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Supplementary Figure 1. RNA-seq sample filters and quality control, including outlier detection,
sex concordance, and assay performance measures. a, Schematic of RNA-seq sample filtering. IDs
of excluded samples are listed under each filtering step in gray text. Two QC tests were performed to
identify outlier samples based on systematic abnormalities in overall expression (b,c¢). Moreover, we
tested for sex concordance to identify potential sample mix-ups (d). b, Dendrogram visualizing pairwise
Spearman correlations between gene expression levels of temporal cortex neuronal samples that are
newly added after our previous study (Dong et al. Nature Neuroscience, 2018). ¢, Histogram of median
pairwise k-mer distances for each of the 221 samples with all other samples. d, Concordance between
clinical sex and sex-specific gene expression in neuronal and non-neuronal samples: normalized
expression levels of the female-specific XIST transcript (x axis) and normalized expression levels of the
Y-chromosome specific RPS4Y1 transcript (y axis) are shown. e, Scatterplot of two technical replicates
based on IcRNAseq. n = 57,814; all annotated genes in GENCODE v19. f, Scatterplot of circRNA
expression from two technical replicates (panel e) based on IcRNAseq.
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Supplementary Figure 2. Circular RNA charateristics. a, Scatterplot of circRNA reads count between
paired RNase R-treated vs. mock-treated RNA-seq samples. Blue dots are those enriched in RNase-R
treatment based on (1) ratio between RNase treated vs. mock reads is greater than or equal to 2, and (2)
at least 20 reads in the RNase treated RNA-seq. b, Number of circRNAs (exon-derived) and ciRNAs



(intron-derived) enriched by RNase R treatment. It showed that RNase R treatment can significantly
enrich exon-derived circRNAs, but not intron-derived ciRNAs. ¢, Size distribution of circular RNAs,
color-coded by ciRNAs (orange) and circRNAs (red), before and after filters. It showed that ciRNAs are
relatively shorter than circRNAs and after above enrichment filtering, ciRNAs are mostly filtered out. d,
circRNAs expressed in the PICALM locus in different cell types. e, Genes with more exons are generally
more likely to produce more circRNAs. Exons being circularized are significantly longer than average.
Flanking introns of circRNAs have significantly less overlapping RBP binding activity peaks (using
ENCODE eCLIP peaks?®) than control introns. f, Scatterplot of circular reads vs. linear reads per junction
sites (left) and per host gene (right). g, DisGeNet disease class enriched in the host genes of all detected
circRNAs in this study. h, Percentage of synaptic genes among all circRNA host genes are significantly
decreased in PD (t-test, P = 0.036) and in AD (t-test, P = 0.012) comparing their corresponding controls.
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Supplementary Figure 3. qPCR validation of circRNAs. a, Barplot of qPCR delta Ct values
(comparing to UBC control) for 17 select circRNAs, grouped into substantia nigro dominant circRNAs
(in red frame), temporal cortex dominant circRNAs (blue frame), brain dominant circRNAs (green), and
non-brain dominant circRNA (brown). The tissue dominance is based on visual inspection. Orange bars
are for RNase R treated samples while darkblue bars are for untreated samples. Note that the gPCR
validation were performed in bulk tissue (e.g. SN: susbtantia nigra and TC: temporal cortex), instead of
laser-captured neurons, due to the requirement of input RNAs. b, Schema of qPCR design for circRNA
validation using circPSEN1-2 as an example. Paired primers targeted the back-splicing junction sites
were listed in Supplementary Data 4. ¢, Cell-specificity score distribution of circRNAs and linear
mRNAs from the same genetic loci in three major cell types. This is limited to those host linear mRNAs
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Supplementary Fig. 4
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Supplementary Fig. 4. RNA Binding Protein (RBP) activity and cell type-specific circRNAs. a
Number of eCLIP peaks (ENCODE eCLIP data from HepG2 and K562 cell lines?®) overlapping the
meta-exon and flanking intron (+/- 200 bp) window of ubiquitous circRNAs and cell-type specific
circRNAs from our study. Exonic region of a circRNA were concatenated and scaled into a meta-exon,
in order to show the relative position of eCLIP peaks. The boxplot inset shows the eCLIP peak density
(per basepair) on circular exon and its flanking intron. b, Number of eCLIP peaks overlapping the two
putative types of cell type-specific circRNAs. ¢, Overlapped eCLIP binding peaks for 41 RBP were
significantly positively (NIP7) or negatively enriched (all other RBPs) in circular exons of cell type-
specific circRNAs for one cell type (e.g. circRNAs from locus producing one or more cell type-specific
circRNAs specific to the same one cell type) compared to ubiquitous circRNAs with FDR < 0.05. Odds
ratios from Fisher’s exact test; n = 5,608 for circRNAs one cell type compared to n = 1,942
ubiquitous circRNAs. d. Overlapped eCLIP binding peaks for six RBPs were significantly less frequent
at circular exons of cell type-specific circRNAs for multiple cell types (e.g., circRNAs from locus
producing multiple cell type-specific circRNA for multiple cell types) compared to ubiquitous circRNAs.
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N = 6,028 circRNAs for cell type-specific circRNAs for multiple cell types compared to n = 1,942
ubiquitous circRNAs. e. Overlapped eCLIP binding peaks for 54 RBP were significantly positively (n =
10) or negatively enriched (n = 44) in circular exons of cell type-specific circRNAs for one cell type
compared to cell type-specific circRNAs for multiple cell types with FDR < 0.05. Odds ratios from

Fisher’s exact test; n = 5,608 for circRNAs for one cell type compared to n = 6,028 circRNAs for multiple
cell types.
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Supplementary Figure 5. Locus plots for example circRNAs and their host loci, including
DNAJC6, VPSI13C, RIMS1, RIMS2, PSENI1, and APP. Note that the cell-specific circRNAs are based
on healthy samples only.
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Supplementary Figure 6. Exploring associations between circRNA expression and neuropathology.
a, Dopamine neuron circRNAs associated with Lewy body stages. The abundance of 26 circRNAs was
associated with Lewy body stage with nominal P values < 0.05 using linear regression analysis adjusted
for covariates of sex, age, RIN, and PMI; 95 (out of 104) dopamine neuron transcriptomes with available
neuropathology staging information (e.g., the Unified Lewy Body Staging System scores of 0, I, IIa, III,
and IV, see Supplementary Data S1). None achieved the multiple-testing-corrected significance threshold
of FDR < 0.05. The line graph shows mean and standard error of the normalized expression counts of
positively and negatively associated circRNAs. b, Effect sizes of circRNAs associated with Lewy body
neuropathology were highly correlated with the effect sizes for association with clinical diagnosis for the
18 samples with a clinical diagnosis of PD compared to 59 healthy controls without Lewy body
neuropathology (Pearson’s » = 0.75, P <2.22x107!6). Red dots, 32 suggestive circRNAs associated with



Lewy body neuropathology or PD clinical diagnosis (e.g., P < 0.05 in either comparison); grey dots,
circRNAs that were not associated with Lewy body neuropathology or PD clinical diagnosis or (e.g., P
> (.05 in both comparisons).

¢, Pyramidal neuron circRNAs associated with AD neuropathology. The abundance of 51 circRNAs was
associated with the neuropathological Braak stages of AD patients with nominal P values < 0.05 using
linear regression analysis adjusted for covariates of sex, age, RIN, and PMI (n = 83, including 9, 12, 11,
4, 4, 11, and 32 subjects with AD Braak stage of 0, 1, 2, 3, 4, 5, and 6, respectively; Fig. 1b). None
achieved the multiple-testing-corrected significance threshold of FDR < 0.05. The line graph shows mean
and standard error of the normalized expression counts of positively and negatively associated circRNAs.
d, Effect sizes of circRNAs associated with neuropathological AD Braak stages were highly correlated
with the effect sizes for association with clinical diagnosis of AD compared to healthy controls (Pearson’s
r=0.91; P<2.22x 10", n =43 AD and 40 control samples; Fig. 1b). Red dots, 71 suggestive circRNAs
associated with AD clinical diagnosis or AD neuropathology (e.g., P < 0.05 in either comparison); grey
dots, circRNAs that are not associated with AD clinical diagnosis or AD neuropathology (e.g., P > 0.05
in both comparisons).
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