv)c

2
"
1(ρv − c ≤ k ≤ ρv + c) +

3k(ρv + c)2 − k3 − 2(ρv − c)3

12ckSk
1(k > ρv + c)

*
.

8



Importantly, µ̃1 and µ̃0 may differ with respect to which of the indicator functions is activated, since ρ1 will

be different than ρ0 when λ < 1. Notice that if k > max(ρ0, ρ1), then the ratio of µ̃1/µ̃0 does not depend on

k. There is still a difference between µ̃ and µ, but it does not change with the interval k. We can see this

relationship in Figure A1.

Web Figure 1: Relationship between the inferred vaccine efficacy parameter 1 − µ̃ and k, the testing interval.

Colors indicate the true vaccine efficacy, which is also obtained by setting the testing interval to 1 day.

0.4

0.6

0.8

1.0

0 5 10 15 20 25
Testing Interval

VE
 In

fe
rre

d

0.5 0.6 0.7 0.8 0.9 1.0
VE

9


