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Abstract 16 

Background: Evaluating the impact of amino acid variants has been a critical challenge for 17 

studying protein function and interpreting genomic data. High-throughput experimental meth-18 

ods like deep mutational scanning (DMS) can measure the effect of large numbers of variants 19 

in a target protein, but because DMS studies have not been performed on all proteins, research-20 

ers also model DMS data computationally to estimate variant impacts by predictors.  21 

Results: In this study, we extended a linear regression-based predictor to explore whether in-22 

corporating data from alanine scanning (AS), a widely used low-throughput mutagenesis 23 
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method, would improve prediction results. To evaluate our model, we collected 146 AS da-24 

tasets, mapping to 54 DMS datasets across 22 distinct proteins.  25 

Conclusions: We show that improved model performance depends on the compatibility of the 26 

DMS and AS assays, and the scale of improvement is closely related to the correlation between 27 

DMS and AS results.  28 

 29 

Keywords: deep mutational scanning, alanine scanning, machine learning, predictor 30 

 31 

1 Introduction 32 

Deep mutational scanning (DMS) is a functional genomics method that can experimentally 33 

measure the impact of many thousands of protein variants by combining high-throughput se-34 

quencing with a functional assay [1]. In a typical DMS, a cDNA library of genetic variants of 35 

a target gene is generated, containing all possible single amino acid substitutions. This variant 36 

library is then expressed in a functional assay system where the DMS variants can be selected 37 

based on their properties. The change in variant frequency in the pre- and post-selection popu-38 

lations is determined by high-throughput sequencing which is then used to calculate a multi-39 

plexed functional score that captures the variant’s impact [2–4]. The versatility of DMS assays 40 

makes it possible to measure variant impact on a wide range of protein properties, including 41 

protein binding affinity [5,6], protein abundance [7–9], enzyme activity [10,11] and cell sur-42 

vival [12–14]. So far, hundreds of DMS studies covering tens of thousands of nucleotides have 43 

been published [15], and experiments targeting over a hundred additional genes are underway 44 

according to MaveRegistry [16]. 45 

 46 



 

 

 

 

 3 

Computational studies have used DMS data to build predictive models of variant impact. These 47 

predictors use supervised or semi-supervised learning models trained on experimental DMS 48 

data and various protein features to make predictions [17–23]. Envision is one such method 49 

that used protein structural, physicochemical, and evolutionary features to predict variant effect 50 

scores and was trained on DMS data from 8 proteins using gradient boosting [17]. Another 51 

method, DeMaSk, predicted DMS scores by combining two evolutionary features (protein po-52 

sitional conservation and variant homologous frequency) with a DMS substitution matrix and 53 

was trained on data from 17 proteins using a linear model [19]. Deep learning algorithms have 54 

also been applied to build protein fitness predictors [18,20], which are usually based only on 55 

variant sequences. These variant effect predictors can also be benchmarked using DMS exper-56 

imental results and assist in the interpretation of experimental data [20,24,25]. 57 

 58 

Low-throughput mutagenesis experiments that measure tens of variants at a time have also 59 

been used extensively to study diverse protein properties, including substrate binding affinity 60 

[26,27], protein stability [28,29], and protein-specific activities [30,31]. Alanine scanning (AS) 61 

is a widely-used low-throughput mutagenesis method [32,33], and AS data are available for 62 

many proteins. In this method, each targeted protein residue is substituted with alanine, and the 63 

impacts of these variants are measured by a functional assay [34]. AS experiments are typically 64 

used to identify functional hot spots or critical residues in the target protein [35,36] and have 65 

been used as a source of independent validation for DMS studies [31,37–39].  66 

 67 

In this study, we explore whether a predictive model can be improved by incorporating low-68 

throughput mutagenesis data (Fig 1). We find that AS data can increase prediction accuracy 69 
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and that the improvement is related to the similarity of the functional assays and the correlation 70 

of DMS and AS results. 71 

 72 

 73 

Fig 1. Workflow for model training and testing. DMS and AS datasets are collected from online resources and 74 

are normalized. DMS and AS datasets targeting the same protein are then matched, filtered and merged. Two 75 

predictors are constructed and tested: the first uses DMS data, AS data and other protein features, and the second 76 

uses only DMS data and the same other protein features.  77 

 78 

2 Results 79 

2.1 Overview of DMS and alanine scanning (AS) data 80 

To build the predictive model, 130 DMS datasets were collected from MaveDB [40,41] (Sup-81 

plementary table 1). We searched the literature and found 146 AS datasets targeting the same 82 

proteins as 54 of the DMS datasets. In total, we obtained both DMS and AS data for 22 different 83 

proteins: 17 human proteins, three yeast proteins, and two bacterial proteins. Most DMS ex-84 

periments were highly complete, with a mean coverage of 95.0% of all possible single amino 85 

acid substitutions assayed in the target region, comprising 373,219 total protein variant meas-86 

urements. AS data were only available on a small number of protein residues (Fig 2), and we 87 
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were able to curate 1,480 alanine substitution scores from the 146 studies. Variant scores from 88 

collected DMS and AS studies were linearly normalized to a common scale (see Methods) to 89 

make them comparable across datasets (Fig S1). 90 

 91 

 92 

Fig 2. DMS data generally cover more protein residues than AS data. Each bar shows the number of residues 93 

assayed by DMS studies on given target proteins. Colour indicates the number of AS studies available for the 94 

DMS-tested residues. 95 

 96 

2.2 The correlation of DMS and AS scores is related to assay compatibility 97 

To evaluate the similarity of AS and DMS scores, we calculated Spearman’s correlation (ρ) 98 

between the AS scores and DMS scores for the same alanine substitutions. Since each protein 99 

may have results from several AS and DMS experiments, we calculated ρ between each possi-100 

ble pair. The median ρ over DMS and AS data (DMS/AS) pairs was 0.2, indicating that the 101 

experimental scores were poorly correlated overall (Fig 3). 102 

  103 



 

 

 

 

 6 

 104 

Fig 3. Correlation between DMS and AS data shows substantial variation. We calculated Spearman’s ρ be-105 

tween alanine substitution scores in each pair of AS and DMS data. The results for pairs with less than three 106 

alanine substitutions are not shown. The red dashed line shows the median ρ. 107 

 108 

We then considered if differences between AS and DMS assay designs might contribute to this 109 

low agreement between scores. To explore this, we developed a decision tree (Fig S2) to clas-110 

sify whether DMS/AS pairs had low, medium, or high assay compatibility, which we defined 111 

as a similarity measurement of the functional assays performed. For example, the DMS assay 112 

measuring the binding affinity of a cell surface protein, CXCR4, to its natural ligand [42] has 113 

high compatibility with the AS experiment also measuring this ligand binding but has low 114 

compatibility with the study on CXCR4’s ability to facilitate virus infection [43]. A full assay 115 

compatibility table can be found in Supplementary Table 1 with the compatibility classifica-116 

tions and justification for each pair. We then compared DMS and AS score correlation for each 117 

compatibility class and found that score correlations were closely related to assay compatibility. 118 

Data from low compatibility assays had a median correlation of 0.15, rising to 0.19 for medium 119 

compatibility assays and 0.40 for high compatibility assays (Fig 4). This trend of increased 120 

correlation for high compatibility assay pairs holds across secondary structures (Table S1). 121 
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This link between assay compatibility and score correlation indicates that our decision tree 122 

approach was able to capture the similarity between assay systems. 123 

 124 

 125 

Fig 4. DMS and AS data pairs with high assay compatibility show a higher score correlation. Each box 126 

shows the Spearman’s ρ between DMS and AS data pairs for each level of assay compatibility or overall. The 127 

correlation coefficients were calculated between alanine substitution scores in each pair of AS and DMS datasets. 128 

Results for pairs with less than three alanine substitutions were removed. P-values calculated using Welch’s test 129 

and corrected using Holm-Šidák, *: p<0.05; notches show 95% confidence interval around median, and whiskers 130 

show the full value range. 131 

 132 

2.3 Compatible AS data improve DMS score prediction accuracy 133 

To test if incorporating AS data into DMS score models would improve prediction accuracy, 134 

we decided to build a new model based on DeMaSk [19]. We chose DeMaSk because it showed 135 

better performance compared to similar methods and was straightforward to modify. The pub-136 

lished DeMaSk model predicts DMS scores using protein positional conservation, variant ho-137 
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mologous frequency, and substitution score matrix, and we incorporated AS data as an addi-138 

tional feature. Our new predictor was modelled with all 130 DMS we collected and we applied 139 

a leave-one-protein-out cross-validation approach to training and testing, avoiding information 140 

leakage for variants of the same protein target [17]. Prediction performance was evaluated us-141 

ing the Spearman’s correlation (ρ) between the experimentally-derived DMS scores and the 142 

predicted scores for each pair of DMS and AS studies. The performance of our DMS/AS model 143 

was compared with a model trained only on DMS data, equivalent to retrained DeMaSk (Fig 144 

S3), by calculating the change of prediction ρ (see Methods). 145 

 146 

We trained our model with either all or a subset of AS data we collected (Fig 5, Table S2). We 147 

first integrated all 146 AS data collected for training and evaluation but observed only a modest 148 

improvement of prediction ρ (Fig 5 left box, and Fig S4). We then retrained and evaluated our 149 

model on filtered AS data with only high compatibility assays, and observed a median increase 150 

in prediction Spearman’s ρ of 0.1 compared to the results with no AS data (Fig 5 middle box, 151 

and Fig S4). However, training with both high and medium compatibility pairs reduced the 152 

performance improvement (Fig S5). These results indicate that medium and low compatibility 153 

pairs might provide inconsistent training data, degrading model performance. We also evalu-154 

ated the impact of including high compatibility AS data in an alternative model based on En-155 

vison [17], and found similar results (Fig S6). To differentiate between high assay compatibil-156 

ity and high DMS/AS score correlation, we trained the model using the most highly correlated 157 

AS result for each DMS dataset (see Methods). Although the upper quartile was high, the me-158 

dian performance change of this predictor was lower than the high assay compatibility model, 159 

suggesting that matching with the highest score correlation alone is insufficient (Fig 5 right 160 

box). However, when applying a stricter threshold, the correlation matched models still show 161 
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limited improvement (Fig S7). Additionally, to ensure the models performance is not biased 162 

by pseudo-replication of multiple datasets, we averaged DMS and AS scores that were part of 163 

the same study and type of assay, and saw similar results (Fig S8). 164 

 165 

 166 

Fig 5. Performance of variant impact prediction is improved using AS data with high assay compatibility. 167 

The change in prediction ρ achieved by including the AS data feature for each DMS and AS data pair is shown as 168 

box plots. A higher value represents higher prediction accuracy achieved for using AS data. Different approaches 169 

to filtering/matching the data are shown on the x-axis: “All AS data” used all available data; “Compatibility fil-170 

tered” used only data of high assay compatibility; “Correlation matched” used only data with the highest regular-171 

ised correlation for each DMS dataset. Results for data pairs with only one residue are not shown. P-values were 172 

calculated using Welch’s test and jointly corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 173 

95% confidence interval around the median, and whiskers show the full value range. 174 

 175 

Our compatibility-filtered predictor shows improved prediction accuracy for these regions 176 

compared to not only the baseline model, but other widely used predictors as well (Fig S9). To 177 

further explore the higher performance of this compatibility-filtered predictor, we examined 178 

the relationship between prediction ρ change and score correlation for each high compatibility 179 
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DMS/AS pair (Fig 6). For most pairs, prediction performance was improved by using AS data, 180 

and the scale of improvement was also related to the score correlation. This relationship could 181 

also be observed for multiple DMS/AS pairs from an individual protein, such as CXCR4 and 182 

CCR5. We saw the same trend in the predictor trained with all DMS/AS pairs but noted that 183 

the performance even of highly correlated pairs was worse, likely due to the influence of low 184 

compatibility training data on the model (Fig S10). 185 

 186 

 187 

Fig 6. Prediction performance change is related to DMS and AS score correlation. Each dot represents a 188 

filtered DMS/AS data pair of high assay compatibility. The vertical axis shows the change of prediction ρ by using 189 

AS data (larger means higher performance achieved by using AS data). The horizontal axis shows the DMS/AS 190 

score correlation for all variants on the matched residues rather than just alanine substitutions. The colours and 191 

shapes of the dots correspond to the target protein, and size indicates the number of variants in each data pair. 192 

Results for data pairs with only one residue are not shown. 193 

 194 

We also explored the consequences of the sparsity of AS data on our model in three ways: i) 195 

by training only with variants that have AS data available (Fig S11); ii) by using a boosting 196 
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approach that focuses only on residues with AS data (Fig S12) and iii) by using complete ala-197 

nine substitution information from DMS as the AS feature (Fig S13). The first approach gave 198 

lower absolute prediction performance, presumably because the model was under-fitted due to 199 

the small number of variants. The last two approaches performed very similarly to the primary 200 

model constructed using high-compatibility DMS/AS data and simple mean score imputation. 201 

 202 

To test the influence of amino acids on our predictor, we grouped the prediction results by 203 

either wild-type or variant amino acid and calculated the prediction improvement when AS 204 

data were included (Fig 7). We found that 14 of 19 wild-type amino acids performed better 205 

with the addition of AS data, with cysteine showing the largest improvement and performing 206 

worst in the model lacking AS data. 18 of 20 variant amino acids benefited from the inclusion 207 

of AS data, with marginal performance decrease on lysine and aspartic acid (|Δρ|<0.01) (Fig 208 

7). We also noticed that variants to alanine are not most improved, however we observed an 209 

overall trend showing higher improvement for amino acids that are physiochemically similar 210 

to alanine (Fig S15). 211 

 212 

 213 
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Fig 7. Model performance is generally improved for each wild-type and variant amino acid. Prediction 214 

Spearman’s ρ when using (y-axis) or not using (x-axis) AS data on each wild-type (A) or variant (B) amino acid 215 

is shown in the scatter plots. The results are coloured according to the property of each amino acid type. Alanine 216 

(A) result is not applicable in the first figure since alanine scanning data are always missing when the wildtype is 217 

alanine itself. Absolute count for each amino acid can be found in Fig S14. (Neg.: negatively, Pos.: positively) 218 

 219 

3 Discussion 220 

In this study, we integrated alanine scanning (AS) data into deep mutational scanning (DMS) 221 

score prediction, leading to modest improvements in the accuracy of variant score prediction. 222 

We also explored the impact of the diversity of protein properties measured by DMS and AS. 223 

Filtering DMS and AS data based on our manual classification of assay type compatibility led 224 

to improved prediction performance.  225 

 226 

A potential shortcoming of our current approach is that AS data were available for only a small 227 

proportion of the DMS data. Although most recent DMS studies can analyze variants of the 228 

whole protein, most AS experiments only cover a handful of residues in the target protein, 229 

leaving missing AS scores for the vast majority of residues. We explored this here and found 230 

that alternative methods for addressing the sparsity of AS data did not improve or degrade 231 

performance, but we anticipate further improved prediction accuracy if the low completeness 232 

and unevenness of AS data are appropriately handled before modelling.  233 

 234 

In this study, we identified the importance of DMS/AS assay compatibility as a crucial factor 235 

for improving prediction accuracy. An issue with using this concept is that it further shrinks 236 

already sparse data. It also fails to take advantage of the fact that even for low compatible 237 

assays some fundamental information like protein abundance can still be mutually captured. 238 
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Instead of hard filtering, proper implementation of this underlying information may facilitate 239 

variant impact prediction in the future. Nonetheless, filtering on assay compatibility still leads 240 

to performance improvement. We also briefly explored whether the consistency of DMS and 241 

AS scores can be considered more directly by matching the best correlated AS data for each 242 

DMS dataset. Consistency is partially driven by assay compatibility but also reflects other fea-243 

tures of the data, such as bias and noise.  244 

 245 

The concepts of compatibility and data quality are also relevant to training any DMS-based 246 

predictors. DMS assays have been developed to measure variant impacts to distinct protein 247 

properties, and a variant can behave similarly to wildtype when measured by one assay yet 248 

show altered protein properties in other assay results, which are frequently found in regions 249 

with specific biochemical functions [25,52–56]. With more experimental assays to be applied, 250 

the diverse measurements may impede the progress of future DMS-based predictors unless this 251 

assay effect is properly addressed, for example, by building assay specific predictors. Meas-252 

urement error is another source of DMS data heterogeneity that potentially affects the model 253 

performance. In our current study, DMS scores of protein variants are weighted equally while 254 

training. Adjustable weighting can be applied in future studies to adapt the distinct experi-255 

mental error between individual variants and datasets, reducing the influence of low-confident 256 

data. 257 

 258 

In summary, we conclude that the careful inclusion of low-throughput mutagenesis data im-259 

proves the prediction of DMS scores, and the approaches described here can potentially be 260 

applied to other prediction methods. 261 

 262 
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4 Availability of supporting source code and requirements 263 

Project name: DMS_with_Alanine_scan 264 

Project home page: https://github.com/PapenfussLab/DMS_with_Alanine_scan 265 

Operating system: Platform independent 266 

Programming language: Python 267 

Other requirements: Python 3.10 or higher 268 

Licence: MIT Licence 269 

 270 

5 List of abbreviations 271 

DMS: deep mutational scanning 272 

AS: alanine scanning 273 

 274 

6 Supporting information 275 

Supplementary Table 1: All candidate DMS and alanine scanning data with detailed dataset 276 

information. 277 

Supplementary Table 2: Normalized DMS dataset with protein property features. 278 

Supplementary Table 3: Normalized alanine scanning dataset. 279 

 280 
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 295 

9 Methods 296 

9.1 DMS data collection 297 

DMS data were downloaded from MaveDB [40,41] which were then filtered and curated. DMS 298 

experiments targeting antibody and virus proteins were removed because of their potentially 299 

unique functionality. We retrieved the UniProt accession ID of target proteins by searching the 300 

protein names or sequences in UniProt [57], and proteins lacking available UniProt ID were 301 

also excluded. Datasets that are computationally processed or their wildtype-like and nonsense-302 

like scores (see Normalization) cannot be identified were also filtered out (Supplementary Ta-303 

ble 1). All missense variants with only a single amino acid substitution were curated from the 304 

DMS studies for our analysis. A total of 130 DMS experiments from 53 studies [5,6,9–305 

14,24,31,37–39,42,58–94] were collected for our analysis. 306 

 307 
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9.2 Collection of AS data and other features 308 

The following process was used to search for candidate AS studies. Papers were identified by 309 

searching on PubMed and Google Scholar for the “alanine scan” or “alanine scanning” together 310 

with the name of candidate proteins. While searching in Google Scholar, we included the pro-311 

tein’s UniProt ID rather than molecule name as the search term to reduce false positives. Ap-312 

propriate AS data were collected from the search results. Western blot results were transformed 313 

to values by ImageJ if it was the only experimental data available in the study. A total 146 AS 314 

experiments were collected from 45 distinct studies [26–28,30,31,43–46,48,49,84,95–127]. 315 

Protein features of Shannon entropy and the logarithm of variant amino acid frequency were 316 

downloaded from the DeMaSk online toolkit [19]. The substitution score matrix feature was 317 

calculated from the mean of training DMS scores for each of the 380 possible amino acid sub-318 

stitutions before each iteration of cross-validation. 319 

 320 

9.3 Normalization 321 

DMS and AS datasets were normalized to a common scale using the following approach 322 

adapted from previous studies [17,47]. Let D denotes a protein study measuring scores 𝑠𝑖
𝐷 for 323 

a single variant i, 𝑠𝑤𝑡
𝐷  denotes the scores for wildtype and 𝑠𝑛𝑜𝑛

𝐷  represents the score for non-324 

sense-like variants. The normalized scores 𝑠𝑖
′𝐷are given by: 325 

𝑠𝑖
′𝐷 ∶=

𝑠𝑖
𝐷 − 𝑠𝑤𝑡

𝐷

𝑠𝑤𝑡
𝐷 − 𝑠𝑛𝑜𝑛

𝐷
+ 1 326 

Wild-type scores were directly identified from the paper or the median score of synonymous 327 

variants. For DMS data, since not all DMS studies report score of nonsense variants, we defined 328 

the nonsense-like scores as the median DMS scores for the 1% missense variants with the 329 

strongest loss of function for each dataset. For AS data, nonsense-like scores were either de-330 

fined according to the paper or using the extreme values (Supplementary Table 1). 331 
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 332 

9.4 AS data filtering and matching 333 

AS data subsets were filtered/matched according to either assay compatibility or score corre-334 

lation. For assay compatibility filtering, we first categorized each DMS or AS assay by the 335 

protein property or function using the following assay types: binding affinity, enzyme activity, 336 

protein abundance, cell survival, pathogen infection, drug response, ability to perform a novel 337 

function, or other protein-specific activities (e.g., transcription activity for transcription factors) 338 

(Supplementary Table 1). The DMS/AS assay pairs were then classified into three levels of 339 

compatibility based on these categories (Fig S2). For each DMS dataset, we first tried to use 340 

only AS data with high assay compatibility for further modelling, removing AS data of medium 341 

and low assay compatibility. We then also tried to model with AS data of both high and medium 342 

assay compatibility. 343 

For score correlation matching, Spearman’s correlation (ρ) is calculated between alanine sub-344 

stitution scores in each pair of AS and DMS data. To avoid influence from the size of AS 345 

datasets, we estimated the ρ value with the empirical copula, which is related to the standard 346 

estimator by a factor of (n-1)/(n+1) [128,129]: 347 

𝜌𝑟 ∶= 𝜌 ×
𝑛 − 1

𝑛 + 1
 348 

where 𝜌𝑟 is the regularised correlation coefficient, and 𝑛 is the number of alanine substitutions 349 

used for correlation calculation. For each DMS dataset, AS result with the highest 𝜌𝑟  was 350 

picked for modelling. 351 

 352 

9.5 AS data pre-processing 353 

AS data were pre-processed prior to modelling. For variants without available (fil-354 

tered/matched) AS data, their AS scores were imputed with the mean value of all available AS 355 
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scores across all studies. Then the AS data were encoded by the wild-type and variant amino 356 

acid type with one-hot-encoding. For each variant, the AS feature is expanded with two one-357 

hot vectors. Each of the vectors has 19 zeros and one non-zero value which was the AS score, 358 

with the location of the non-zero value indicating the wild-type or variant amino acid type. 359 

 360 

9.6 Training and evaluation of DMS score predictor 361 

To build the predictors, we performed linear regression using the function sklearn.lin-362 

ear_model.LinearRegression from scikit-learn [130]. Training and validation data 363 

were separated with leave-one-protein-out cross-validation. In this process, data from one pro-364 

tein were withheld for subsequent validation, and the rest were used for training. This process 365 

was iterated over all proteins in the data. Variants were inversely weighted during the training 366 

process by the number of measurements available, thus compensating for some regions having 367 

greater coverage with DMS and AS assays. Predictors were trained on protein features, DMS 368 

data and (optionally) AS data using four different filtering or matching strategies: i) all 369 

DMS/AS data, ii) compatibility-filtered DMS/AS data, iii) correlation-matched DMS/AS data, 370 

and iv) a control, constructed using DMS data only. 371 

In the evaluation process, let V be protein variants assayed by both DMS study D and AS study 372 

A. Variant scores are predicted by the previously mentioned predictors either using AS data 373 

(𝑠̂𝑉
𝐴) or not (𝑠̂𝑉). Spearman’s correlation (ρ) was calculated between the DMS scores 𝑠𝑉

𝐷 and 374 

each set of predicted scores. The difference of ρ was used to evaluate the performance change 375 

(∆𝜌𝑉). 376 

𝜌𝑉
𝐴 = Spearman′s correlation(𝑠̂𝑉

𝐴, 𝑠𝑉
𝐷) 377 

𝜌𝑉 = Spearman′s correlation(𝑠̂𝑉, 𝑠𝑉
𝐷) 378 

∆𝜌𝑉 = 𝜌𝑉
𝐴 − 𝜌𝑉  379 
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To evaluate, we iterated over variants from each pair of DMS/AS studies. Results were dropped 380 

for variants V with only one protein residue available during analysis and visualization. Model 381 

performance was compared using the following statistical tests. Results in Fig 5 & Fig S5 were 382 

tested with Welch’s test, and results in Fig S4 & Fig S6 were tested with paired t-tests. The p-383 

values were jointly corrected using the Holm–Šidák method. The 95% confidence interval of 384 

median values are calculated by Gaussian-based asymptotic approximation [131]. 385 

 386 

9.7 Prediction with other variant effect predictors 387 

For PROVEAN [132] and SIFT [133], prediction results on target variants were directly down-388 

loaded from the pre-calculated database for PROVEAN. For PolyPhen-2 [134] and GEMME 389 

[135], variant scores were computed through their online toolkits, using the default settings. 390 

ESM-1v [136] was set up locally and run according to its examples and documentations. EVE 391 

[137] results were collected from their pre-calculated database and a benchmarking study [138]. 392 

 393 
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Supplementary material 796 

 797 

Fig S1. DMS and AS score distribution. The figure shows the kernel estimated density of normalized AS 798 

scores and DMS scores for variants with or without available AS data. 799 

 800 

 801 

Fig S2. Decision tree for classifying DMS and AS assay compatibility. The similarity of DMS and AS assays 802 

are compared (Methods) and the DMS/AS assay pairs are classified using three levels of compatibility (low, 803 

medium, high). The leaf-node text and color show the classified assay compatibility. The number indicates the 804 

count of assay pairs for each compatibility level. 805 
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 807 

Fig S3. Comparison between published and re-implemented predictors. The plot shows leave-one-protein-808 

out cross-validation performance on predictors built from the published DeMaSk code or our code. The predictors 809 

were trained and evaluated on DMS data either provided by the DeMaSk study or curated by our own. The 810 

“DeMaSk data & code” result is similar to the published result. For the “Our data & DeMaSk code” result, we 811 

used our own data and published code which shows a median performance around 0.35. This is probably because 812 

many more DMS results are included in our data. The similarity of results achieved using “Our data & code” 813 

demonstrates the correctness of our re-implementation. (Whiskers show the full value range) 814 

 815 

 816 
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Fig S4. Performance comparison between predictors with or without AS data. The Spearman’s ρ between 817 

DMS scores and predicted scores for each DMS and AS data pair are shown as box plots. Different approaches 818 

to filtering the data are shown on the x-axis: “All AS data” used all available data; “Compatibility filtered” used 819 

only data of high assay compatibility; “Correlation matched” used only data with the highest regularised correla-820 

tion for each DMS dataset. The figure does not include data without available AS scores. This means that the 821 

different results are not directly comparable since they are computed for different subsets of DMS/AS data pairs 822 

(for example, “All AS data” contains all DMS/AS data pairs, but “Compatibility filtered” contains only data pairs 823 

of high assay compatibility). Control results are shown as green boxes for predictions on the same residues without 824 

AS data as a feature. The underlying ρ for each data pair in the control results is the same, but the boxes are shifted 825 

due to data filtering. Results for data pairs with only one residue are not shown. P-values were calculated using 826 

paired t-test and jointly corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 95% confidence 827 

interval around the median, and whiskers show the full value range. 828 

 829 

 830 

Fig S5. The change in prediction performance for using data of different assay compatibility levels. The 831 

change of prediction Spearman’s ρ for each DMS and AS data pair is shown as box plots. A higher value represents 832 

higher prediction accuracy achieved for using AS data. Different data filtering methods are shown on the x-axis. 833 

Results for data pairs with only one residue are not shown. P-values were calculated using Welch’s test and jointly 834 
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corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 95% confidence interval around the median, 835 

and whiskers show the full value range. 836 

 837 

Fig S6. Prediction performance is improved while incorporating high compatibility AS data into the En-838 

vision model. The Spearman’s ρ between experiment DMS scores and predicted scores for each DMS/AS assay 839 

pair with high compatibility are shown as box plots. The x-axis shows the predictor used, either Envision or 840 

DeMaSk. Control results are shown as green boxes for predictions on the same residues without AS data as a 841 

feature. Results for data pairs with only one residue are not shown. P-values were calculated using paired t-test 842 

and jointly corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 95% confidence interval around 843 

the median, and whiskers show the full value range. 844 
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 846 
Fig S7. Performance improvement on thresholded correlation matching. The change of prediction ρ for 847 

each DMS and AS data pair is shown as box plots. Different approaches to filtering/matching the data are shown 848 

on the x-axis: “All AS data”, “Compatibility filtered” and “Correlation matched” are the same results as previously 849 

discussed; while doing correlation matching, a further thresholding (0, 0.25 or 0.5) on the regularized DMS/AS 850 

correlation values (ρr) was applied. Notches show the 95% confidence interval around the median, and whiskers 851 

show the full value range. 852 
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 854 

Fig S8. Performance improvement on averaged DMS/AS testing data. This figure shows model perfor-855 

mance when we averaged variant scores for DMS or AS data that are: i) published in the same paper; ii) targeting 856 

the same protein region; iii) measured by the same type of assays (Supplementary Table 1). The change of pre-857 

diction ρ for each averaged DMS and AS data pair is shown. A higher value represents higher prediction accuracy 858 

achieved when using AS data. Different approaches to filtering/matching the data are shown on the x-axis: “All 859 

AS data” used all available data; “Compatibility filtered” used only data of high assay compatibility; “Correlation 860 

matched” used only data with the highest regularised correlation for each DMS dataset.  Results for data pairs 861 

with only one residue are not shown. Notches show the 95% confidence interval around the median, and whiskers 862 

show the full value range. 863 
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 865 
Fig S9. Model performance on various variant effect predictors. The Spearman’s ρ between DMS scores 866 

and predicted scores from different variant effect predictors for each DMS and AS pair are shown as box plots. 867 

Results are evaluated on different sets of variant data shown on the x-axis: “All AS data” used all available data; 868 

“Compatibility filtered” used only data of high assay compatibility; “Correlation matched” used only AS data 869 

with the highest regularised correlation for each DMS dataset. The figure does not include residues without avail-870 

able AS scores. Results for data pairs with only one residue are not shown. Notches show the 95% confidence 871 

interval around the median, and whiskers show the full value range. 872 

 873 

 874 

Fig S10. Prediction performance change for using all AS data. Each dot represents a DMS/AS data pair. The 875 

vertical axis shows the change of prediction ρ by using AS data (larger means higher performance achieved by 876 
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using AS data). The horizontal axis shows the DMS/AS score correlation for all variants on the matched residues 877 

rather than just alanine substitutions. The colours and shapes of the dots correspond to the target protein, and size 878 

indicates the number of variants in each data pair. Results for data pairs with only one residue are not shown. 879 

 880 

 881 

Fig S11. Model performance for training with AS-data-available-residues. The predictors were trained only 882 

on variants that have AS data available. Panel A shows the performance visualized by prediction Spearman’s ρ 883 

for DMS scores and predicted scores for each DMS and AS data pair. Different approaches to filtering the data 884 

are shown on the x-axis: “All AS data” used all available data; “Compatibility filtered” used only data of high 885 

assay compatibility; “Correlation matched” used only AS data with the highest regularised correlation for each 886 

DMS dataset. Control results are shown as green boxes for predictions on the same residues without AS data as a 887 

feature. Panel B shows change of prediction ρ for each DMS and AS data pair. A higher value indicates higher 888 

prediction accuracy achieved when using AS data. Different approaches to filtering the data are also shown on 889 

the x-axis as described. Notches show the 95% confidence interval around the median, and whiskers show the full 890 

value range. 891 
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 893 

Fig S12. Boosting setup shows similar performance as the main result. Each dot represents a filtered 894 

DMS/AS data pair of high assay compatibility. The vertical and horizontal axes show the prediction Spearman’s 895 

ρ for either modelled with boosting or the one-step (main result) setup. The colours and shapes of the dots corre-896 

spond to the target protein, and size indicates the number of variants in each data pair. 897 

 898 

 899 

Fig S13. Training with DMS scores of alanine substitutions shows similar performance as the main result. 900 

The vertical and horizontal axes show the prediction Spearman’s ρ for predictors either trained with DMS score 901 

of alanine substitutions (DMS-Ala) or AS data of high assay compatibility (main result), yet all evaluated on high 902 
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compatibility AS data. The colours and shapes of the dots correspond to the target protein, and size indicates the 903 

number of variants in each data pair. 904 

 905 

 906 

 907 

Fig S14. Count of variant entries for each wild-type or variant amino acid of high assay compatibility data. 908 

(Neg.: negatively, Pos.: positively) 909 
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Fig S15. Relationship between amino acid similarity and model performance. For each amino acid, its sim-912 

ilarity to alanine was computed by their DMS score correlation or using BLOSUM scores as shown on the x-axis. 913 

The performance improvement (Δρ) for each wild-type (left) or variant (right) amino acid while using AS data 914 

were computed as previously mentioned (Fig 7), with their Spearman’s correlation against the similarity meas-915 

urements shown on the figure. The label for each amino acid is coloured by the amino acid physicochemical 916 

property. (Neg.: negatively; Pos.: positively) 917 

 918 

Table S1. DMS/AS correlation on each secondary structural region. The secondary structure of each variant 919 

is determined by UniProt annotations. The Spearman’s correlation between DMS and all or high compatibility 920 

AS data on each structural region is computed, with the number of protein residues involved shown in parenthesis. 921 

ρ (n_residues) HELIX STRAND TURN 

All AS 0.13 (233) 0.13 (83) 0.17 (22) 

AS of high com-

patibility 
0.28 (115) 0.26 (56) 0.41 (15) 

 922 

Table S2. Amount of data with AS scores available 923 

Data composition Protein DMS dataset AS dataset1 Variant entries2 

All AS 22 54 146 70446 

Compatibility filtered 15 35 60 15739 

High+medium assay com-

patibility 
21 51 105 28380 

Correlation matched 22 54 32 7940 

1. This column shows how many unique AS datasets are included. 924 

2. Include duplicated variants caused by multiple experiments targeting the same protein variant. 925 
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Supplementary information 927 

Applying AS data to Envision method 928 

We re-implemented a predictor based on Envision [17] to incorporate AS data. Features used 929 

in Envision were downloaded from its online toolkit. All Envision features are used for mod-930 

elling except for substitution type (wt_mut) which has low importance according to the pub-931 

lished result and our pilot studies yet is computationally expensive in our setup. Protein data 932 

were excluded if their features were not available online. DMS and AS data pairs with high 933 

assay compatibility were used for modelling. Missing feature values were imputed by the mean 934 

values for numerical features or the most frequent values for categorical features. Categorical 935 

features are encoded with the one-hot encoder. We used sklearn.ensemble.Gradi-936 

entBoostingRegressor from scikit-learn package [130] to build the predictor, and hy-937 

perparameters were tuned by Bayesian Optimization [139] with Group K-Fold (protein-30-fold) 938 

cross-validation. The training and evaluation process were similar to that previously described. 939 

For comparison, we repeated the DeMaSk-based analysis on the same subset of data. 940 

 941 

Boosting with AS data 942 

To deal with the sparsity of AS data, we tested a variant impact predictor based on boosting. A 943 

first linear regression predictor was trained with all training DMS data using the three DeMaSk 944 

features without AS data, which was the same as the control predictor mentioned previously. 945 

We then calculated the prediction error by subtracting the predicted scores from DMS scores, 946 

and a second linear regression predictor was trained to predict the error. The second predictor 947 

was trained only on DMS/AS data of high assay compatibility and used both protein features 948 

and the encoded AS scores. The final prediction result was the sum of the outputs from these 949 

two predictors. 950 
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 951 

Replacing AS data with DMS scores of alanine substitutions 952 

We investigated another potential approach to overcome the sparsity of AS data by replacing 953 

the AS feature with the DMS scores of alanine substitutions (DMS-Ala). The intention of this 954 

study is to model the scenario of ideal AS data, which perfectly matches the DMS-Ala data 955 

during training. To do this, for all DMS datasets we collected, their AS feature values, regard-956 

less of availability, were replaced by the DMS-Ala scores on the same residue. Missing scores 957 

were imputed by the mean value of all DMS-Ala scores. A regression model was trained and 958 

evaluated as previously described, using the three DeMaSk features as well as the DMS-Ala 959 

scores. The AS data of high assay compatibility are still used for the testing process.  960 

 961 



Reviewer 1 - Joseph Ng 

 

This manuscript explored whether low-throughput alanine scanning (AS) 

experimental data could complement deep mutational scanning (DMS) to 

classify the impact of amino acid substitutions in a range of protein 

systems. The analysis partially confirms this hypothesis in that it only 

applies when the functional readout being measured in the two assays are 

compatible with one another.  

In my opinion this is an insight that should be highlighted in a publication 

and therefore I believe this manuscript deserved to be published. I just 

wish the authors could clarify & further explore the points below better in 

their manuscript before recommending for acceptance: 

 

1.    In my opinion the most important bit of data curation is the 

classification of DMS/AS pairs as high/medium/low etc. compatible, and 

this is the key towards the authors' insight that assay compatibility is an 

important determinant of whether signals in the two datasets could be 

cross-matched for analysis. The criteria behind this classification are listed 

in Figure S2 but I feel the wording needs to be more specific. For 

example, in Figure S2, the authors wrote 'Both assays select for similar 

protein properties and under similar conditions' - what exactly does this 

mean? What does the authors consider to be 'similar protein 

properties'?  I could not find more detailed explanation of this in the 

Methods section. The authors gave reasons in the spreadsheet in Supp. 

Table 1 for the labels they give to each pairs of assays, but I'm still not 

exactly sure what they consider to be 'similar'. Is there are more specific 

classification scheme which is more explicit in defining these 'similarities', 

e.g. by defining a scoring grid explicitly listing the different levels of 

'similarities' of measurable properties, e.g. both thermal stability - score 

of 3; thermal stability vs protein abundance - 2; thermal stability vs cell 

survival - 1 (or equivalent, I think the key issue is to provide the reader 

with a clear guide so they can readily assess the compatibility of the 

datasets by themselves)? 

 

Response: 

Thank you for the comment. In the Methods section, we added a detailed 

explanation about which assays are similar (line 335): 

We categorized each DMS or AS assay by the protein property or 

function using the following assay types: binding affinity, enzyme 

activity, protein abundance, cell survival, pathogen infection, drug 

response, ability to perform a novel function, or other protein-specific 
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activities (e.g., transcription activity for transcription factors) 

(Supplementary Table 1). 

We also refined Fig S2 and its legend (also shown below) corresponding 

to the updated Methods. In the Supp. Table 1, we added the DMS and AS 

categories beside the reasons of compatibility classifications. 

 
Fig S2: Decision tree for classifying DMS and AS assay compatibility. The 

similarity of DMS and AS assays are compared (Methods) and the DMS/AS assay 

pairs are classified using three levels of compatibility (low, medium, high). The leaf 

–node text and color show the classified assay compatibility. The number indicates 

the count of assay pairs for each compatibility level. 

 

2.    I would have thought discrepancy between the DMS and AS scores 

to be different across different structural regions of the protein, e.g. the 

discrepancy would be larger in ordered region compared to disorder as 

the protein fold would constrain the types of amino acids tolerable within 

the ordered segment of the protein. Is this the case in the authors' 

collection of datasets? If so, does the compatibility of assays modulate 

this discrepancy? 

 

Response: 

Thank you for this suggestion. To explore this, we annotated the 

structural regions for our variants using UniProt. We found only one 

protein in our dataset that has alanine scanning data available in a 

disordered protein region. This makes it impractical for us to analyse the 

ordered/disordered score discrepancy.  

We next grouped variants by secondary structure (HELIX, STRAND and 

TURN) and calculated the Spearman’s ρ between all DMS scores and AS 

scores as shown in Table S1 (also below). We found that TURN regions 

tended to have high score correlation compared to HELIX and STRAND, 

and this trend was stronger for DMS/AS data with high assay 

compatibility. We added a description of this result in the main text (line 

120): 



This trend of increased correlation for high compatibility assay pairs 

holds across secondary structures (Table S1). 

 

ρ (n_residues) HELIX STRAND TURN 

All AS 0.13 (233) 0.13 (83) 0.17 (22) 

AS of high 

compatibility 
0.28 (115) 0.26 (56) 0.41 (15) 

Table S1. DMS/AS correlation on each secondary structural region. The 

secondary structure of each variant is determined by UniProt annotations. The 

Spearman’s correlation between DMS and all or high compatibility AS data on 

each structural region is computed, with the number of protein residues involved 

shown in parenthesis. 

 

Reviewer 2 - Leopold Parts 

 

Summary  

Fu et al. explore utilising low-throughput mutational fitness 

measurements to predict the results of high-throughput deep mutational 

scanning experiments. They demonstrate that adding alanine scanning 

results to predictive models improves performance, as long as the alanine 

scan used a sufficiently similar evaluation approach to a deeper 

experiment. The findings make intuitive sense, and will be useful for the 

community to internalize.  

 

While we have several comments about the methods used, and requests 

to fortify the claims with more characterization, we do not expect 

addressing any of them will change the core findings. One can argue that 

direct application of AS boosted predictions is likely to be limited due to 

the number of scans available and the speed at which DMS experiments 

are now being performed, so it would also be useful to discuss the context 

of these results in the evolution of the field, and we make specific 

suggestions for this. Regardless, the presented results are a useful 

demonstration of a more general use case of low-throughput or partial 

mutagenesis data for improving fitness prediction and imputation. 

 

Response: 

Thank you for the feedback. We have added extra context information 

about related research, strengthening the motivation and contribution of 

this study. Details can be found in the responses to the first minor 

comment below. 

 

Major Comments 



*     There are many other computational variant effect predictors 

beyond Envision and DeMaSk. It would be very useful to see how their 

prediction results compare to some others, particularly the best 

performing and common models that are also straightforward to 

download and run (e.g. EVE, ESM1v, SIFT, PolyPhen2). This would be 

important context to see how impactful the addition of AS data is to 

DeMaSk/Envision. Please run additional prediction tools for reference of 

absolute performance; there is no need to incorporate AS data into them. 

 

Response: 

Thank you for this comment. We avoided doing this initially because our 

primary motivation was to investigate if AS data can improve predictors, 

leading us to focus on the improvement rather than absolute performance 

achieved.  

We agree that benchmarking other predictors is useful to help readers 

contextualize performance and improvement. As suggested, we ran 

several of these predictors locally or online and compared with our results 

as shown in Fig S9 (also shown below). These predictors were run with 

default settings. We found it hard to run EVE locally since it requires 

substantial GPU resources. Instead, we collected pre-calculated EVE 

prediction results (details in Method section, line 387). A brief explanation 

of this result can be found in the main text (line 176). Specifically: 

Our compatibility-filtered predictor shows improved prediction 

accuracy for these regions compared to not only the baseline model, 

but other widely used predictors as well. 

 

 
Fig S9. Model performance on various variant effect predictors. The 

Spearman’s ρ between DMS scores and predicted scores from different variant 

effect predictors for each DMS and AS pair are shown as box plots. Results 

are evaluated on different sets of variant data shown on the x-axis: “All AS 

data” used all available data; “Compatibility filtered” used only data of high 



assay compatibility; “Correlation matched” used only AS data with the highest 

regularised correlation for each DMS dataset. The figure does not include 

residues without available AS scores. Results for data pairs with only one 

residue are not shown. Notches show the 95% confidence interval around the 

median, and whiskers show the full value range. 

 

*     Several proteins have a very small number of AS residues (Figure 

2), and from our reading of the methods, other residue scores are 

imputed with the mean AS value for that protein. (As an aside, it would 

be good to clarify if this average is across studies or within study). If this 

reading is correct, the majority of residues for each proteins will have 

imputed AS results (e.g. in case of PTEN, over 90%), which can be 

problematic for training and prediction. Please clarify if our interpretation 

of the imputation approach is correct, and if so, please also provide 

results for a model trained without imputation, on many fewer residues. If 

the boosting model has already implemented this, please integrate the 

Supplementary methods into the main methods, and reference these and 

the results when describing the imputation approach to avoid such 

concerns. 

 

Response: 

This interpretation is correct. The missing AS values are imputed by the 

average score across all studies. We have emphasized this statement by 

adding (line 356):  

AS scores were imputed with the mean value of all available AS scores 

across all studies. 

The boosting model is related to this yet not directly answering the 

question at hand. So, here we add the modelling results for training 

without imputed variants, i.e., just on the AS-available residues, as 

shown in Fig S11 (also shown below). The models show similar pattern of 

improvement (Fig S11 B) compared to the main results in Fig 5 (also 

shown below). However, the absolute prediction performance (Fig S11 A) 

is worse than the main results in Fig S4 (also shown below), likely 

because the models are trained on a much smaller number of variants. 

We added several sentences in the manuscript referring to this result (line 

195-200):  

We also explored the consequences of the sparsity of AS data on our 

model in three ways: i) by training only with variants that have AS 

data available; … The first approach gave lower absolute prediction 

performance, presumably because the model was under-fitted due to 

the small number of variants. 



 
Fig S11. Model performance for training with AS-data-available-residues. 
The predictors were trained only on variants that have AS data available. Panel A 

shows the performance visualized by prediction Spearman’s ρ for DMS scores and 
predicted scores for each DMS and AS data pair. Different approaches to filtering the 

data are shown on the x-axis: “All AS data” used all available data; “Compatibility 

filtered” used only data of high assay compatibility; “Correlation matched” used only 
AS data with the highest regularised correlation for each DMS dataset. Control 

results are shown as green boxes for predictions on the same residues without AS 

data as a feature. Panel B shows change of prediction ρ for each DMS and AS data 
pair. A higher value indicates higher prediction accuracy achieved when using AS 

data. Different approaches to filtering the data are also shown on the x-axis as 
described. Notches show the 95% confidence interval around the median, and 

whiskers show the full value range. 

 

 
Fig 5. Performance of variant impact prediction is improved using AS data 
with high assay compatibility. The change in prediction ρ achieved by including 

the AS data feature for each DMS and AS data pair is shown as box plots. A higher 



value represents higher prediction accuracy achieved for using AS data. Different 
approaches to filtering/matching the data are shown on the x-axis: “All AS data” 

used all available data; “Compatibility filtered” used only data of high assay 
compatibility; “Correlation matched” used only data with the highest regularised 

correlation for each DMS dataset. Results for data pairs with only one residue are 

not shown. P-values were calculated using Welch’s test and jointly corrected using 
Holm-Šidák (Methods), *: p<0.05. Notches show the 95% confidence interval 

around the median, and whiskers show the full value range. 

 

 
Fig S4. Performance comparison between predictors with or without AS 

data. The Spearman’s ρ between DMS scores and predicted scores for each DMS 
and AS data pair are shown as box plots. Different approaches to filtering the data 

are shown on the x-axis: “All AS data” used all available data; “Compatibility 

filtered” used only data of high assay compatibility; “Correlation matched” used only 
data with the highest regularised correlation for each DMS dataset. The figure does 

not include data without available AS scores. This means that the different results 
are not directly comparable since they are computed for different subsets of DMS/AS 

data pairs (for example, “All AS data” contains all DMS/AS data pairs, but 

“Compatibility filtered” contains only data pairs of high assay compatibility). Control 
results are shown as green boxes for predictions on the same residues without AS 

data as a feature. The underlying ρ for each data pair in the control results is the 
same, but the boxes are shifted due to data filtering. Results for data pairs with only 

one residue are not shown. P-values were calculated using paired t-test and jointly 

corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 95% 
confidence interval around the median, and whiskers show the full value range. 

 

*     It is not clear how significant/impactful the increases in 

performance are in figures 4, 5, S4, S5 & S6. Please use a reasonable 

analytical test, or training data randomization to evaluate the 

improvement against a null model.  

 

Response: 



We initially used notched box plots to indicate the confidence interval 

(95%) of the median and now emphasize this in the legend for each box 

plot with extra description in Methods (line 384): 

The 95% confidence interval of median values are calculated by 

Gaussian-based asymptotic approximation. 

We have also added statistical tests to these figures (also shown below). 

For Figure 4, we used Welch’s test to compare the mean values between 

each compatibility group (High vs. Medium, High vs. Low, High vs. 

Overall, Medium vs. Low, …), and corrected for multiple testing using the 

Holm–Šidák method. This is now described in the figure legend (see 

below). 

For Figures 5 and S5, we also used Welch’s test to compare the mean 

improvement between each pair of models. For Figures S4 and S6, we 

used paired t-tests to compare if using AS data improves the prediction 

correlation for each model. Since results in these four figures are highly 

related, their statistical results are corrected jointly using the Holm–Šidák 

method. These figures have been updated in the manuscript (summarized 

below) with brief explanations added to the figure legends. A description 

of the statistical tests was added to the Methods (line 381): 

Model performance was compared using the following statistical tests. 

Results in Fig 5 & S5 were tested with Welch’s test, and results in Fig 

S4 & S6 were tested with paired t-tests. The p-values were jointly 

corrected using the Holm–Šidák method. 

 

 
Fig 4. DMS and AS data pairs with high assay compatibility show a higher 
score correlation. Each box shows the Spearman’s ρ between DMS and AS data 

pairs for each level of assay compatibility or overall. The correlation coefficients 



were calculated between alanine substitution scores in each pair of AS and DMS 
datasets. Results for pairs with less than three alanine substitutions were removed. 

P-values calculated using Welch’s test and corrected using Holm-Šidák, *: p<0.05; 
notches show 95% confidence interval around median, and whiskers show the full 

value range. 

 

 
 Fig 5. Performance of variant impact prediction is improved using AS data 
with high assay compatibility. The change in prediction ρ achieved by including 

the AS data feature for each DMS and AS data pair is shown as box plots. A higher 

value represents higher prediction accuracy achieved for using AS data. Different 
approaches to filtering/matching the data are shown on the x-axis: “All AS data” 

used all available data; “Compatibility filtered” used only data of high assay 
compatibility; “Correlation matched” used only data with the highest regularised 

correlation for each DMS dataset. Results for data pairs with only one residue are 

not shown. P-values were calculated using Welch’s test and jointly corrected using 
Holm-Šidák (Methods), *: p<0.05. Notches show the 95% confidence interval 

around the median, and whiskers show the full value range. 

 

 



 
 Fig S4. Performance comparison between predictors with or without AS 

data. The Spearman’s ρ between DMS scores and predicted scores for each DMS 

and AS data pair are shown as box plots. Different approaches to filtering the data 
are shown on the x-axis: “All AS data” used all available data; “Compatibility 

filtered” used only data of high assay compatibility; “Correlation matched” used only 
data with the highest regularised correlation for each DMS dataset. The figure does 

not include data without available AS scores. This means that the different results 

are not directly comparable since they are computed for different subsets of DMS/AS 
data pairs (for example, “All AS data” contains all DMS/AS data pairs, but 

“Compatibility filtered” contains only data pairs of high assay compatibility). Control 

results are shown as green boxes for predictions on the same residues without AS 
data as a feature. The underlying ρ for each data pair in the control results is the 

same, but the boxes are shifted due to data filtering. Results for data pairs with only 
one residue are not shown. P-values were calculated using paired t-test and jointly 

corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 95% 

confidence interval around the median, and whiskers show the full value range. 

 

 
Fig S5. The change in prediction performance for using data of different 

assay compatibility levels. The change of prediction Spearman’s ρ for each DMS 



and AS data pair is shown as box plots. A higher value represents higher prediction 
accuracy achieved for using AS data. Different data filtering methods are shown on 

the x-axis.  Results for data pairs with only one residue are not shown. P-values 
were calculated using paired t-test and jointly corrected using Holm-Šidák 

(Methods), *: p<0.05. Notches show the 95% confidence interval around the 

median, and whiskers show the full value range. 
 

 

 
Fig S6. Prediction performance is improved while incorporating high 

compatibility AS data into the Envision model. The Spearman’s ρ between 
experiment DMS scores and predicted scores for each DMS/AS assay pair with high 

compatibility are shown as box plots. The x-axis shows the predictor used, either 
Envision or DeMaSk. Control results are shown as green boxes for predictions on the 

same residues without AS data as a feature. Results for data pairs with only one 

residue are not shown. P-values were calculated using paired t-test and jointly 
corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 95% 

confidence interval around the median, and whiskers show the full value range. 

 

 

*     There are quite a few proteins with repeated DMS/AS 

measurements. In our experience these correlate from moderately to 

very highly. Including multiple highly correlated studies could lead to 

pseudo-replication and biasing the model performance results. Please 

present a version of the results where the repeats are averaged first to 

test whether that bias exists. 

 

Response: 

We indeed observed multiple cases where one protein might have several 

DMS or AS experiments available. While training the models, to avoid 

potential bias, we weighted each protein variant equally to compensate 

for certain regions having greater coverage with DMS and AS assays. This 

process was equivalent to averaging variant scores in the training data. 



But during the evaluation process, we agree that these pseudo-replicates 

may still exist. 

Here we averaged DMS and AS results from experiments that: 1. Were 

published in the same paper; 2. Targeted the same protein region; 3. 

Used the same type of assays (binding affinity, enzyme activity, protein 

abundance, cell survival, etc.). Then we evaluated the model performance 

on averaged datasets, as shown in Fig S8 (also shown below). We 

observe a similar pattern of improvement to the main result (Fig. 5 also 

shown below) and have added this result to the main text (line 162):  

Additionally, to ensure the models performance is not biased by 

pseudo-replication of multiple datasets, we averaged DMS and AS 

scores that were part of the same study and type of assay, and saw 

similar results (Fig S8). 

 

 
Fig S8. Performance improvement on averaged DMS/AS testing data. This 

figure shows model performance when we averaged variant scores for DMS or AS 
data that are: i) published in the same paper; ii) targeting the same protein region; 

iii) measured by the same type of assays (Supplementary Table 1). The change of 
prediction ρ for each averaged DMS and AS data pair is shown. A higher value 

represents higher prediction accuracy achieved when using AS data. Different 

approaches to filtering/matching the data are shown on the x-axis: “All AS data” 
used all available data; “Compatibility filtered” used only data of high assay 

compatibility; “Correlation matched” used only data with the highest regularised 

correlation for each DMS dataset.  Results for data pairs with only one residue are 
not shown. Notches show the 95% confidence interval around the median, and 

whiskers show the full value range. 

 



 
 Fig 5. Performance of variant impact prediction is improved using AS data 
with high assay compatibility. The change in prediction ρ achieved by including 

the AS data feature for each DMS and AS data pair is shown as box plots. A higher 
value represents higher prediction accuracy achieved for using AS data. Different 

approaches to filtering/matching the data are shown on the x-axis: “All AS data” 

used all available data; “Compatibility filtered” used only data of high assay 
compatibility; “Correlation matched” used only data with the highest regularised 

correlation for each DMS dataset. Results for data pairs with only one residue are 

not shown. P-values were calculated using Welch’s test and jointly corrected using 
Holm-Šidák (Methods), *: p<0.05. Notches show the 95% confidence interval 

around the median, and whiskers show the full value range. 

 

Minor Comments [suggestions only; no analyses required from us] 

*     A short discussion about the number of available alanine scans, 

particularly for proteins without DMS results, would help put the work in 

context. For example, it would be good to know how many proteins would 

benefit from improved de-novo predictions (e.g. no DMS data) and how 

many could have improved imputation (incomplete DMS data). Similarly 

the rate and cost of DMS data generation is important to understand the 

utility of their results. I think a short discussion of how useful models of 

this sort are in practice now and in future would be helpful to the reader. 

This seems most natural as part of the end of the discussion, but could 

also fit in the introduction. 

 

To our knowledge, there is no well-established database for AS datasets, 

so, it is challenging to determine how many proteins and which regions 

have AS data available. But we did find some papers talking about DMS 

data availability and we added a sentence in the introduction (line 43):  



So far, hundreds of DMS studies covering tens of thousands of 

nucleotides have been published <PMID 36055970>, and experiments 

targeting over a hundred additional genes are underway according to 

MaveRegistry <PMID 33774657>. 

To discuss the utility of variant effect predictors, we also added the 

following sentence (line 56):  

These variant effect predictors can also be benchmarked using DMS 

experimental results and to assist the interpretation of experimental 

data. 

 

*     Figure 2 is missing y axis label. We also softly suggest log scale 

axis, to not obscure the degree to which some proteins have more 

residues covered and the proportion of residues covered by AS.  

 

We added y axis label to Figure 2. We also tried to use log scale as shown 

below. However, the purpose of this figure is to demonstrate the 

proportion of residues that have AS data available, which we think is not 

best demonstrated on log scales. 

 
AS data coverage on DMS scanned region (log-scaled). The horizontal shows 

different proteins. Each bar represents the number of residues assayed by a given 
number of AS studies. 

 

*     Figure 3 includes DMS/AS study pairs with at least three alanine 

substitutions to compare - we think this is a low cut-off, particularly with 

the regularisation applied. I think something like 10+ would be more 

informative. 

 

We explored setting the threshold to 10 (left) or 15 (middle) and the 

result is shown below. It seems quite similar to Fig 3 in the main text, 

shown below (right), with similar distribution and median value but 

indeed with less extreme values. Since, the purpose of this figure is to 



give a general idea of how the datasets are correlated, we are inclined to 

include more datasets in the analysis. 

  
Correlation between DMS and AS data shows substantial variation. We 
calculated Spearman’s ρ between alanine substitution scores in each pair of AS and 

DMS data. The results for pairs with less than 10 (left), 15 (middle) or 3 (right) 

alanine substitutions are not shown. The red dashed line shows the median ρ. 

 

*     I think their cross-validation scheme leaves out an entire protein at 

a time, as opposed to one study each iteration. I agree this is the better 

way to do it. However, I initially read it as the latter, which would lead to 

leakage between train/validation data since the same residue would be 

included in both if a protein had multiple datasets. It might be useful to 

be more explicit to prevent other readers doing the same. 

 

Thank you for the comment. We have now clarified this in the text (line 

140):  

We applied a leave-one-protein-out cross-validation approach to 

training and testing, avoiding information leakage for variants of the 

same protein target. 

 

*     L231 In the discussion they mention fitting a model only using 

studies with a minimum DMS/AS correlation. This occurred to me as well 

while reading the relevant part of the results. Is there a good reason not 

to do this? It doesn't seem like a large amount of work and conceptually 

seems a good way to assess a model that says what a DMS might look 

like is it had the same selection criteria as a given AS.  

 

While doing the correlation matching, we additionally set thresholds for 

the regularized correlation values of 0, 0.25, 0.5. The result, together 

with the original ones, are shown in Fig S7 (also shown below), indicating 

that constraining the regularized correlation to be larger than 0 and 0.25 

will give higher median improvement compared to the original correlation 

matching result. However, performance drops when using threshold of 

0.5. The likely explanation of this is that many datasets are discarded. We 

added one sentence in the main text referring to this result (line 161):  



However, when applying a stricter threshold, the correlation matched 

models still show limited improvement.  

And the original sentence in L231 was deleted. 

 
Fig S7. Performance improvement on thresholded correlation matching. The 
change of prediction ρ for each DMS and AS data pair is shown as box plots. 

Different approaches to filtering/matching the data are shown on the x-axis: “All AS 

data”, “Compatibility filtered” and “Correlation matched” are the same results as 
previously discussed; while doing correlation matching, a further thresholding (0, 

0.25 or 0.5) on the regularized DMS/AS correlation values (ρr) was applied. Notches 

show the 95% confidence interval around the median, and whiskers show the full 
value range. 

 

*     L154 Similarly, a correlation cut-off as well as choosing the most 

corelated study seems like it would be a fairer comparison in figure 5. 

Just because an AS is the most correlated doesn't necessarily mean it is 

well correlated. 

 

Please see the response above. 

 

*     It would be interesting to see if the improvement results in figure 7 

correlate with substitution matrices (e.g. Blosum) or DMS variant fitness 

correlations (e.g. correlation between A and C, A and D, etc.). Intuitively 

it feels like they should. 

 

Here we tried to demonstrate how amino acid similarity between alanine 

and a certain amino acid (measured by DMS score correlation or BLOSUM 

scores) conforms with the improvement of using AS data (Δρ), when the 

wild-type or variant type is the amino acid.  For DMS score correlation, 



the correlation between DMS score of alanine (A) substitutions against all 

other amino acids (C, D, …) were computed (ρA,C, ρA,D, …). For BLOSUM 

scores, we used BLOSUM 45, 62 and 80 for alanine versus other amino 

acids (βA,C, βA,D, …). The performance improvement for each wild-type or 

variant amino acid while using AS data were taken from the data 

underlying Figure 7. 

These results are visualized in Fig S15 (also shown below). These 

similarity metrics show negative correlation with Δρ on each wildtype 

amino acid (left), indicating if the wildtype amino acid is similar to 

alanine, then AS is not helpful probably because it gives less information. 

On the other hand, if the variant amino acid is similar to alanine, then AS 

helps to improve prediction accuracy (right). 



 
Fig S15. Relationship between amino acid similarity and model 
performance. For each amino acid, its similarity to alanine was computed by their 

DMS score correlation or using BLOSUM scores as shown on the x-axis. The 
performance improvement (Δρ) for each wild-type (left) or variant (right) amino 

acid while using AS data were computed as previously mentioned (Fig 7), with their 

Spearman’s correlation against the similarity measurements shown on the figure. 



The label for each amino acid is coloured by the amino acid physicochemical 
property. (Neg.: negatively; Pos.: positively) 

 

*     It would be nice to label panels in figure 7. 

 

Thank you for pointing out this oversight. We have added panel labels to 

Figure 7. 

 

*     It also seems notable that predicting alanine substitutions is not 

the most improved - a brief comment on why would be interesting. 

 

We added a sentence on line 209, saying:  

We also noticed that variants to alanine are not most improved, 

however we observed an overall trend showing higher improvement 

for amino acids that are physiochemically similar to alanine (Fig 

S15). 

 

*     The AS model adds 2x20 parameters to the model for encoding, 

which is a lot if CCR5 is held out, as there are only a few hundred total 

independent residues evaluated. While the performance on held out 

proteins is a good standard, it would be interesting to evaluate the 

increase from model selection perspective (BIC/AIC or similar) if possible. 

 

Thank you for this suggestion. It’s an interesting way to determine if the 

extra AS data contributes to better predictor performance. However, 

there are some difficulties for applying this method to our analysis. First, 

AIC/BIC analysis considers all data at the same time and does not 

perform cross-validation, meaning we would have to re-run all our 

models. Second, as a model selection approach, it is more reasonable to 

compare AIC/BIC values for models without each protein feature rather 

than AS data alone, which is beyond the scope of this work. Finally, 

because of the sparsity of AS data, many protein residues have no AS 

data available, and we anticipate that AIC/BIC analysis will lose power in 

this case. 

But overall, we agree that this an innovative way to construct an analysis 

and think this is worth a future study to fully explore the applications of 

model selection techniques to this kind of data. 

 

*     L217 The statement doesn't seem logical to me - if such advanced 

imputation methods were available surely they would be better used to 

impute all substitutions than just model alanine then use linear regression 

to model the rest? 



 

This statement was referring to some previously published models for 

creating computationally predicted alanine scanning data. We have now 

removed this sentence to improve clarity. 

 

*     L331-332 The formula used for regularising Spearman's rho makes 

sense, and can likely be interpreted as a regularizing prior, but we found 

it hard to understand its provenance and meaning from the reference. A 

sentence on its content (not just describing that it shrinks estimates) and 

a more specific reference would be useful for interested readers like 

ourselves. 

 

We further explained the meaning of this formula by stating that (line 

346):  

We estimated the ρ value with the empirical copula, which is related 

to the standard estimator by a factor of (n-1)/(n+1).  

We also added a more specific reference for this statement (Bedő and 

Ong, 2016). 

 

*     L364 It says correlation results were dropped when only one 

residue was available whereas in figure legends it says results with less 

than three residues were dropped. Notwithstanding thinking three is 

maybe too low a cutoff, these should be consistent or clarified slightly if 

I've misunderstood the meaning. 

 

Thank you for bringing this up. The three-residue-threshold is only 

applied to the score correlation analysis (Fig 3&4), because if there are 

only two residues available the correlation between AS and DMS score of 

alanine substitutions can only be either 1 or -1. 

For model evaluation, as you mentioned, we dropped data with only one 

residue, because in this case, we will usually have more than 20 variants 

to evaluate the model performance. To emphasize this, at the end of Fig 

5, 6, S4, S5, S6, we explained that:  

Results for data pairs with only one residue are not shown. 

 

*     It would be nice to have a bit more comment on the purpose of the 

final supplementary section (Replacing AS data with DMS scores of 

alanine substitutions) - if you have DMS alanine results it seems likely 

you will have the other measurements anyway. 

 



Thank you for this comment. We added a sentence to clarify the purpose 

of this experiment (line 954): 

We investigated another potential approach to overcome the 

sparsity of AS data by replacing the AS feature with the DMS scores 

of alanine substitutions (DMS-Ala). The intention of this study is to 

model the scenario of ideal AS data, which perfectly matches the 

DMS-Ala data during training. 
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Abstract 18 

Background: Evaluating the impact of amino acid variants has been a critical challenge for 19 

studying protein function and interpreting genomic data. High-throughput experimental 20 

methods like deep mutational scanning (DMS) can measure the effect of large numbers of 21 

variants in a target protein, but because DMS studies have not been performed on all proteins, 22 

researchers also model DMS data computationally to estimate variant impacts by predictors.  23 
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Results: In this study, we extended a linear regression-based predictor to explore whether 24 

incorporating data from alanine scanning (AS), a widely- used low-throughput mutagenesis 25 

method, would improve prediction results. To evaluate our model, we collected 146 AS 26 

datasets, mapping to 54 DMS datasets across 22 distinct proteins.  27 

Conclusions: We show that improved model performance depends on the compatibility of the 28 

DMS and AS assays, and the scale of improvement is closely related to the correlation between 29 

DMS and AS results.  30 

 31 

Keywords: deep mutational scanning, alanine scanning, machine learning, predictor 32 

 33 

1 Introduction 34 

Deep mutational scanning (DMS) is a functional genomics method that can experimentally 35 

measure the impact of many thousands of protein variants by combining high-throughput 36 

sequencing with a functional assay [1]. In a typical DMS, a cDNA library of genetic variants 37 

of a target gene is generated, containing all possible single amino acid substitutions. This 38 

variant library is then expressed in a functional assay system where the DMS variants can be 39 

selected based on their properties. The change in variant frequency in the pre- and post-40 

selection populations is determined by high-throughput sequencing which is then used to 41 

calculate a multiplexed functional score that captures the variant’s impact [2–4]. The versatility 42 

of DMS assays makes it possible to measure variant impact on a wide range of protein 43 

properties, including protein binding affinity [5,6], protein abundance [7–9], catalyticenzyme 44 

activity [10,11] and cell growth ratesurvival [12–14]. So far, hundreds of DMS studies covering 45 

tens of thousands of nucleotides have been published [15], and experiments targeting over a 46 

hundred additional genes are underway according to MaveRegistry [16]. 47 

 48 
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Computational studies have used DMS data to build predictive models of variant impact. These 49 

predictors use supervised or semi-supervised learning models trained on experimental DMS 50 

data and various protein features to make predictions [15-21][17–23]. Envision is one such 51 

method that used protein structural, physicochemical, and evolutionary features to predict 52 

variant effect scores and was trained on DMS data from 8 proteins using gradient boosting 53 

[15][17]. Another method, DeMaSk, predicted DMS scores by combining two evolutionary 54 

features (protein positional conservation and variant homologous frequency) with a DMS 55 

substitution matrix and was trained on data from 17 proteins using a linear model [17][19]. 56 

Deep learning algorithms have also been applied to build protein fitness predictors 57 

[16,18][18,20], which are usually based only on variant sequences. These variant effect 58 

predictors can also be benchmarked using DMS experimental results and assist in the 59 

interpretation of experimental data [20,24,25]. 60 

 61 

Low-throughput mutagenesis experiments that measure tens of variants at a time have also 62 

been used extensively to study diverse protein properties, including substrate binding affinity 63 

[22,23][26,27], protein stability [24,25][28,29], and protein-specific activityactivities 64 

[26,27][30,31]. Alanine scanning (AS) is a widely-used low-throughput mutagenesis method 65 

[28,29][32,33], and AS data are available for many proteins. In this method, each targeted 66 

protein residue is substituted with alanine, and the impacts of these variants are measured by a 67 

functional assay [30][34]. AS experiments are typically used to identify functional hot spots or 68 

critical residues in the target protein [31,32][35,36] and have been used as a source of 69 

independent validation for DMS studies [27,33-35][31,37–39].  70 

 71 

In this study, we explore whether a predictive model can be improved by incorporating low-72 

throughput mutagenesis data (Fig 1). We find that AS data can increase prediction accuracy 73 
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and that the improvement is related to the similarity of the functional assays and the correlation 74 

of DMS and AS results. 75 

 76 

 77 

Fig 1. Workflow for model training and testing. DMS and AS datasets are collected from online resources and 78 

are normalized. DMS and AS datasets targeting the same protein are then matched, filtered and merged. Two 79 

predictors are constructed and tested: the first uses DMS data, AS data and other protein features, and the second 80 

uses only DMS data and the same other protein features.  81 

 82 

2 Results 83 

2.1 Overview of DMS and alanine scanning (AS) data 84 

To build the predictive model, 130 DMS datasets were collected from MaveDB [36,37][40,41] 85 

(Supplementary table 1). We searched the literature and found 146 AS datasets targeting the 86 

same proteins as 54 of the DMS datasets. In total, we obtained both DMS and AS data for 22 87 

different proteins: 17 human proteins, three yeast proteins, and two bacterial proteins. Most 88 

DMS experiments were highly complete, with a mean coverage of 95.0% of all possible single 89 

amino acid substitutions assayed in the target region, comprising 373,219 total protein variant 90 

measurements. AS data were only available on a small number of protein residues (Fig 2), and 91 

we were able to curate 1,480 alanine substitution scores from the 146 studies. Variant scores 92 
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from collected DMS and AS studies were linearly normalized to a common scale (see Methods) 93 

to make them comparable across datasets (Fig S1). 94 

 95 

 96 

 97 
 98 

Fig 2. DMS data generally cover more protein residues than AS data. Each bar shows the number of residues 99 

assayed by DMS studies on given target proteins. Colour indicates the number of AS studies available for the 100 

DMS-tested residues. 101 

 102 
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2.2 The correlation of DMS and AS scores is related to assay compatibility 103 

To evaluate the similarity of AS and DMS scores, we calculated Spearman’s correlation (ρ) 104 

between the AS scores and DMS scores for the same alanine substitutions. Since each protein 105 

may have results from several AS and DMS experiments, we calculated ρ between each 106 

possible pair. The median ρ over DMS and AS data (DMS/AS) pairs was 0.2, indicating that 107 

the experimental scores were poorly correlated overall (Fig 3). 108 

  109 

 110 

Fig 3. Correlation between DMS and AS data shows substantial variation. We calculated Spearman’s ρ 111 

between alanine substitution scores in each pair of AS and DMS data. The results for pairs with less than three 112 

alanine substitutions are removednot shown. The red dashed line shows the median ρ. 113 

 114 

We then considered if differences between AS and DMS assay designs might contribute to this 115 

low agreement between scores. To explore this, we developed a decision tree (Fig S2) to 116 

classify whether DMS/AS pairs had low, medium, or high assay compatibility, which we 117 

defined as a similarity measurement of the functional assays performed. For example, the DMS 118 

assay measuring the binding affinity of a cell surface protein, CXCR4, to its natural ligand 119 

[38][42] has high compatibility with the AS experiment also measuring this ligand binding but 120 
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has low compatibility with the study on CXCR4’s ability to facilitate virus infection [39][43]. 121 

A full assay compatibility table can be found in Supplementary Table 1 with the compatibility 122 

classifications and justification for each pair. We then compared DMS and AS score correlation 123 

for each compatibility class and found that score correlations were closely related to assay 124 

compatibility. Data from low compatibility assays had a median correlation of 0.15, rising to 125 

0.19 for medium compatibility assays and 0.40 for high compatibility assays (Fig 4). This trend 126 

of increased correlation for high compatibility assay pairs holds across secondary structures 127 

(Table S1). This link between assay compatibility and score correlation indicates that our 128 

decision tree approach was able to capture the similarity between assay systems. 129 

  130 
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 131 

 132 
Fig 4. DMS and AS data pairs with high assay compatibility show a higher score correlation. Each box 133 

representsshows the Spearman’s ρ between DMS and AS data pairs for each level of classified assay compatibility 134 

or the overall result. The correlation coefficients arewere calculated between alanine substitution scores in each 135 

pair of AS and DMS datasets. Results for data pairs with less than three alanine substitutions arewere removed. 136 

P-values calculated using Welch’s test and corrected using Holm-Šidák, *: p<0.05; notches show 95% confidence 137 

interval around median, and whiskers show the full value range. 138 

 139 
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2.3 Compatible AS data improve DMS score prediction accuracy 140 

To test if incorporating AS data into DMS score models would improve prediction accuracy, 141 

we decided to build a new model based on DeMaSk [17][19]. We chose DeMaSk because it 142 

showed better performance compared to similar methods and was straightforward to modify. 143 

The published DeMaSk model predicts DMS scores using protein positional conservation, 144 

variant homologous frequency, and substitution score matrix, and we incorporated AS data as 145 

an additional feature. Our new predictor was modelled with all 130 DMS we collected and we 146 

applied a leave-one-protein-out cross-validation approach to training and testing, avoiding 147 

information leakage for variants of the same protein target [15][17]. Prediction performance 148 

was evaluated using the Spearman’s correlation (ρ) between the experimentally-derived DMS 149 

scores and the predicted scores for each pair of DMS and AS studies. The performance of our 150 

DMS/AS model was compared with a model trained only on DMS data, equivalent to retrained 151 

DeMaSk (Fig S3), by calculating the change of prediction ρ (see Methods). 152 

 153 

We trained our model with either all or a subset of AS data we collected (Fig 5, Table S2S1). 154 

We first integrated all 146 AS data collected for training and evaluation but observed only a 155 

modest improvement of prediction ρ (Fig 5 left box, and Fig S4). We then retrained and 156 

evaluated our model on filtered AS data with only high compatibility assays, and observed a 157 

median increase in prediction Spearman’s ρ of 0.1 compared to the results with no AS data 158 

(Fig 5 middle box, and Fig S4). However, training with both high and medium compatibility 159 

pairs reduced the performance improvement (Fig S5). These results indicate that medium and 160 

low compatibility pairs might provide inconsistent training data, degrading model performance. 161 

We also evaluated the impact of including high compatibility AS data in an alternative model 162 

based on Envison [15][17], and found similar results (Fig S6). To differentiate between high 163 

assay compatibility and high DMS/AS score correlation, we trained the model using the most 164 
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highly correlated AS result for each DMS dataset (see Methods). Although the upper quartile 165 

was high, the median performance change of this predictor was lower than the high assay 166 

compatibility model, suggesting that matching with the highest score correlation alone is 167 

insufficient (Fig 5 right box). However, when applying a stricter threshold, the correlation 168 

matched models still show limited improvement (Fig S7). Additionally, to ensure the models 169 

performance is not biased by pseudo-replication of multiple datasets, we averaged DMS and 170 

AS scores that were part of the same study and type of assay, and saw similar results (Fig S8). 171 

 172 

 173 

 174 
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Fig 5. Performance of variant impact prediction is improved using AS data with high assay compatibility. 175 

The change ofin prediction ρ achieved by including the AS data feature for each DMS and AS data pair is shown 176 

as box plots. A higher value represents higher prediction accuracy achieved for using AS data. Different 177 

approaches to filtering/matching the data are shown on the x-axis: “All AS data” used all available data; 178 

“Compatibility filtered” used only data of high assay compatibility; “Correlation matched” used only data with 179 

the highest regularised correlation for each DMS dataset. Results for data pairs with only one residue are not 180 

shown. P-values were calculated using Welch’s test and jointly corrected using Holm-Šidák (Methods), *: p<0.05. 181 

Notches show the 95% confidence interval around the median, and whiskers show the full value range. 182 

 183 

Our compatibility-filtered predictor shows improved prediction accuracy for these regions 184 

compared to not only the baseline model, but other widely used predictors as well (Fig S9). To 185 

further explore the higher performance of this compatibility-filtered predictor, we examined 186 

the relationship between prediction ρ change and score correlation for each high compatibility 187 

DMS/AS pair (Fig 6). For most pairs, prediction performance was improved by using AS data, 188 

and the scale of improvement was also related to the score correlation. This relationship could 189 

also be observed for multiple DMS/AS pairs from an individual protein, such as CXCR4 and 190 

CCR5. We saw the same trend in the predictor trained with all DMS/AS pairs but noted that 191 

the performance even of highly correlated pairs was worse, likely due to the influence of low 192 

compatibility training data on the model (Fig S10S7). 193 

 194 
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 195 

Fig 6. Prediction performance change is related to DMS and AS score correlation. Each dot represents a 196 

filtered DMS/AS data pair of high assay compatibility. The vertical axis shows the change of prediction ρ by using 197 

AS data (larger means higher performance achieved by using AS data). The horizontal axis shows the DMS/AS 198 

score correlation for all variants on the matched residues rather than just alanine substitutions. The colours and 199 

shapes of the dots correspond to the target protein, and size indicates the number of variants in each data pair. 200 

Results for data pairs with only one residue are not shown. 201 

 202 

We also explored the consequences of the sparsity of AS data on our model in twothree ways: 203 

i) by training only with variants that have AS data available (Fig S11); ii) by using a boosting 204 

approach that focuses only on residues with AS data (Fig S12S8) and iii) by using complete 205 

alanine substitution information from DMS as the AS feature (Fig S13S9). Both of theseThe 206 

first approach gave lower absolute prediction performance, presumably because the model was 207 

under-fitted due to the small number of variants. The last two approaches performed very 208 

similarly to the primary model constructed using high-compatibility DMS/AS data and simple 209 

mean score imputation. 210 

 211 
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To test the influence of amino acids on our predictor, we grouped the prediction results by 212 

either wild-type or variant amino acid and calculated the prediction improvement when AS 213 

data were included (Fig 7). We found that 14 of 19 wild-type amino acids performed better 214 

with the addition of AS data, with cysteine showing the largest improvement and performing 215 

worst in the model lacking AS data. 18 of 20 variant amino acids benefited from the inclusion 216 

of AS data, with marginal performance decrease on lysine and aspartic acid (|Δρ|<0.01) (Fig 217 

7). We also noticed that variants to alanine are not most improved, however we observed an 218 

overall trend showing higher improvement for amino acids that are physiochemically similar 219 

to alanine (Fig S15). 220 

  221 
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 222 

 223 

Fig 7. Model perfomanceperformance is generally improved for each wild-type and variant amino acid. 224 

Prediction Spearman’s ρ when using (y-axis) or not using (x-axis) AS data on each wild-type (leftA) or variant 225 

(rightB) amino acid is shown in the scatter plots. The results are coloured according to the property of each amino 226 

acid type. Alanine (A) result is not applicable in the first figure since alanine scanning data are always missing 227 

when the wildtype is alanine itself. Absolute count for each amino acid can be found in Fig S14S10. (Neg.: 228 

negatively, Pos.: positively) 229 

 230 
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3 Discussion 231 

In this study, we integrated alanine scanning (AS) data into deep mutational scanning (DMS) 232 

score prediction, leading to modest improvements in the accuracy of variant score prediction. 233 

We also explored the impact of the diversity of protein properties measured by DMS and AS. 234 

Filtering DMS and AS data based on our manual classification of assay type compatibility led 235 

to improved prediction performance.  236 

 237 

A potential shortcoming of our current approach is that AS data were available for only a small 238 

proportion of the DMS data. Although most recent DMS studies can analyze variants of the 239 

whole protein, most AS experiments only cover a handful of residues in the target protein, 240 

leaving missing AS scores for the vast majority of residues. We explored this here and found 241 

that alternative methods for addressing the sparsity of AS data did not improve or degrade 242 

performance, but we anticipate further improved prediction accuracy if the low completeness 243 

and unevenness of AS data are appropriately handled before modelling, such as by advanced 244 

imputation methods [48,49].  245 

 246 

In this study, we identified the importance of DMS/AS assay compatibility as a crucial factor 247 

for improving prediction accuracy. An issue with using this concept is that it further shrinks 248 

already sparse data. It also fails to take advantage of the fact that even for low compatible 249 

assays some fundamental information like protein stabilityabundance can still be mutually 250 

captured. Instead of hard filtering, proper implementation of this underlying information may 251 

facilitate variant impact prediction in the future. Nonetheless, filtering on assay compatibility 252 

still leads to performance improvement. We also briefly explored whether the consistency of 253 

DMS and AS scores can be considered more directly by matching the best correlated AS data 254 

for each DMS dataset. Consistency is partially driven by assay compatibility but also reflects 255 
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other features of the data, such as bias and noise. While we picked the most correlated pair for 256 

each DMS, we did not threshold the correlation, potentially including data pairs that were poor 257 

matches. 258 

 259 

The concepts of compatibility and data quality are also relevant to training any DMS-based 260 

predictors. DMS assays have been developed to measure variant impacts to distinct protein 261 

properties, and a variant can behave similarly to wildtype when measured by one assay yet 262 

show altered protein properties in other assay results, which are frequently found in regions 263 

with specific biochemical functions [50-55][25,52–56]. With more experimental assays to be 264 

applied, the diverse measurements may impede the progress of future DMS-based predictors 265 

unless this assay effect is properly addressed, for example, by building assay specific predictors. 266 

Measurement error is another source of DMS data heterogeneity that potentially affects the 267 

model performance. In our current study, DMS scores of protein variants are weighted equally 268 

while training. Adjustable weighting can be applied in future studies to adapt the distinct 269 

experimental error between individual variants and datasets, reducing the influence of low-270 

confident data. 271 

 272 

In summary, we conclude that the careful inclusion of low-throughput mutagenesis data 273 

improves the prediction of DMS scores, and the approaches described here can potentially be 274 

applied to other prediction methods. 275 

 276 

4 Availability of supporting source code and requirements 277 

Project name: DMS_with_Alanine_scan 278 

Project home page: https://github.com/PapenfussLab/DMS_with_Alanine_scan 279 

Operating system: Platform independent 280 

https://github.com/PapenfussLab/DMS_with_Alanine_scan
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Programming language: Python 281 

Other requirements: Python 3.10.6 or higher 282 

Licence: MIT Licence 283 

 284 

5 List of abbreviations 285 

DMS: deep mutational scanning 286 

AS: alanine scanning 287 

 288 
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9 Methods 310 

9.1 DMS data collection 311 

DMS data were downloaded from MaveDB [36,37][40,41] which were then filtered and 312 

curated. DMS experiments targeting antibody and virus proteins were removed because of their 313 

potentially unique functionality. We retrieved the UniProt accession ID of target proteins by 314 

searching the protein names or sequences in UniProt [56][57], and proteins lacking available 315 

UniProt ID were also excluded. Datasets that are computationally processed or their wildtype-316 

like and nonsense-like scores (see Normalization) cannot be identified were also filtered out 317 

(Supplementary Table 1). All missense variants with only a single amino acid substitution were 318 

curated from the DMS studies for our analysis. A total of 130 DMS experiments from 53 319 

studies [5,6,9–14,27,33–35,38,57–94][5,6,9–14,24,31,37–39,42,58–94] were collected for our 320 

analysis. 321 

 322 

9.2 Collection of AS data and other features 323 

The following process was used to search for candidate AS studies. Papers were identified by 324 

searching on PubMed and Google Scholar for the “alanine scan” or “alanine scanning” together 325 

with the name of candidate proteins. While searching in Google Scholar, we included the 326 

protein’s UniProt ID rather than molecule name as the search term to reduce false positives. 327 

Appropriate AS data were collected from the search results. Western blot results were 328 

transformed to values by ImageJ if it was the only experimental data available in the study. A 329 
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total 146 AS experiments were collected from 45 distinct studies [22–24,26,27,39–330 

42,44,45,84,95–127][26–28,30,31,43–46,48,49,84,95–127]. 331 

Protein features of Shannon entropy and the logarithm of variant amino acid frequency were 332 

downloaded from the DeMaSk online toolkit [17][19]. The substitution score matrix feature 333 

was calculated from the mean of training DMS scores for each of the 380 possible amino acid 334 

substitutions before each iteration of cross-validation. 335 

 336 

9.3 Normalization 337 

DMS and AS datasets were normalized to a common scale using the following approach 338 

adapted from previous studies [15,43][17,47]. Let D denotes a protein study measuring scores 339 

𝑠𝑖
𝐷  for a single variant i, 𝑠𝑤𝑡

𝐷  denotes the scores for wildtype and 𝑠𝑛𝑜𝑛
𝐷  represents the score for 340 

nonsense-like variants. The normalized scores 𝑠𝑖
′𝐷are given by: 341 

𝑠𝑖
′𝐷 ∶=

𝑠𝑖
𝐷 − 𝑠𝑤𝑡

𝐷

𝑠𝑤𝑡
𝐷 − 𝑠𝑛𝑜𝑛

𝐷
+ 1 342 

Wild-type scores were directly identified from the paper or the median score of synonymous 343 

variants. For DMS data, since not all DMS studies report score of nonsense variants, we defined 344 

the nonsense-like scores as the median DMS scores for the 1% missense variants with the 345 

strongest loss of function for each dataset. For AS data, nonsense-like scores were either 346 

defined according to the paper or using the extreme values (Supplementary Table 1). 347 

 348 

9.4 AS data filtering and matching 349 

AS data subsets were filtered/matched according to either assay compatibility or score 350 

correlation. For assay compatibility filtering, we first categorized each DMS andor AS assay 351 

by the protein property or function using the following assay types: binding affinity, enzyme 352 

activity, protein abundance, cell survival, pathogen infection, drug response, ability to perform 353 
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a novel function, or other protein-specific activities (e.g., transcription activity for transcription 354 

factors) (Supplementary Table 1). The DMS/AS assay pairs were firstthen classified into three 355 

levels of compatibility based on these categories (Fig S2). For each DMS dataset, we first tried 356 

to use only AS data with high assay compatibility for further modelling, removing AS data of 357 

medium and low assay compatibility. We then also tried to model with AS data of both high 358 

and medium assay compatibility. 359 

For score correlation matching, Spearman’s correlation (ρ) is calculated between alanine 360 

substitution scores in each pair of AS and DMS data. To avoid influence from the size of AS 361 

datasets, we regularisedestimated the ρ value bywith the empirical copula, which is related to 362 

the standard estimator by a factor of (n-1)/(n+1) [128,129]: 363 

𝜌𝑟 ∶= 𝜌 ×
𝑛 − 1

𝑛 + 1
 364 

where 𝜌𝑟 is the regularised correlation coefficient, and 𝑛 is the number of alanine substitutions 365 

used for correlation calculation. For each DMS dataset, AS result with the highest 𝜌𝑟  was 366 

picked for modelling. 367 

 368 

9.5 AS data pre-processing 369 

AS data were pre-processed prior to modelling. For variants without available 370 

(filtered/matched) AS data, their AS scores were imputed with the mean value of all available 371 

AS scores across all studies. Then the AS data were encoded by the wild-type and variant 372 

amino acid type with one-hot-encoding. For each variant, the AS feature is expanded with two 373 

one-hot vectors. Each of the vectors has 19 zeros and one non-zero value which was the AS 374 

score, with the location of the non-zero value indicating the wild-type or variant amino acid 375 

type. 376 

 377 
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9.6 Training and evaluation of DMS score predictor 378 

To build the predictors, we performed linear regression using the function 379 

sklearn.linear_model.LinearRegression from scikit-learn [129][130]. Training 380 

and validation data were separated with leave-one-protein-out cross-validation. In this process, 381 

data from one protein were withheld for subsequent validation, and the rest were used for 382 

training. This process was iterated over all proteins in the data. Variants were inversely 383 

weighted during the training process by the number of measurements available, thus 384 

compensating for some regions having greater coverage with DMS and AS assays. Predictors 385 

were trained on protein features, DMS data and (optionally) AS data using four different 386 

filtering or matching strategies: i) all DMS/AS data, ii) compatibility-filtered DMS/AS data, 387 

iii) correlation-matched DMS/AS data, and iv) a control, constructed using DMS data only. 388 

In the evaluation process, let V be protein variants assayed by both DMS study D and AS study 389 

A. Variant scores are predicted by the previously mentioned predictors either using AS data 390 

(𝑠̂𝑉
𝐴) or not (𝑠̂𝑉). Spearman’s correlation (ρ) was calculated between the DMS scores 𝑠𝑉

𝐷  and 391 

each set of predicted scores. The difference of ρ was used to evaluate the performance change 392 

(∆𝜌𝑉). 393 

𝜌𝑉
𝐴 = Spearman′s correlation(𝑠̂𝑉

𝐴, 𝑠𝑉
𝐷) 394 

𝜌𝑉 = Spearman′s correlation(𝑠̂𝑉, 𝑠𝑉
𝐷) 395 

∆𝜌𝑉 = 𝜌𝑉
𝐴 − 𝜌𝑉  396 

To evaluate, we iterated over variants from each pair of DMS/AS studies. Results were dropped 397 

for variants V with only one protein residue available during analysis and visualization. Model 398 

performance was compared using the following statistical tests. Results in Fig 5 & Fig S5 were 399 

tested with Welch’s test, and results in Fig S4 & Fig S6 were tested with paired t-tests. The p-400 

values were jointly corrected using the Holm–Šidák method. The 95% confidence interval of 401 

median values are calculated by Gaussian-based asymptotic approximation [131]. 402 
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 403 

9.7 Prediction with other variant effect predictors 404 

For PROVEAN [132] and SIFT [133], prediction results on target variants were directly 405 

downloaded from the pre-calculated database for PROVEAN. For PolyPhen-2 [134] and 406 

GEMME [135], variant scores were computed through their online toolkits, using the default 407 

settings. ESM-1v [136] was set up locally and run according to its examples and 408 

documentations. EVE [137] results were collected from their pre-calculated database and a 409 

benchmarking study [138]. 410 

 411 
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Supplementary material 829 

 830 

Fig S1. DMS and AS score distribution. The figure shows the kernel estimated density of normalized AS 831 

scores and DMS scores for variants with or without available AS data. 832 

 833 
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 834 

 835 

Fig S2. Decision tree for classifying the DMS and AS assay compatibility. The end-nodes similarity of DMS 836 

and AS assays are compared (Methods) and the DMS/AS assay pairs are classified using three levels of 837 

compatibility (low, medium, high). The leaf-node text and color show the classified assay compatibility. The 838 

number indicates the count of assay pairs for each compatibility level (low, medium, high). 839 
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 841 

Fig S3. Comparison between published and re-implemented predictors. The plot shows leave-one-protein-842 

out cross-validation performance on predictors built from the published DeMaSk code or our code. The predictors 843 

were trained and evaluated on DMS data either provided by the DeMaSk study or curated by our own. The 844 

“DeMaSk data & code” result is similar to the published result. For the “Our data & DeMaSk code” result, we 845 

used our own data and published code which shows a median performance around 0.35. This is probably because 846 

many more DMS results are included in our data. The similarity of results achieved using “Our data & code” 847 

demonstrates the correctness of our re-implementation. (Whiskers show the full value range) 848 

  849 
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 850 

 851 
Fig S4. Performance comparison between predictors usingwith or without AS data or not. The 852 

Spearman’s ρ between experiment DMS scores and predicted scores for each DMS and AS data pair are shown 853 

as box plots. Different approaches to filtering/matching the data are shown on the x-axis: “All AS data” used all 854 

available data; “Compatibility filtered” used only data of high assay compatibility; “Correlation matched” used 855 

only data with the highest regularised correlation for each DMS dataset. The figure does not include data without 856 

available (filtered/matched) AS scores. This means that the different results are not directly comparable since they 857 

are visualized oncomputed for different subsets of DMS/AS data pairs (for example, “All AS data” contains all 858 

DMS/AS data pairs, but “Compatibility filtered” contains only data pairs of high assay compatibility). Control 859 
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results are shown as green boxes for predictingpredictions on the same residues without AS data as a feature. The 860 

underlying ρ for each data pair in the control results is the same, but the boxes are shifted due to data 861 

filtering/matching. Results for data pairs with only one residue are not shown. P-values were calculated using 862 

paired t-test and jointly corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 95% confidence 863 

interval around the median, and whiskers show the full value range. 864 

 865 

 866 

 867 
Fig S5. The change in prediction performance of variant impact prediction for using data of different 868 

assay compatibility levels. The change of prediction Spearman’s ρ for each DMS and AS data pair is shown as 869 

box plots. A higher value represents higher prediction accuracy achieved for using AS data. Different data filtering 870 

methods are shown on the x-axis. Results for data pairs with only one residue are not shown. P-values were 871 
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calculated using Welch’s test and jointly corrected using Holm-Šidák (Methods), *: p<0.05. Notches show the 872 

95% confidence interval around the median, and whiskers show the full value range. 873 

 874 

 875 

 876 
Fig S6. Prediction performance is improved while incorporating high compatibility AS data into the 877 

Envision model. The Spearman’s ρ between experiment DMS scores and predicted scores for each high 878 

compatible DMS/AS assay pair with high compatibility are shown as box plots. The x-axis shows the predictor 879 

used, either Envision or DeMaSk. Control results are shown as green boxes for predicting without AS data as a 880 

featurepredictions on the same residues without AS data as a feature. Results for data pairs with only one residue 881 

are not shown. P-values were calculated using paired t-test and jointly corrected using Holm-Šidák (Methods), *: 882 

p<0.05. Notches show the 95% confidence interval around the median, and whiskers show the full value range. 883 
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 884 

 885 
Fig S7. Performance improvement on thresholded correlation matching. The change of prediction ρ for 886 

each DMS and AS data pair is shown as box plots. Different approaches to filtering/matching the data are shown 887 

on the x-axis: “All AS data”, “Compatibility filtered” and “Correlation matched” are the same results as previously 888 

discussed; while doing correlation matching, a further thresholding (0, 0.25 or 0.5) on the regularized DMS/AS 889 

correlation values (ρr) was applied. Notches show the 95% confidence interval around the median, and whiskers 890 

show the full value range. 891 

 892 

 893 
Fig S8. Performance improvement on averaged DMS/AS testing data. This figure shows model 894 

performance when we averaged variant scores for DMS or AS data that are: i) published in the same paper; ii) 895 
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targeting the same protein region; iii) measured by the same type of assays (Supplementary Table 1). The change 896 

of prediction ρ for each averaged DMS and AS data pair is shown. A higher value represents higher prediction 897 

accuracy achieved when using AS data. Different approaches to filtering/matching the data are shown on the x-898 

axis: “All AS data” used all available data; “Compatibility filtered” used only data of high assay compatibility; 899 

“Correlation matched” used only data with the highest regularised correlation for each DMS dataset.  Results for 900 

data pairs with only one residue are not shown. Notches show the 95% confidence interval around the median, 901 

and whiskers show the full value range. 902 

 903 

 904 
Fig S9. Model performance on various variant effect predictors. The Spearman’s ρ between DMS scores 905 

and predicted scores from different variant effect predictors for each DMS and AS pair are shown as box plots. 906 

Results are evaluated on different sets of variant data shown on the x-axis: “All AS data” used all available data; 907 

“Compatibility filtered” used only data of high assay compatibility; “Correlation matched” used only AS data 908 

with the highest regularised correlation for each DMS dataset. The figure does not include residues without 909 

available AS scores. Results for data pairs with only one residue are not shown. Notches show the 95% confidence 910 

interval around the median, and whiskers show the full value range. 911 
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 913 

Fig S10. Fig S7. Prediction performance change for using all AS data. Each dot represents a DMS/AS data 914 

pair. The vertical axis shows the change of prediction ρ by using AS data (larger means higher performance 915 

achieved by using AS data). The horizontal axis shows the DMS/AS score correlation for all variants on the 916 

matched residues rather than just alanine substitutions. The colours and shapes of the dots correspond to the target 917 

protein, and size indicates the number of variants in each data pair. Results for data pairs with only one residue 918 

are not shown. 919 

 920 

 921 
Fig S11. Model performance for training with AS-data-available-residues. The predictors were trained only 922 

on variants that have AS data available. Panel A shows the performance visualized by prediction Spearman’s ρ 923 

for DMS scores and predicted scores for each DMS and AS data pair. Different approaches to filtering the data 924 

are shown on the x-axis: “All AS data” used all available data; “Compatibility filtered” used only data of high 925 
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assay compatibility; “Correlation matched” used only AS data with the highest regularised correlation for each 926 

DMS dataset. Control results are shown as green boxes for predictions on the same residues without AS data as a 927 

feature. Panel B shows change of prediction ρ for each DMS and AS data pair. A higher value indicates higher 928 

prediction accuracy achieved when using AS data. Different approaches to filtering the data are also shown on 929 

the x-axis as described. Notches show the 95% confidence interval around the median, and whiskers show the full 930 

value range. 931 

 932 

 933 

Fig S12. Fig S8. Boosting setup shows similar performance as the main result. Each dot represents a filtered 934 

DMS/AS data pair of high assay compatibility. The vertical and horizontal axes show the prediction Spearman’s 935 

ρ for either modelled with boosting or the one-step (main result) setup. The colours and shapes of the dots 936 

correspond to the target protein, and size indicates the number of variants in each data pair. 937 
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 939 

Fig S13.  Fig S9. Training with DMS scores of alanine substitutions shows similar performance as the 940 

main result. The vertical and horizontal axes show the prediction Spearman’s ρ for predictors either trained with 941 

DMS score of alanine substitutions (DMS-Ala) or AS data of high assay compatibility (main result), yet all 942 

evaluated on high compatibility AS data. The colours and shapes of the dots correspond to the target protein, and 943 

size indicates the number of variants in each data pair. 944 

 945 

 946 

 947 

Fig S14. Fig S10. Count of variant entries for each wild-type or variant amino acid of high assay 948 

compatibility data. (Neg.: negatively, Pos.: positively) 949 

 950 
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 951 
Fig S15. Relationship between amino acid similarity and model performance. For each amino acid, its 952 

similarity to alanine was computed by their DMS score correlation or using BLOSUM scores as shown on the x-953 
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axis. The performance improvement (Δρ) for each wild-type (left) or variant (right) amino acid while using AS 954 

data were computed as previously mentioned (Fig 7), with their Spearman’s correlation against the similarity 955 

measurements shown on the figure. The label for each amino acid is coloured by the amino acid physicochemical 956 

property. (Neg.: negatively; Pos.: positively) 957 

 958 

Table S1. DMS/AS correlation on each secondary structural region. The secondary structure of each variant 959 

is determined by UniProt annotations. The Spearman’s correlation between DMS and all or high compatibility 960 

AS data on each structural region is computed, with the number of protein residues involved shown in parenthesis. 961 

ρ (n_residues) HELIX STRAND TURN 

All AS 0.13 (233) 0.13 (83) 0.17 (22) 

AS of high 

compatibility 
0.28 (115) 0.26 (56) 0.41 (15) 

 962 

Table S2. Table S1. Amount of data with AS scores available 963 

Data composition Protein DMS dataset AS dataset1 Variant entries2 

All AS 22 54 146 70446 

Compatibility filtered 15 35 60 15739 

High+medium assay 

compatibility 
21 51 105 28380 

Correlation matched 22 54 32 7940 

1. This column shows how many unique AS datasets are included. 964 

2. Include duplicated variants caused by multiple experiments targeting the same protein variant. 965 

 966 

Supplementary information 967 

Applying AS data to Envision method 968 

We re-implemented a predictor based on Envision [15][17] to incorporate AS data. Features 969 

used in Envision were downloaded from its online toolkit. All Envision features are used for 970 
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modelling except for substitution type (wt_mut) which has low importance according to the 971 

published result and our pilot studies yet is computationally expensive in our setup. Protein 972 

data were excluded if their features were not available online. DMS and AS data pairs with 973 

high assay compatibility were used for modelling. Missing feature values were imputed by the 974 

mean values for numerical features or the most frequent values for categorical features. 975 

Categorical features are encoded with the one-hot encoder. We used 976 

sklearn.ensemble.GradientBoostingRegressor from scikit-learn package 977 

[129][130] to build the predictor, and hyperparameters were tuned by Bayesian Optimization 978 

[130][139] with Group K-Fold (protein-30-fold) cross-validation. The training and evaluation 979 

process were similar to that previously described. For comparison, we repeated the DeMaSk-980 

based analysis on the same subset of data. 981 

 982 

Boosting with AS data 983 

To deal with the sparsity of AS data, we tested a variant impact predictor based on boosting. A 984 

first linear regression predictor was trained with all training DMS data using the three DeMaSk 985 

features without AS data, which was the same as the control predictor mentioned previously. 986 

We then calculated the prediction error by subtracting the predicted scores from DMS scores, 987 

and a second linear regression predictor was trained to predict the error. The second predictor 988 

was trained only on DMS/AS data of high assay compatibility and used both protein features 989 

and the encoded AS scores. The final prediction result was the sum of the outputs from these 990 

two predictors. 991 

 992 

Replacing AS data with DMS scores of alanine substitutions 993 

We investigated another potential approach to overcome the sparsity of AS data by replacing 994 

the AS feature with the DMS scores of alanine substitutions (DMS-Ala). For The intention of 995 
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this study is to model the scenario of ideal AS data, which perfectly matches the DMS-Ala data 996 

during training. To do this, for all DMS datasets we collected, their AS feature values, 997 

regardless of availability, were replaced by the DMS-Ala scores on the same residue. Missing 998 

scores were imputed by the mean value of all DMS-Ala scores. A regression model was trained 999 

and evaluated as previously described, using the three DeMaSk features as well as the DMS-1000 

Ala scores. The AS data of high assay compatibility are still used for the testing process.  1001 

 1002 
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