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variants in a target protein, but because DMS studies have not been performed on all proteins, 23 

researchers also model DMS data computationally to estimate variant impacts by predictors.  24 

Results: In this study, we extended a linear regression-based predictor to explore whether 25 

incorporating data from alanine scanning (AS), a widely-used low-throughput mutagenesis 26 

method, would improve prediction results. To evaluate our model, we collected 146 AS 27 

datasets, mapping to 54 DMS datasets across 22 distinct proteins.  28 

Conclusions: We show that improved model performance depends on the compatibility of the 29 

DMS and AS assays, and the scale of improvement is closely related to the correlation between 30 

DMS and AS results.  31 

 32 

Keywords: deep mutational scanning, alanine scanning, machine learning, predictor 33 

 34 

1 Introduction 35 

Deep mutational scanning (DMS) is a functional genomics method that can experimentally 36 

measure the impact of many thousands of protein variants by combining high-throughput 37 

sequencing with a functional assay [1]. In a typical DMS, a cDNA library of genetic variants 38 

of a target gene is generated, containing all possible single amino acid substitutions. This 39 

variant library is then expressed in a functional assay system where the variants can be selected 40 

based on their properties. The change in variant frequency in the pre- and post-selection 41 

populations is determined by high-throughput sequencing which is then used to calculate a 42 

multiplexed functional score that captures the variant’s impact [2–4]. The versatility of DMS 43 

assays makes it possible to measure variant impact on a wide range of protein properties, 44 

including protein binding [5,6], protein abundance [7–9], catalytic activity [10,11] and cell 45 

growth rate [12–14].  46 
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Computational studies have used DMS data to build predictive models of variant impact. These 48 

predictors use supervised or semi-supervised learning models trained on experimental DMS 49 

data and various protein features to make predictions [15–21]. Envision is one such method 50 

that used protein structural, physicochemical, and evolutionary features to predict variant effect 51 

scores and was trained on DMS data from 8 proteins using gradient boosting [15]. Another 52 

method, DeMaSk, predicted DMS scores by combining two evolutionary features (protein 53 

positional conservation and variant homologous frequency) with a DMS substitution matrix 54 

and was trained on data from 17 proteins using a linear model [17]. Deep learning algorithms 55 

have also been applied to build protein fitness predictors [16,18], which are usually based only 56 

on variant sequences. 57 

 58 

Low-throughput mutagenesis experiments that measure tens of variants at a time have also 59 

been used extensively to study diverse protein properties, including substrate binding affinity 60 

[22,23], protein stability [24,25], and protein activity [26,27]. Alanine scanning (AS) is a 61 

widely-used low-throughput mutagenesis method [28,29], and AS data are available for many 62 

proteins. In this method, each targeted protein residue is substituted with alanine, and the 63 

impacts of these variants are measured by a functional assay [30]. AS experiments are typically 64 

used to identify functional hot spots or critical residues in the target protein [31,32] and have 65 

been used as a source of independent validation for DMS studies [27,33–35].  66 

 67 

In this study, we explore whether a predictive model can be improved by incorporating low-68 

throughput mutagenesis data (Fig 1). We find that AS data can increase prediction accuracy 69 

and that the improvement is related to the similarity of the functional assays and the correlation 70 

of DMS and AS results. 71 

 72 
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 73 

Fig 1. Workflow for model training and testing. DMS and AS datasets are collected from online resources 74 

and are normalized. DMS and AS datasets targeting the same protein are then matched, filtered and merged. Two 75 

predictors are constructed and tested: the first uses DMS data, AS data and other protein features, and the second 76 

uses only DMS data and the same other protein features.  77 

 78 

2 Results 79 

2.1 Overview of DMS and alanine scanning (AS) data 80 

To build the predictive model, 130 DMS datasets were collected from MaveDB [36,37] 81 

(Supplementary table 1). We searched the literature and found 146 AS datasets targeting the 82 

same proteins as 54 of the DMS datasets. In total, we obtained both DMS and AS data for 22 83 

different proteins: 17 human proteins, three yeast proteins, and two bacterial proteins. Most 84 

DMS experiments were highly complete, with a mean coverage of 95.0% of all possible single 85 

amino acid substitutions assayed in the target region, comprising 373,219 total protein variant 86 

measurements. AS data were only available on a small number of protein residues (Fig 2), and 87 

we were able to curate 1,480 alanine substitution scores from the 146 studies. Variant scores 88 

from collected DMS and AS studies were linearly normalized to a common scale (see Methods) 89 

to make them comparable across datasets (Fig S1). 90 

 91 
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 92 

Fig 2. DMS data generally cover more protein residues than AS data. Each bar shows the number of 93 

residues assayed by DMS studies on given target proteins. Colour indicates the number of AS studies available 94 

for the DMS-tested residues. 95 

 96 

2.2 The correlation of DMS and AS scores is related to assay compatibility 97 

To evaluate the similarity of AS and DMS scores, we calculated Spearman’s correlation (ρ) 98 

between the AS scores and DMS scores for the same alanine substitutions. Since each protein 99 

may have results from several AS and DMS experiments, we calculated ρ between each 100 

possible pair. The median ρ over DMS and AS data (DMS/AS) pairs was 0.2, indicating that 101 

the experimental scores were poorly correlated overall (Fig 3). 102 

  103 
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 104 

Fig 3. Correlation between DMS and AS data shows substantial variation. We calculated Spearman’s ρ 105 

between alanine substitution scores in each pair of AS and DMS data. The results for pairs with less than three 106 

alanine substitutions are removed. The red dashed line shows the median ρ. 107 

 108 

We then considered if differences between AS and DMS assay designs might contribute to this 109 

low agreement between scores. To explore this, we developed a decision tree (Fig S2) to 110 

classify whether DMS/AS pairs had low, medium, or high assay compatibility, which we 111 

defined as a similarity measurement of the functional assays performed. For example, the DMS 112 

assay measuring the binding affinity of a cell surface protein, CXCR4, to its natural ligand [38] 113 

has high compatibility with the AS experiment also measuring this ligand binding but has low 114 

compatibility with the study on CXCR4’s ability to facilitate virus infection [39]. A full assay 115 

compatibility table can be found in Supplementary Table 1 with the compatibility 116 

classifications and justification for each pair. We then compared DMS and AS score correlation 117 

for each compatibility class and found that score correlations were closely related to assay 118 

compatibility. Data from low compatibility assays had a median correlation of 0.15, rising to 119 

0.19 for medium compatibility assays and 0.40 for high compatibility assays (Fig 4). This link 120 
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between assay compatibility and score correlation indicates that our decision tree approach was 121 

able to capture the similarity between assay systems. 122 

 123 

 124 

Fig 4. DMS and AS data pairs with high assay compatibility show a higher score correlation. Each box 125 

represents Spearman’s ρ between DMS and AS data pairs of classified assay compatibility or the overall result. 126 

The correlation coefficients are calculated between alanine substitution scores in each pair of AS and DMS data. 127 

Results for data pairs with less than three alanine substitutions are removed. 128 

 129 

2.3 Compatible AS data improve DMS score prediction accuracy 130 

To test if incorporating AS data into DMS score models would improve prediction accuracy, 131 

we decided to build a new model based on DeMaSk [17]. We chose DeMaSk because it showed 132 

better performance compared to similar methods and was straightforward to modify. The 133 

published DeMaSk model predicts DMS scores using protein positional conservation, variant 134 

homologous frequency, and substitution score matrix, and we incorporated AS data as an 135 

additional feature. Our new predictor was modelled with all 130 DMS we collected and we 136 

applied a leave-one-protein-out cross-validation approach to training and testing [15]. 137 

Prediction performance was evaluated using the Spearman’s correlation (ρ) between the 138 
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experimentally-derived DMS scores and the predicted scores for each pair of DMS and AS 139 

studies. The performance of our DMS/AS model was compared with a model trained only on 140 

DMS data, equivalent to retrained DeMaSk (Fig S3), by calculating the change of prediction ρ 141 

(see Methods). 142 

 143 

We trained our model with either all or a subset of AS data we collected (Fig 5, Table S1). We 144 

first integrated all 146 AS data collected for training and evaluation but observed only a modest 145 

improvement of prediction ρ (Fig 5 left box, and Fig S4). We then retrained and evaluated our 146 

model on filtered AS data with only high compatibility assays, and observed a median increase 147 

in prediction Spearman’s ρ of 0.1 compared to the results with no AS data (Fig 5 middle box, 148 

and Fig S4). However, training with both high and medium compatibility pairs reduced the 149 

performance improvement (Fig S5). These results indicate that medium and low compatibility 150 

pairs might provide inconsistent training data, degrading model performance. We also 151 

evaluated the impact of including high compatibility AS data in an alternative model based on 152 

Envison [15], and found similar results (Fig S6). To differentiate between high assay 153 

compatibility and high DMS/AS score correlation, we trained the model using the most highly 154 

correlated AS result for each DMS dataset (see Methods). Although the upper quartile was 155 

high, the median performance change of this predictor was lower than the high assay 156 

compatibility model, suggesting that matching with the highest score correlation alone is 157 

insufficient (Fig 5 right box). 158 

 159 
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 160 

Fig 5. Performance of variant impact prediction is improved using AS data with high assay compatibility. 161 

The change of prediction ρ for each DMS and AS data pair is shown as box plots. A higher value represents higher 162 

prediction accuracy achieved for using AS data. Different approaches to filtering/matching the data are shown on 163 

the x-axis: “All AS data” used all available data; “Compatibility filtered” used only data of high assay 164 

compatibility; “Correlation matched” used only data with the highest regularised correlation for each DMS dataset. 165 

 166 

To further explore the higher performance of compatibility-filtered predictor, we examined the 167 

relationship between prediction ρ change and score correlation for each high compatibility 168 

DMS/AS pair (Fig 6). For most pairs, prediction performance was improved by using AS data, 169 

and the scale of improvement was also related to the score correlation. This relationship could 170 

also be observed for multiple DMS/AS pairs from an individual protein, such as CXCR4 and 171 

CCR5. We saw the same trend in the predictor trained with all DMS/AS pairs but noted that 172 

the performance even of highly correlated pairs was worse, likely due to the influence of low 173 

compatibility training data on the model (Fig S7). 174 

 175 
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 176 

Fig 6. Prediction performance change is related to DMS and AS score correlation. Each dot represents a 177 

filtered DMS/AS data pair of high assay compatibility. The vertical axis shows the change of prediction ρ by using 178 

AS data (larger means higher performance achieved by using AS data). The horizontal axis shows the DMS/AS 179 

score correlation for all variants on the matched residues rather than just alanine substitutions. The colours and 180 

shapes of the dots correspond to the target protein, and size indicates the number of variants in each data pair. 181 

 182 

We also explored the consequences of the sparsity of AS data on our model in two ways: by 183 

using a boosting approach that focuses only on residues with AS data (Fig S8) and by using 184 

complete alanine substitution information from DMS as the AS feature (Fig S9). Both of these 185 

approaches performed very similarly to the primary model constructed using high-186 

compatibility DMS/AS data and simple mean score imputation. 187 

 188 

To test the influence of amino acids on our predictor, we grouped the prediction results by 189 

either wild-type or variant amino acid and calculated the prediction improvement when AS 190 

data were included (Fig 7). We found that 14 of 19 wild-type amino acids performed better 191 

with the addition of AS data, with cysteine showing the largest improvement and performing 192 

worst in the model lacking AS data. 18 of 20 variant amino acids benefited from the inclusion 193 
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of AS data, with marginal performance decrease on lysine and aspartic acid (|Δρ|<0.01) (Fig 194 

7).  195 

 196 

 197 

Fig 7. Model perfomance is generally improved for each wild-type and variant amino acid. Prediction 198 

Spearman’s ρ when using (y-axis) or not using (x-axis) AS data on each wild-type (left) or variant (right) amino 199 

acid is shown in the scatter plots. The results are coloured according to the property of each amino acid type. 200 

Alanine (A) result is not applicable in the first figure since alanine scanning data are always missing when the 201 

wildtype is alanine itself. Absolute count for each amino acid can be found in Fig S10. (Neg.: negatively, Pos.: 202 

positively) 203 

 204 

3 Discussion 205 

In this study, we integrated alanine scanning (AS) data into deep mutational scanning (DMS) 206 

score prediction, leading to modest improvements in the accuracy of variant score prediction. 207 

We also explored the impact of the diversity of protein properties measured by DMS and AS. 208 

Filtering DMS and AS data based on our manual classification of assay type compatibility led 209 

to improved prediction performance.  210 

 211 
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A potential shortcoming of our current approach is that AS data were available for only a small 212 

proportion of the DMS data. Although most recent DMS studies can analyze variants of the 213 

whole protein, most AS experiments only cover a handful of residues in the target protein, 214 

leaving missing AS scores for the vast majority of residues. We explored this here and found 215 

that alternative methods for addressing the sparsity of AS data did not improve or degrade 216 

performance, but we anticipate further improved prediction accuracy if the low completeness 217 

and unevenness of AS data are appropriately handled before modelling, such as by advanced 218 

imputation methods [48,49].  219 

 220 

In this study, we identified the importance of DMS/AS assay compatibility as a crucial factor 221 

for improving prediction accuracy. An issue with using this concept is that it further shrinks 222 

already sparse data. It also fails to take advantage of the fact that even for low compatible 223 

assays some fundamental information like protein stability can still be mutually captured. 224 

Instead of hard filtering, proper implementation of this underlying information may facilitate 225 

variant impact prediction in the future. Nonetheless, filtering on assay compatibility still leads 226 

to performance improvement. We also briefly explored whether the consistency of DMS and 227 

AS scores can be considered more directly by matching the best correlated AS data for each 228 

DMS dataset. Consistency is partially driven by assay compatibility but also reflects other 229 

features of the data, such as bias and noise. While we picked the most correlated pair for each 230 

DMS, we did not threshold the correlation, potentially including data pairs that were poor 231 

matches. 232 

 233 

The concepts of compatibility and data quality are also relevant to training any DMS-based 234 

predictors. DMS assays have been developed to measure variant impacts to distinct protein 235 

properties, and a variant can behave similarly to wildtype when measured by one assay yet 236 
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show altered protein properties in other assay results, which are frequently found in regions 237 

with specific biochemical functions [50–55]. With more experimental assays to be applied, the 238 

diverse measurements may impede the progress of future DMS-based predictors unless this 239 

assay effect is properly addressed, for example, by building assay specific predictors. 240 

Measurement error is another source of DMS data heterogeneity that potentially affects the 241 

model performance. In our current study, DMS scores of protein variants are weighted equally 242 

while training. Adjustable weighting can be applied in future studies to adapt the distinct 243 

experimental error between individual variants and datasets, reducing the influence of low-244 

confident data. 245 

 246 

In summary, we conclude that the careful inclusion of low-throughput mutagenesis data 247 

improves the prediction of DMS scores, and the approaches described here can potentially be 248 

applied to other prediction methods. 249 

 250 

4 Availability of supporting source code and requirements 251 

Project name: DMS_with_Alanine_scan 252 

Project home page: https://github.com/PapenfussLab/DMS_with_Alanine_scan 253 

Operating system: Platform independent 254 

Programming language: Python 255 

Other requirements: Python 3.10.6 256 

Licence: MIT Licence 257 

 258 

5 List of abbreviations 259 

DMS: deep mutational scanning 260 

AS: alanine scanning 261 

https://github.com/PapenfussLab/DMS_with_Alanine_scan
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 262 

6 Supporting information 263 

Supplementary Table 1: All candidate DMS and alanine scanning data with detailed dataset 264 

information. 265 

Supplementary Table 2: Normalized DMS dataset with protein property features. 266 

Supplementary Table 3: Normalized alanine scanning dataset. 267 
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9 Methods 284 

9.1 DMS data collection 285 

DMS data were downloaded from MaveDB [36,37] which were then filtered and curated. DMS 286 

experiments targeting antibody and virus proteins were removed because of their potentially 287 

unique functionality. We retrieved the UniProt accession ID of target proteins by searching the 288 

protein names or sequences in UniProt [56], and proteins lacking available UniProt ID were 289 

also excluded. Datasets that are computationally processed or their wildtype-like and nonsense-290 

like scores (see Normalization) cannot be identified were also filtered out (Supplementary 291 

Table 1). All missense variants with only a single amino acid substitution were curated from 292 

the DMS studies for our analysis. A total of 130 DMS experiments from 53 studies [5,6,9–293 

14,27,33–35,38,57–94] were collected for our analysis. 294 

 295 

9.2 Collection of AS data and other features 296 

The following process was used to search for candidate AS studies. Papers were identified by 297 

searching on PubMed and Google Scholar for the “alanine scan” or “alanine scanning” together 298 

with the name of candidate proteins. While searching in Google Scholar, we included the 299 

protein’s UniProt ID rather than molecule name as the search term to reduce false positives. 300 

Appropriate AS data were collected from the search results. Western blot results were 301 

transformed to values by ImageJ if it was the only experimental data available in the study. A 302 

total 146 AS experiments were collected from 45 distinct studies [22–24,26,27,39–303 

42,44,45,84,95–127]. 304 

Protein features of Shannon entropy and the logarithm of variant amino acid frequency were 305 

downloaded from the DeMaSk online toolkit [17]. The substitution score matrix feature was 306 

calculated from the mean of training DMS scores for each of the 380 possible amino acid 307 

substitutions before each iteration of cross-validation. 308 
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 309 

9.3 Normalization 310 

DMS and AS datasets were normalized to a common scale using the following approach 311 

adapted from previous studies [15,43]. Let D denotes a protein study measuring scores 𝑠𝑖
𝐷 for 312 

a single variant i, 𝑠𝑤𝑡
𝐷  denotes the scores for wildtype and 𝑠𝑛𝑜𝑛

𝐷  represents the score for 313 

nonsense-like variants. The normalized scores 𝑠𝑖
′𝐷are given by: 314 

𝑠𝑖
′𝐷 ∶=

𝑠𝑖
𝐷 − 𝑠𝑤𝑡

𝐷

𝑠𝑤𝑡
𝐷 − 𝑠𝑛𝑜𝑛

𝐷
+ 1 315 

Wild-type scores were directly identified from the paper or the median score of synonymous 316 

variants. For DMS data, since not all DMS studies report score of nonsense variants, we defined 317 

the nonsense-like scores as the median DMS scores for the 1% missense variants with the 318 

strongest loss of function for each dataset. For AS data, nonsense-like scores were either 319 

defined according to the paper or using the extreme values (Supplementary Table 1). 320 

 321 

9.4 AS data filtering and matching 322 

AS data subsets were filtered/matched according to either assay compatibility or score 323 

correlation. For assay compatibility filtering, DMS and AS assay pairs were first classified into 324 

three levels of compatibility (Fig S2). For each DMS dataset, we first tried to use only AS data 325 

with high assay compatibility for further modelling, removing AS data of medium and low 326 

assay compatibility. We then also tried to model with AS data of both high and medium assay 327 

compatibility. 328 

For score correlation matching, Spearman’s correlation (ρ) is calculated between alanine 329 

substitution scores in each pair of AS and DMS data. To avoid influence from the size of AS 330 

datasets, we regularised the ρ value by empirical copula [128]: 331 

𝜌𝑟 ∶= 𝜌 ×
𝑛 − 1

𝑛 + 1
 332 
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where 𝜌𝑟 is the regularised correlation coefficient, and 𝑛 is the number of alanine substitutions 333 

used for correlation calculation. For each DMS dataset, AS result with the highest 𝜌𝑟  was 334 

picked for modelling. 335 

 336 

9.5 AS data pre-processing 337 

AS data were pre-processed prior to modelling. For variants without available 338 

(filtered/matched) AS data, their AS scores were imputed with the mean value of all available 339 

AS scores. Then the AS data were encoded by the wild-type and variant amino acid type with 340 

one-hot-encoding. For each variant, the AS feature is expanded with two one-hot vectors. Each 341 

of the vectors has 19 zeros and one non-zero value which was the AS score, with the location 342 

of the non-zero value indicating the wild-type or variant amino acid type. 343 

 344 

9.6 Training and evaluation of DMS score predictor 345 

To build the predictors, we performed linear regression using the function 346 

sklearn.linear_model.LinearRegression from scikit-learn [129]. Training and 347 

validation data were separated with leave-one-protein-out cross-validation. In this process, data 348 

from one protein were withheld for subsequent validation, and the rest were used for training. 349 

This process was iterated over all proteins in the data. Variants were inversely weighted during 350 

the training process by the number of measurements available, thus compensating for some 351 

regions having greater coverage with DMS and AS assays. Predictors were trained on protein 352 

features, DMS data and (optionally) AS data using four different filtering or matching 353 

strategies: i) all DMS/AS data, ii) compatibility-filtered DMS/AS data, iii) correlation-matched 354 

DMS/AS data, and iv) a control, constructed using DMS data only. 355 

In the evaluation process, let V be protein variants assayed by both DMS study D and AS study 356 

A. Variant scores are predicted by the previously mentioned predictors either using AS data 357 
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(�̂�𝑉
𝐴) or not (�̂�𝑉). Spearman’s correlation (ρ) was calculated between the DMS scores 𝑠𝑉

𝐷 and 358 

each set of predicted scores. The difference of ρ was used to evaluate the performance change 359 

(∆𝜌𝑉). 360 

𝜌𝑉
𝐴 = Spearman′s correlation(�̂�𝑉

𝐴, 𝑠𝑉
𝐷) 361 

𝜌𝑉 = Spearman′s correlation(�̂�𝑉, 𝑠𝑉
𝐷) 362 

∆𝜌𝑉 = 𝜌𝑉
𝐴 − 𝜌𝑉  363 

To evaluate, we iterated over variants from each pair of DMS/AS studies. Results were dropped 364 

for variants V with only one protein residue available during analysis and visualization. 365 

 366 
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Supplementary material 749 

 750 

Fig S1. DMS and AS score distribution. The figure shows the kernel estimated density of normalized AS scores 751 

and DMS scores for variants with or without available AS data. 752 

 753 
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 754 

Fig S2. Decision tree for classifying the DMS and AS assay compatibility. The end-nodes show the classified 755 

assay compatibility. The number indicates the count of assay pairs for each compatibility level (low, medium, 756 

high). 757 

 758 

 759 

Fig S3. Comparison between published and re-implemented predictors. The plot shows leave-one-protein-760 

out cross-validation performance on predictors built from the published DeMaSk code or our code. The predictors 761 

were trained and evaluated on DMS data either provided by the DeMaSk study or curated by our own. The 762 

“DeMaSk data & code” result is similar to the published result. For the “Our data & DeMaSk code” result, we 763 

used our own data and published code which shows a median performance around 0.35. This is probably because 764 
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many more DMS results are included in our data. The similarity of results achieved using “Our data & code” 765 

demonstrates the correctness of our re-implementation. 766 

 767 

 768 

Fig S4. Performance comparison between predictors using AS data or not. The Spearman’s ρ between 769 

experiment DMS scores and predicted scores for each DMS and AS data pair are shown as box plots. Different 770 

approaches to filtering/matching the data are shown on the x-axis: “All AS data” used all available data; 771 

“Compatibility filtered” used only data of high assay compatibility; “Correlation matched” used only data with 772 

the highest regularised correlation for each DMS dataset. The figure does not include data without available 773 

(filtered/matched) AS scores. This means that the different results are not directly comparable since they are 774 

visualized on different subsets of DMS/AS data pairs (for example, “All AS data” contains all DMS/AS data pairs, 775 

but “Compatibility filtered” contains only data pairs of high assay compatibility). Control results are shown as 776 

green boxes for predicting without AS data as a feature. The underlying ρ for each data pair in the control results 777 

is the same, but the boxes are shifted due to data filtering/matching. 778 

 779 
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 780 

Fig S5. The performance of variant impact prediction for using data of different assay compatibility levels. 781 

The change of prediction Spearman’s ρ for each DMS and AS data pair is shown as box plots. A higher value 782 

represents higher prediction accuracy achieved for using AS data. Different data filtering methods are shown on 783 

the x-axis. 784 

 785 

Fig S6. Prediction performance is improved while incorporating high compatibility AS data into the 786 

Envision model. The Spearman’s ρ between experiment DMS scores and predicted scores for each high 787 

compatible DMS/AS assay pair are shown as box plots. The x-axis shows the predictor used, either Envision or 788 

DeMaSk. Control results are shown as green boxes for predicting without AS data as a feature. 789 

 790 
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 791 

Fig S7. Prediction performance change for using all AS data. Each dot represents a DMS/AS data pair. The 792 

vertical axis shows the change of prediction ρ by using AS data (larger means higher performance achieved by 793 

using AS data). The horizontal axis shows the DMS/AS score correlation for all variants on the matched residues 794 

rather than just alanine substitutions. The colours and shapes of the dots correspond to the target protein, and size 795 

indicates the number of variants in each data pair. 796 

 797 

 798 

Fig S8. Boosting setup shows similar performance as the main result. Each dot represents a filtered DMS/AS 799 

data pair of high assay compatibility. The vertical and horizontal axes show the prediction Spearman’s ρ for either 800 

modelled with boosting or the one-step (main result) setup. The colours and shapes of the dots correspond to the 801 

target protein, and size indicates the number of variants in each data pair. 802 
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 803 

 804 

Fig S9. Training with DMS scores of alanine substitutions shows similar performance as the main result. 805 

The vertical and horizontal axes show the prediction Spearman’s ρ for predictors either trained with DMS score 806 

of alanine substitutions (DMS-Ala) or AS data of high assay compatibility (main result), yet all evaluated on high 807 

compatibility AS data. The colours and shapes of the dots correspond to the target protein, and size indicates the 808 

number of variants in each data pair. 809 

 810 

 811 

 812 

Fig S10. Count of variant entries for each wild-type or variant amino acid of high assay compatibility data. 813 

(Neg.: negatively, Pos.: positively) 814 
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 815 

Table S1. Amount of data with AS scores available 816 

Data composition Protein DMS dataset AS dataset1 Variant entries2 

All AS 22 54 146 70446 

Compatibility filtered 15 35 60 15739 

High+medium assay 

compatibility 
21 51 105 28380 

Correlation matched 22 54 32 7940 

1. This column shows how many unique AS datasets are included. 817 

2. Include duplicated variants caused by multiple experiments targeting the same protein variant. 818 

 819 

Supplementary information 820 

Applying AS data to Envision method 821 

We re-implemented a predictor based on Envision [15] to incorporate AS data. Features used 822 

in Envision were downloaded from its online toolkit. All Envision features are used for 823 

modelling except for substitution type (wt_mut) which has low importance according to the 824 

published result and our pilot studies yet is computationally expensive in our setup. Protein 825 

data were excluded if their features were not available online. DMS and AS data pairs with 826 

high assay compatibility were used for modelling. Missing feature values were imputed by the 827 

mean values for numerical features or the most frequent values for categorical features. 828 

Categorical features are encoded with the one-hot encoder. We used 829 

sklearn.ensemble.GradientBoostingRegressor from scikit-learn package [129] 830 

to build the predictor, and hyperparameters were tuned by Bayesian Optimization [130] with 831 

Group K-Fold (protein-30-fold) cross-validation. The training and evaluation process were 832 

similar to that previously described. For comparison, we repeated the DeMaSk-based analysis 833 

on the same subset of data. 834 
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 835 

Boosting with AS data 836 

To deal with the sparsity of AS data, we tested a variant impact predictor based on boosting. A 837 

first linear regression predictor was trained with all training DMS data using the three DeMaSk 838 

features without AS data, which was the same as the control predictor mentioned previously. 839 

We then calculated the prediction error by subtracting the predicted scores from DMS scores, 840 

and a second linear regression predictor was trained to predict the error. The second predictor 841 

was trained only on DMS/AS data of high assay compatibility and used both protein features 842 

and the encoded AS scores. The final prediction result was the sum of the outputs from these 843 

two predictors. 844 

 845 

Replacing AS data with DMS scores of alanine substitutions 846 

We investigated another potential approach to overcome the sparsity of AS data by replacing 847 

the AS feature with the DMS scores of alanine substitutions (DMS-Ala). For all DMS datasets 848 

we collected, their AS feature values, regardless of availability, were replaced by the DMS-849 

Ala scores on the same residue. Missing scores were imputed by the mean value of all DMS-850 

Ala scores. A regression model was trained and evaluated as previously described, using the 851 

three DeMaSk features as well as the DMS-Ala scores. The AS data of high assay compatibility 852 

are still used for the testing process.  853 

 854 
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In this work, we collected high-throughput deep mutational scanning (DMS) data from an 

online database, with 370,000 protein variants and low throughput alanine scanning data of 

matched proteins from published papers. We defined a decision tree to classify low- and 
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