
Minmers are a generalization of minimizers that enable unbiased1
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1.1 Probabilistic filtering for the minhash6

We construct a predictor, Yi, of the numerator of the minhash formula for A and Bi conditioned on the7

size of the intersection |πs(A) ∩ πs(Bi)|. This predictor generates a probability distribution for the ANI8

of a candidate mapping without needing compute the expensive πs(A ∪ Bi) step. We start by dividing9

πs(A)∪πs(Bi) into two parts where Ci = πs(A)∩πs(Bi) and Gi = (πs(A)∪πs(Bi)) \Ci resulting in two sets10

of size ci and 2s− ci, respectively. The problem can now be formulated as follows: what is the probability11

that y elements from Ci are also part of the sketch πs(A ∪Bi)?12

Leveraging the fact that πs(A∪Bi) = πs(πs(A)∪ πs(Bi)) and that all orderings of elements in πs(A∪Bi)13

are equally likely, we can view the problem as assigning the ci shared elements to 2s−ci slots, where the first s14

slots are considered as a “success” and the remaining s− ci slots are considered as a “failure” (Supplementary15

Figure 1).16

We have the following formulas:17

Pr(Yi = y|ci) = Hypergeompdf (2s− ci, s, ci, y)

=

(
s
y

)(
s−ci
ci−y

)(
2s−ci

ci

)
Pr(Yi ≤ y|ci) = Hypergeomcdf (2s− ci, s, ci, y)

=

y−1∑
i=0

Pr(Yi = y|ci)

Let z = argmaxi ci be a position with the maximum intersection size over all Bi, i.e. the position in B18

that overlaps with the most selected minmer intervals. We can now find a minimum intersection size τ such19

that for any ci < τ ,20

Pr(Ĵ(A,Bi) > Ĵ(A,Bz)−∆J) < 1− δ
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where ∆J is the difference in the Jaccard that corresponds to an ANI value ∆ANI less than the ANI value21

predicted by Ĵ(A,Bz) and δ is a desired confidence level. To calculate this probability, we can use the22

following summation23

Pr(Ĵ(A,Bi) >Ĵ(A,Bz)−∆J)

=

s∑
y=0

Pr(Yi = y | ci) Pr(Yz < y +∆J | cz)

For each intersection size, we can identify a cutoff in O(s log(s)) time. As a preprocessing step, we24

compute cutoffs for each of the s possible intersection sizes at the indexing stage. Candidate regions that25

are unlikely to have an ANI within ∆ANI of the best predicted ANI are then pruned. The default ∆ANI26

and δ confidence parameters of MashMap3 are 0 and 0.999, respectively, as in many cases the lower scoring27

mappings for a segment are filtered out by the plane-sweep filtering method of MashMap described in Jain28

et al. (2018).29

We compute two passes over the interval endpoints in L. In the first pass of stage 1, the maximum30

intersection size cz is obtained. In the second pass, candidate mappings whose intersection is above the cutoff31

derived from cz are obtained. Consecutive candidate mappings are grouped into candidate regions and passed32

to stage 2.33

Supplementary Figure 1: Estimating the minhash from πs(A) and πs(Bi). (a) Given two sketched sets
πs(A) and πs(Bi), we can compute the size of their intersection ci. (b) By considering Ci = πs(A) ∩ πs(Bi)
as purple balls and Gi = (πs(A) ∩ πs(Bi)) \ Ci as grey balls, we can enumerate all possible permutations of
their union such that exactly y purple balls fall within the first s slots. c) The distribution of the minhash
numerator Yi for different values of ci when s = 100. The corresponding distribution of the minhash can be
obtained by dividing Yi by the sketch size s.
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1.2 Efficiently computing the rolling minhash34

To keep track of the rolling minhash for a candidate region, MashMap3 uses an array V = (−1, 0, 0),35

(x1, α1, β1), (x2, α2, β2), ..., (xs, αs, βs) where each xj represents one of the s minmer hash values from πs(A)36

in increasing order and for each i ∈ [a, z), the values αj and βj are37

• αj = 1 if xj ∈ πs(Bi) else 038

• βj = 1 + |{x ∈ πs(Bi) s.t. xj−1 < x < xj}|39

We can imagine V as a set of s buckets labeled by the s corresponding hash values of A and sorted in40

increasing order. At each position i ∈ [a, z), each bucket j holds xj and all βj − 1 reference minmers in πs(Bi)41

between xj and xj−1. A bucket is marked “good” (αj → 1) if xj ∈ πs(Bi). It remains to find the largest42

integer pi such that the number of minmers in the first pi buckets is at most s. Given pi, the numerator of43

the minhash formula, Yi, is the number of “good” buckets in the first pi buckets.44

For a candidate region [a, z), we initialize V by inserting all of the minmers from the reference index

whose intervals overlap with a and set

pa = max
q

j≤q∑
j=0

βj ≤ s


It follows that Ya =

∑j≤pa

j=1 αj45

In order to keep track of intervals which overlap with the current position, we use a min-heap H sorted on46

interval endpoints. We then continue to iterate through minmer intervals from the reference in order based on47

their start points, stopping once the intervals no longer overlap with [a, z). For each minmer interval starting48

at i ∈ [a + 1, z), we pop intervals from H that end at or before i. For each interval popped from H, we49

update V in O(log(s)) time through a binary search, decrementing the corresponding βj and setting αj = 050

if the interval represents a shared minmer. The new interval is added in a similar manner and the necessary51

α and β values are updated. After V is updated, pi is updated from pi−1 by incrementing or decrementing52

until it is the maximal value such that pi = max
q

(∑j≤q
j=0 βj ≤ s

)
. By keeping track of pi−1 and the sums53 ∑j≤pi−1

j=0 βj and
∑j≤pi−1

j=0 αj , the new pi and corresponding sums are updated in constant time per window.54

While the MashMap3 implementation of the second filtering stage still requires O(log(s)) time to update55

the minhash for each sliding window within the candidate region, it is significantly more efficient than56

MashMap2’s ordered map in practice due to V being a static data structure in contiguous memory, only57

requiring updates to counters.58

1.3 Minmer density59

To obtain the density of the minmer scheme, we inspect how the rank of a k-mer changes with each sliding60

window. In particular, we use the rank of the k-mer in its first and last windows, i.e. the windows in which61

the k-mer is just entering and just about to leave. To inspect this, we characterize the distribution of the62

first rank, the distribution of the final rank given the first rank, and the probability of the rank ever being63
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less than or equal to s given the first and last ranks.64

Let S be a sequence of 2w − 1 uniformly random numbers in [0, 1]. We denote the middle element at65

position w as z, its rank in the leftmost window of size w as r1, and its rank in the rightmost window of size66

w as rw. Let Cr1,rw be a conditional indicator r.v. such that Pr(C = 1|r1, rw) = Pr(Cr1,rw = 1) where C = 167

only if there exists a window of length w in S such that the rank of z in the window is at most s. This event68

corresponds to the element z being a minmer.69

Lemma 1.1.

Pr(Cr1,rw) =


∑δ

u=0 Pr(U = u)
(2u+rw−r1

u+rw−s )
(2u+rw−r1

u )
r1 > s, rw > s

1 otw

where U ∼ Hypergeometric(w − 1, r1 − 1, w − rw) and δ = min(r1 − 1, w − rw).70

Proof. Given the initial rank r1 and the final rank rw, we can model the path of the rank as left and right71

unit steps on a number line starting at point r1 and ending at rw. At each step in this path, the rank either72

increases, decreases, or remains the same. The event Cr1,rw is then equivalent to the event that the path73

touches the point s on the axis. Let ω = ωleftzωright be a sequence of length 2w− 1 representing the elements74

in S. We let ωleft = ppqpq... and ωright = qpqppq... where each element is labeled as p if it is less than z and75

q otherwise. We define x and y as the number of ps and qs in ωleft, respectively, and similarly a and b are76

the number of ps and qs in ωright, respectively. At step i, the rank z can decrease only if ωleft[i] = p and77

ωright[i] = q. Similarly, the rank will increase only if ωleft[i] = q and ωright[i] = p. Otherwise, the rank will78

remain the same. We note that there can be no more than max(r1 − 1, w − rw) left steps, as x = r1 − 1 and79

b = w − rw.80

For each of the x ps in ωleft, we sample without replacement from ωright. By considering each sampling81

of a q as a success, we see that the number of left steps given the initial and final ranks r1 and rw can be82

modeled as a hypergeometric random variable U ∼ Hypergeometric(w − 1, x, b).83

With a set of u left steps, we can calculate the number of right steps v by observing that if we have u pq84

pairs, then there must be x − u pp pairs, b − u qq pairs, and therefore y − (b − u) = rw − r1 + u qp pairs.85

Given a set of u left steps and v right steps, there are
(
u+v
u

)
total paths. Of these paths, we aim to find the86

ones which touch point s on the axis. Using the reflection principle Comtet (1974), we observe that there are87 (
u+v

u+rw−s

)
such paths and therefore88

(
u+v

u+rw−s

)(
u+v
u

) =

(
2u+rw−r1
u+rw−s

)(
2u+rw−r1

u

)
89

With the conditional distribution Cr1,rw at hand, we can define the marginal distribution of C.90
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Theorem 1.2.

Pr(C = 1) =
1

w

∑
r1,rw∈{1...w}2

Pr(C = 1|r1, rw) Pr(Rw = rw|r1)

Where R1 ∼ Uniform{1, w} and Rw|r1 ∼ BetaBinomial(r1, w − r1 + 1) are random variables for the first91

and last rank of z, respectively.92

Proof. Given r1, the initial rank of z, we can use order statistics for uniform distributions to infer that the

value of z is sampled from a Beta distributed r.v. Z ∼ Beta(r1, w− r1 +1). Given the value z, we can predict

the final rank of z by considering the remaining w − 1 elements as Bernoulli trials each with probability z of

having a lower value than z. Therefore, we have that Rw|z ∼ Bin(w − 1, z). We can obtain the marginal of

Rw via

Pr(Rw = rw) =

∫ 1

0

Pr(Rw = rw|p) Pr(Z = z)dp

which is the Beta-binomial distribution with n = w − 1, α = r1 and β = w − r1 + 1.93

1.4 Minmer interval density94

We will prove the density of minmer intervals in a similar fashion to the proof for minimizers. We define a95

window of length w as at position i as Wi and say Wi is charged if πs(Wi) ̸= πs(Wi−1). Like minimizers, the96

set of minmers between two adjacent windows can differ by at most one, as only a single minmer can leave97

the sketch at a time. Unlike minimizers, though, it is possible for a k-mer at position i to charge multiple98

windows by exiting and then re-entering the sketch. Therefore, the number of charged windows in a sequence99

is at least the number of minmers.100

Consider a super-window of w + 1 k-mers starting at position i− 1 and let πs(Wi ∪Wi−1) be the lowest101

s k-mers in the super-window. Wi is then not charged if and only if both xi−1 ̸∈ πs(Wi ∪ Wi−1) and102

xi+w−1 ̸∈ πs(Wi ∪Wi−1). Assuming each position is equally likely to be part of the sketch, the probability103

of the first and last k-mers not being in the sketch is
(
w−1
s

)
/
(
w+1
s

)
and therefore the probability that Wi is104

charged is105

Pr(Wi is charged) = 1−
(
w−1
s

)(
w+1
s

)
= 1− (w − s+ 1)(w − s)

w(w + 1)
Assuming independence over windows, we have that the density of charged windows is equal to the106

probability that any window is charged and therefore the density of minmer intervals is 1− (w−s+1)(w−s)
w(w+1) .107

1.5 Minmer spread108

We now turn our attention to characterizing the distribution of distances between adjacent minmers using a109

proof described in joriki (2012).110
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Consider a window of length w + 1 which contains s sampled k-mers and is anchored at the left-most111

sampled k-mer. Assuming a set of w+1 unique k-mers , we have that each of the w+1 k-mers is equally likely112

to be sampled. Let X1, ..., Xs−1 be a set of integers randomly sampled from {1, ..., w} such that Xi < Xi+1.113

We define the distance between Xi and Xi+1 as Gi = Xi+1 −Xi. We let X0 = 0 represent the first k-mer in114

the window positioned at the first location.115

Lemma 1.3. Pr(Gi = d) =
(w−d
s−2)
( w
s−1)

116

Proof. Let us consider our w + 1 unique sorted integers arranged on a circle instead of a line. We then “cut”117

the circle at any one of the s sampled integers and renumber the w remaining integers starting from 1 after118

the cut. There are now s− 1 integers uniformly sampled from {1, ..., w}. By fixing the first sample at position119

d and enforcing that all s− 2 remaining integers are sampled from {d+ 1, ..., w}, we see that there are
(
w−d
s−2

)
120

such samples. Given that there are
(

w
s−1

)
ways to sample the s− 1 integers, the distance d between the cut121

and the first sampled point is then distributed as
(w−d
s−2)
( w
s−1)

. As this analysis is symmetric for any “cut,” we122

claim that the distribution of all Gi are identical.123

While the analysis above is conditioned on the case where we have s uniformly random chosen positions,124

the number of sampled positions varies across windows and is only lower-bounded by s. If we replace s with125

the expected number of minmers in the window, df , we can obtain an approximation of the distribution126

of distances (Figure 2). A more rigorous analysis, which is beyond the scope of this work, would require a127

distribution for the number of sampled positions in a window rather than just the expectation.128

Unfortunately, this distribution is not that useful on its own. Given that the distribution of the distance129

is the same across all points, we have that (s+ 1)E[Gi] = w + 1 and therefore E[Gi] = (w + 1)/(s+ 1). Even130

more interesting than the expectation, though, are the order statistics of Gi, such as maxGi.131

In Order Statistics David and Nagaraja (2004), a similar problem is studied where a rope of length 1 is132

cut at n randomly selected locations. The authors show that the expected length of the longest segment133

is Hn+1/(n+ 1), where Hn is the nth harmonic number. The details of the problem we describe above are134

slightly different, as the “cut-points” are selected from a set of integers without replacement as opposed to135

sampled from [0, 1]. We can use this to define Ḡi, an estimator for maxGi,136

Ḡi = (w + 1)
Hdf+1

df + 1

As w grows, the effect of sampling without replacement grows smaller and the error of Ḡi becomes solely137

from the fact that df is only an expectation of the number of minmers in a window.138
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(a) (b)

Supplementary Figure 2: Simulated and empirical spread. The spread of minmers and minimizers under
similar densities on the human Y-chromosome (a) and a simulated random sequence (b).

1.6 Median prediction error for simulated sequences139

If an unbiased Jaccard estimator is generated from a symmetric distribution, then the expected median140

Jaccard and mean Jaccard would be identical. More importantly, the median ANI would also be unbiased,141

whereas the mean ANI would not necessarily be unbiased.142

While the parameters used to replicate the experiments for Table 1 in Belbasi et al. (2022) yield a fairly143

symmetric hypergeometric distribution for the minhash, when the true Jaccard between two sequences is very144

close to 0 or 1 or the sketch size is decreased, the asymmetry in the hypergeometric distribution is increased,145

resulting in notable discordance between the mean and median of the Jaccard estimator. In these cases, an146

unbiased predictor of the mean Jaccard is not necessarily an unbiased predictor of the median Jaccard and147

therefore also not an unbiased predictor of the median ANI.148

The median results for the replicated Belbasi et al. (2022) experiment as well as the median results for the149

simulated read mappings can be found in Supplementary Figure 3 and Supplementary Table 1, respectively.150
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Minimap2 MashMap2 MashMap3
Dataset Median error Median error Median error
CLR-99 0.00 -0.25 0.05
CLR-98 0.02 -0.31 0.10
CLR-95 0.06 0.20 0.27

Supplementary Table 1: Median error for ANI estimates of simulated human Nanopore reads.
Minmer and minimizer-based MashMap implementations as well as Minimap2 were used to map simulated
reads from the human reference genome using Pbsim Ono et al. (2013).

Supplementary Figure 3: Median error on ideal sequences. Experiments from Belbasi et al. (2022) were
replicated with MashMap3, and the relative median prediction error is reported.
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1.7 Indexing requirements across different parameters151

(a) (b)

(c)

Supplementary Figure 4: Indexing the CHM13 assembly with different parameters. In (a), the
window length was changed while holding the sketch size at s = 100, resulting in a range of densities from
0.01 to 0.20. Similarly, in (b) the window length was held at w = 10000 while the sketch size was varied
to generate sketches with densities from 0.01 to 0.20. In (c), performance benchmarks were generated from
indexing each of the CHM13 chromosomes separately with w = 5000 and s = 300.

1.8 Simulated read results and the effects of indels152

Difference Ratio CLR-95 ME CLR-98 ME CLR-99 ME
20:40:40 0.30 0.11 0.05
100:00:00 0.00 -0.02 -0.02

Supplementary Table 2: The effect of indels on ANI prediction error. For error rates of 1%, 2%, and
5%, Pbsim was used to generate two datasets, one with a mismatch, insertion, deletion ratio of 20:40:40 and
another with mismatches only (100:00:00). ANI was estimated from the Jaccard using the binomial model.
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1.9 ANI prediction performance on low-complexity queries153

MashMap2 MashMap3

Query
species

ANI
threshold

Basepairs
mapped
(Gbp)

Mean
error

Mean
absolute
error

Basepairs
mapped
(Gbp)

Mean
error

Mean
absolute
error

chimpanzee 95% 0.01 0.76 1.36 0.01 1.05 1.51
chimpanzee 90% 0.03 4.51 4.76 0.03 4.43 4.63
chimpanzee 85% 0.04 4.85 5.11 0.04 4.81 5.03

macaque 95% <0.01 0.63 1.66 <0.01 0.86 1.55
macaque 90% <0.01 2.13 2.96 <0.01 0.72 1.74
macaque 85% 0.05 9.79 9.88 0.08 7.98 8.03

Supplementary Table 3: Proportion and accuracy of low-complexity mappings. MashMap2 and
MashMap3 were used to align the human reference genome to chimpanzee and macaque genomes. The
number of aligned query query nucleotides from low-complexity segments as well as the mean error and mean
absolute error of the mappings are reported here.

References154

Belbasi, M. et al. (2022). The minimizer jaccard estimator is biased and inconsistent. Bioinformatics.155

Comtet, L. (1974). Advanced Combinatorics: The art of finite and infinite expansions. Springer Science &156

Business Media.157

David, H. A. and Nagaraja, H. N. (2004). Order statistics. John Wiley & Sons.158

Jain, C. et al. (2018). A fast adaptive algorithm for computing whole-genome homology maps. Bioinformatics ,159

34(17), i748–i756.160

joriki (2012). Distribution probability of elements and pair-wise differences in a sorted list. Mathematics161

Stack Exchange. URL:https://math.stackexchange.com/q/247409 (version: 2012-11-30).162

Ono, Y. et al. (2013). Pbsim: Pacbio reads simulator—toward accurate genome assembly. Bioinformatics,163

29(1), 119–121.164

10


	Supplementary Materials
	Probabilistic filtering for the minhash
	Efficiently computing the rolling minhash
	Minmer density
	Minmer interval density
	Minmer spread
	Median prediction error for simulated sequences
	Indexing requirements across different parameters
	Simulated read results and the effects of indels
	ANI prediction performance on low-complexity queries


