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Calculation of the overlap integral F(0).  
 
The rate constant, kij for 1H-driven spin diffusion is given by:  
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where ωij is the homonuclear dipolar coupling:  
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The homonuclear dipolar coupling depends on the internuclear distance rij and the angle θij 
between the internuclear vector and the external magnetic field. Fij(0) is the overlap integral 
describing the probability that single-quantum transitions occur at the same frequency for spins i 
and j.   
 
Spin diffusion among n spins can be calculated from the time-evolution of of the n-by-1 vector of 
z-magnetization M and the n-by-n exchange matrix 𝑲, . The time evolution is given by:  
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For an n spin system, the exchange matrix is given by:  
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Detailed balance requires that rate constants satisfy kab = kba, giving a symmetric matrix. 
Conservation of magnetization then requires that each column sums to zero. The case for a 2-spin 
system is highly tractable, and worth solving directly. Taking the two-spin system, we have kab = 
kba = k, giving the 2 x 2 exchange matrix: 
 
  𝑲, = 2 𝑘 −𝑘

−𝑘 𝑘 3 (5) 
 
Let A and B be the z magnetization on spins A and B at time t. Our differential equation is:  
	

	 	 3455⃗ (7)
37

= 4�̇�
�̇�
8 = 2−𝑘 𝑘

𝑘 −𝑘3 2
𝐴
𝐵3	 (6) 

 
The matrix −𝑲,  has Trace -2k and Determinant 0. The eigenvalues then are λ1 = 0 and λ2 = -2k, 
corresponding to eigenvectors [1, 1] and [1, -1] respectively.  The general solution is then: 
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Imposing the initial condition [1, 0] gives the solution 
 
 2𝐴𝐵3 = 0.5 2113 + 0.5𝑒

+$87 2 1−13 (8) 
 
The model compound 5-19F-Tryptophan has two orientationally inequivalent spins in the crystal 
unit cell, and is thus one such system. Fitting experimental data (See Fig. S3) to the curve 0.5+0.5e-

rt gives a best fit r of 183 s-1 with R2 = 0.9935. Note this “apparent rate” is twice the magnitude of 
the 1H-driven spin diffusion rate constant kij. L-Tryptophan crystalizes in P21 space group with 
two molecules in the unit cell (CSD: 1275812). In the crystal lattice, the nearest neighbor 19F-19F 
distance between orientationally inequivalent fluorine atoms is 4.62 Å. A second-moment sum 
over a 10 Å radius across multiple unit cells gives the effective dipolar coupling, which 
corresponds to an effective distance of 4.16 Å.  
 
With the fit and the equations above, the overlap integral can be calculated directly.  
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where <ωij2> is the powder-averaged ωij2:  
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The dipolar coupling constant can be calculated directly, or from the 1H-1H dipolar coupling of ω 
= 120,120 × 2π/s for a 1 Å distance:  
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Figure S1 MALDI-TOF mass spectra of synthetic peptides. (a) MALDI mass spectrum of 
synthetic 419F-Phe23 ETM. (b) MALDI mass spectrum of synthetic 419F-Phe20 ETM.   
 
  



 S5 

 

 
 
Figure S2. 2D 19F-19F correlation spectra of 4-19F-Phe23 labeled ETM. The spectrum was 
measured with 400 ms CORD irradiation under 14 kHz MAS at 260 K.  
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Figure S3. Plot of the pairwise interaction potential used to generate clustered oligomers, 
reproduced from Morozova et al 1. 
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Figure S4. 19F CODEX data of 5-19F-tryptophan, measured under 18 kHz MAS on a 600 MHz 
NMR, with a 19F Larmor frequency of 564 MHz. (a) Representative 19F CODEX S0 and S spectra, 
measured at a mixing time of 400 ms. (b) Experimental CODEX S/S0 values (filled circles) 
superimposed with the best-fit exponential decay (solid line) to 0.5 with the equation 0.5 +
0.5𝑒+F7, where c = 183 s-1. The equilibrium value of 0.50 is consistent with the P21 space group 
of L-tryptophan (CSD: 1275812). (c) Best-fit matrix simulation of the experimental CODEX 
intensities. Second moment analysis summing over additional unit cells gives the effective distance 
of r = 4.16 Å. This results in best-fit overlap integral F(0) of 3.4 μs. (d) RMSD between matrix-
simulated CODEX decays and the experimental data as a function of F(0) from 0.01 to 25 µs. The 
best-fit simulation with the lowest RMSD was obtained at F(0) = 3.4 µs.  
 
 
Reference  
 
1. Morozova, D.; Weiss, M.; Guigas, G., Shape as a determinant of membrane protein 
cluster formation. Soft Matter 2012, 8, 11905-11910. 
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MATLAB code for matrix calculation of CODEX decay curves 
 
%-------------------------------------------------------------------------% 
% CODEX_calc.m 
% CODEX matrix calculation for a regular polygon of n spins 
% Noah H. Somberg, Westley W. Wu, Mei Hong 
% Written in MATLAB R2021b 
% July 2022 
% This script takes a distance matrix (which here is generated based on a 
% regular polygon) and calculates a time-dependent CODEX decay using 
% 1H-driven spin diffusion theory, and plots the results 
%-------------------------------------------------------------------------% 
 
%--------SIMULATION PARAMETERS--------% 
gamma = 251.185e6; % Gyromagnetic ratio of fluorine 
mu_0 = 1.25663706212e-6; % Vacuum permeability 
hbar = 1.054571817e-34; % Planck constant 
gammaProt = 267.52218744e6; % Proton gyro ratio 
ang = 1e-10; % One angstrom 
powd = 0.2; % Powder average of angular dependence 
 
uplimit = 5000; % Upper bound of CODEX plot in ms (x axis) 
step = 1; % Time increment in ms (smaller equals smoother curves) 
 
n = 5; % Oligomer number 
%s = 8; % Nearest neighbor distance 
 
time_ax = 0:step:uplimit; 
F0 = 3.4; % Overlap integra 
s = 8.8; % NN distance in A 
 
% Create a polygon with n sides of length n at [0,0] with initial rotation 
% 0 degrees 
poly = createPoly(n,s,[0;0],0);  
dismatrix = zeros(n,n); % Initialize a matrix for all distances 
 
     
for p1 = 1:n 
    for p2 = 1:n % For each set of coordinates 
        xdist = abs(poly(1,p2) - poly(1,p1)); % Get x dist 
        ydist = abs(poly(2,p2) - poly(2,p1)); % Get y dist 
        dismatrix(p1,p2) = sqrt(xdist^2 + ydist^2); % Get total dist 
    end 
end 
     
% Calculate known couplings to double check parameter values are correct 
prot_1a = (mu_0 * hbar * gammaProt^2)/(4*pi*ang^3); % 1A 1H dipolar coup 
prot_1a_hz = prot_1a/(2*pi); % Convert to Hz, should be 120120 Hz 
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f_1a = (mu_0 * hbar * gamma^2)/(4*pi*ang^3); % 1 A F-F dip coup (in rads!) 
     
dipcoup = f_1a; 
         
M0matrix = eye(n); % Initial state is identity matrix 
 
np=uplimit/step+1; % Number of points 
 
W=dismatrix.^(-3)*dipcoup; % Homonuclear dipolar coupling strength 
Wsqu=W.^2; % Coupling squared 
 
for i=1:n % Detailed balance 
    Wsqu(i,i)=0; % Zero the diagonal of the coupling matrix 
    Wsqu_sums = sum(Wsqu,1); % Sum each column 
    Wsqu(i,i) = -Wsqu_sums(i); % Diag set to neg sum 
end     
             
% Calculate the exchange matrix K 
K=0.5*pi*Wsqu*powd*F0/1000000; 
% Mt is a 3d matrix:  
% first axis is the ending spin,  
% second axis is starting spin,  
% 3rd axis is time 
Mt = zeros(n,n,np);  
prop = expm(step/1000*K); % Calculate the propagator 
     
for currSpin = 1:n 
    % For each spin,   
    % calc the dip coup matrix W and the dip coup square 
     
    M0 = M0matrix(:,currSpin); % Extract the vector for init mag on spin 
    currMat = expm(0/1000*K); % Calculate the initial SD matrix 
     
    t_idx = 1; % Initialize a time index 
 
    for t = 0:step:uplimit 
        % For each time step, calculate exchange process 
        Mt(currSpin,:,t_idx) = currMat*M0; % Calculate Mt 
        currMat = prop*currMat; % Increment exchange matrix 
 
        t_idx = t_idx + 1; % Increment time index 
    end 
end 
     
Mt_avg = zeros(2,np); % Initialize a matrix for avg magnetization 
Mt_avg(1,:) = 0:step:uplimit; % First row is time, second row is M(t) avg 
 
% Calculate average over all spins 
for t_idx = 1:np 
    % Calc avg mag at each time pt 
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    Mt_avg(2,t_idx) = trace(Mt(:,:,t_idx))/n;  
end 
 
sim = Mt_avg(2,:); 
 
% Plot the result 
figure; 
set(gca, 'FontName', 'Arial') 
hold on 
plot(time_ax./1000,sim,'k','LineWidth',2) 
xlim([0,5]); 
ylim([0, 1.1]); 
xticks([0:1:5]); 
yticks([0:0.2:1]); 
box on 
set(gca, 'FontName', 'Arial') 
set(gca,'FontSize',16) 
set(gca,'linewidth',2) 
 
function points = createPoly(n,s,origin,rot) 
    % Outputs a set of points forming a regular polygon with n sides of 
    % length s centered at origin, with an initial rotation with respect to 
    % the x axis of rot 
 
    theta = 360/n; % Angle for drawing polygon radial vectors 
    points = zeros(2,n); % Initialize output matrix 
    Rotmat = [cosd(theta), -sind(theta); sind(theta), cosd(theta)]; 
    % Length of first vector based on side, using law of cosines 
    veclen = sqrt(s^2/(2-2*cosd(theta)));  
     
    xtran = origin(1); 
    ytran = origin(2); 
 
    % Get first vertex from length of radial vector and initial inclination 
    % angle 
    points(:,1) = [veclen*cosd(rot); veclen*sind(rot)];  
 
    % Calculate remaining points by applying rotation matrix 
    for i = 2:n 
        points(:,i) = Rotmat*points(:,i-1);  
    end 
 
    % Translate the shape to the specified origin 
    points(1,:) = points(1,:)+xtran; 
    points(2,:) = points(2,:)+ytran; 
end 
 
%-------------------------------------------------------------------------% 
% End of CODEX_calc.m 
%-------------------------------------------------------------------------% 
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MATLAB code for simulating a Random Sequential Adsorption of oligomers to a square 
 
%-------------------------------------------------------------------------% 
% RSAsimulation.m 
% Random sequential adsorption of pores 
% Westley W. Wu, Noah H. Somberg, Mei Hong 
% Written in MATLAB R2021b 
% July 2022 
% This script takes a specified phospholipid to protein ratio, oligomer 
% number, and lipid head group area to place an correspondingly-computed 
% number of pores randomly on a 1000 A x 1000 A area, checking for overlap 
% with already-placed pores before placing new ones. Outputs the final 
% coordinates of the center of each oligomer in 
% 'centers_[phospholipid:protein ratio]_[oligomer number].csv' 
%-------------------------------------------------------------------------% 
 
% RSAsimulation() places pore centers by randomly adding centers in sequence. 
% finalCenters is an output of this function so that other CODEX simulation 
% scripts can use the output of this function directly. 
function finalCenters = RSAsimulation()  
    w = 1000.0; % Width of membrane patch in angstroms 
    counter = 0; % Checks how many pores have already been added 
     
    LPRatio = double(input("Lipid:protein ratio: ")); % 10-40 
    oligoNum = double(input("Oligomer number: ")); % 4, 5, 6 etc. 
    lipidArea = double(input("Area per lipid: ")); % ~60 ang^2 
    radius_set = 10; % Radius of the circular footprint of the channel 
    % Computes the number of pores 
    numPores = 
floor((w^2)/(((LPRatio/2.0)*oligoNum*lipidArea)+pi*(double(radius_set)^2))); 
 
    % Initializes array in which the ordered pairs for the final center 
    % locations are to be stored 
    center_tuples = zeros(numPores, 2); 
 
    while counter < numPores %places the pores sequentially 
        x_random = w*rand; 
        y_random = w*rand; 
        % Checks to see if there is already a pore that could overlap with 
        % where we want to place the new pore 
        if checkCircle(center_tuples(1:(counter+1),:), x_random, y_random, 
radius_set) 
            % If there is no overlap, the pore is placed 
            center_tuples(counter+1,1) = x_random; 
            center_tuples(counter+1,2) = y_random; 
            counter = counter + 1; 
        end 
    end 
     
    finalCenters = center_tuples; 
    % Saves the file of pore centers to use later if needed 
    writematrix(finalCenters, 
strcat('centers_',string(LPRatio),'_',string(oligoNum),'.csv')); 
end 
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% yesNo returns true if we can place an oligomer at (x,y) given a list of 
% previous pore locations and false if we cannot. oldCenters contains the 
% list of ordered pairs of already-placed pores, and r is the radius around 
% each oligomer center where there cannot be another oligomer. 
function yesNo = checkCircle(oldCenters, x, y, r) 
    yesNo = true; 
    %vectorized computation of distance from (x, y) to every existing point 
    hitPoints = repmat([x y], size(oldCenters,1), 1); 
    distances = sqrt(sum(((hitPoints-oldCenters).^2),2)); 
 
    for i = 1:size(distances,1) % Cycles through already-placed pores 
        if (distances(i,1) <= 2*r) % Verifies center-center distance is OK 
            % If even a single overlap occurs, yesNo is set to false and we 
            % break out of the function because there is no need to cycle 
            % through remaining entries in oldCenters 
            yesNo = false; 
            break 
        end 
    end 
end 
 
%-------------------------------------------------------------------------% 
% End of RSAsimulation.m 
%-------------------------------------------------------------------------% 
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MATLAB code for Monte Carlo simulation of pore clustering  
 
%-------------------------------------------------------------------------% 
% ClusteringMonteCarlo.m 
% Simulated clustering of oligomers given a pairwise interaction potential 
% Westley W. Wu, Noah H. Somberg, Mei Hong 
% Written in MATLAB R2021b 
% July 2022 
% This script takes a specified number of pores and places them randomly on 
% a 1000 A x 1000 A area. It then applies the interaction potential and 
% simulates with a Metropolis Monte Carlo method. The interaction potential 
% is read from the file 'interaction_potential.txt'. This simulation uses 
% periodic boundary conditions and outputs the final coordinates of the 
% center of each oligomer in 'finalCenters.csv' 
%-------------------------------------------------------------------------% 
 
%%%%%%%% Begin main program %%%%%%%% 
 
%%% Initialize a random list of ordered pairs to serve as an initial random 
%%% distribution of pores 
 
% How many pores we place — for 1:17 P:L ratio in a 1000 A x 1000 A box, 
% 349 pores are appropriate 
npores = 349;  
% Generates a membrane patch with 1:17 P:L ratio given the number of pores 
sl = sqrt(1000000*(npores/349)); 
% Initial pore center locations are created. MATLAB randomly picks these 
% center coordinates based on the number of pores specified by npores. Note 
% that oligomer overlap is allowed 
coords = sl*rand(npores,2); 
% Saves a record of these initial centers just for future reference 
writematrix(coords, 'originalCenters.csv'); 
 
% Number of iterations of the Metropolis Monte Carlo algorithm we want to 
% simulate. In other words, how many individual oligomer positional changes 
% we consider making 
ntimes = 50000; 
 
%%% For later plotting of average nearest neighbor (NN) distances 
 
% Average NN distances table: first column will be the iteration the 
% simulation is on. The second column will be the NN distance averaged over 
% all npores oligomers. 
nnVtime = zeros(ntimes+1, 2); 
% Computes an average NN distance for the initial pore setup prior to any 
% Monte Carlo simulations 
nnVtime(1, :) = [0 ANNDistance(coords, sl)]; 
 
% For each cycle, we attempt to move a randomly-chosen oligomer to a randomly- 
% chosen position. We then use the change in energy between the current and 
% proposed configurations to decide if we should accept or reject the proposed 
% configuration. Periodic boundary conditions are used. 
for i = 1:ntimes 
    currentRow = randi(npores); % Chooses a random oligomer to try and move 
    % coordsFinal always refers to a proposed state of the system. Here, 
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    % we reset the proposed state of the system as the most recently-accepted 
    % state at the start of each loop 
    coordsFinal = coords; 
     
    % Gets positional information about randomly-chosen point 
    current_x = coords(currentRow,1); 
    current_y = coords(currentRow,2); 
 
    %computes the energy of initial arrangement 
    nearOriginal = nearMe(current_x, current_y, coords, sl); %finds nearest points to 
include in an energy calculation of the initial state 
    E_i = computeEnergy(coords(currentRow,:), nearOriginal); %actually computes the 
energy 
     
    %picks up the point we randomly chose before and moves it to a random 
    %location 
    finalCoordsForPoint = sl*rand(1,2); %chooses random destination 
    coordsFinal(currentRow,:) = finalCoordsForPoint; %changes the position of the 
point to the proposed new state 
     
    %gathers positional information about the point's new location 
    current_x_f = coordsFinal(currentRow,1); 
    current_y_f = coordsFinal(currentRow,2); 
 
    %computes the energy of propsed final state 
    nearFinal = nearMe(current_x_f, current_y_f, coordsFinal, sl); %finds nearest 
points to include in an energy calculation of the final state 
    E_f = computeEnergy(coordsFinal(currentRow,:), nearFinal); %actually computes the 
energy 
    
    %decision time: do we accept the new state? 
    if E_i-E_f < 0 %if the energy of the proposed state is less favorable than the 
energy of the starting state 
        if rand <= exp(E_i-E_f) %acceptance criterion 
            coords = coordsFinal; %if accept, change system 
        end 
    else %if the energy of the proposed state is lower, we always accept the proposed 
state and work from there next iteration 
        coords = coordsFinal; 
    end 
    nnVtime(i+1, :) = [i ANNDistance(coords, sl)]; %updates NN distance datatable 
    disp(i); %displays which iteration we are on, just for reference and can delete 
this line if so desired 
end 
 
%writes centers of a 3x3 extended grid (to display periodicity) 
q1 = [coords(:,1)-sl coords(:,2)+sl]; 
q2 = [coords(:,1) coords(:,2)+sl]; 
q3 = [coords(:,1)+sl coords(:,2)+sl]; 
q4 = [coords(:,1)-sl coords(:,2)]; 
q5 = coords; 
q6 = [coords(:,1)+sl coords(:,2)]; 
q7 = [coords(:,1)-sl coords(:,2)-sl]; 
q8 = [coords(:,1) coords(:,2)-sl]; 
q9 = [coords(:,1)+sl coords(:,2)-sl]; 
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expandedGrid = [q1;q2;q3;q4;q5;q6;q7;q8;q9]; 
 
%saves results 
writematrix(expandedGrid, 'expandedFinalCenters.csv'); %saves final pore center 
positions with periodic boundary conditions 
writematrix(coords, 'finalCenters.csv'); %saves final pore centers w/o periodicity 
writematrix(nnVtime, 'avg_NN_dist_v_time.csv'); %saves the time vs average nearest 
neighbor data 
 
%figures, for descriptions of figures see their titles 
 
figure(1); 
plot(nnVtime(:,1),nnVtime(:,2)); 
title('Average nearest neighbor distance over time'); 
xlabel('Timestep'); 
ylabel('Mean NN distance (angstrom)'); 
xlim([0 ntimes]); 
 
figure(2); 
polygonPoints(5, 8, 0); 
xlim([-sl 2*sl]); 
ylim([-sl 2*sl]); 
title('Final centers'); 
 
figure(3); 
polygonPoints(5, 8, 1); 
xlim([-sl 2*sl]); 
ylim([-sl 2*sl]); 
title('Original centers'); 
 
figure(4); 
polygonPoints(5, 8, 2); 
xlim([-sl 2*sl]); 
ylim([-sl 2*sl]); 
title('Final centers w/ periodic boundary conditions'); 
 
figure(5); 
x = movmean(nnVtime(:,1),500); 
y = movmean(nnVtime(:,2),500); 
plot(x,y) 
title('Average nearest neighbor distance over time'); 
xlabel('Timestep'); 
ylabel('Moving average of mean NN distance (angstrom)'); 
 
 
%%%%%%%% functions used in main simulation listed below %%%%%%%% 
 
function energy = computeEnergy(pt, nearby) %computes the energy of the system 
provided a given center location (pt) and a list of its nearest neighbors (nearby) 
    %vectorized approach to end up with a list of all distances from the 
    %specified point to all the points in the matrix of nearby points 
    pointMatrix = repmat(pt, size(nearby,1), 1); 
    dist = sqrt(sum(((pointMatrix-nearby).^2),2)); 
 
    %computes the energies from distance information 
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    if size(dist,1)>=1 %if there are any distances to compute energies from 
        dist = double(dist); %converts to double just to be safe 
        energies = potential(dist); %runs the distance list through the potential 
energy function 
        energy = sum(energies,'all'); %adds together all the individual pairwise 
energies computed in the line above 
    else %if a pore center has no near neighbors, we don't bother computing energy 
        energy = 0; 
    end 
end 
 
function energy = potential(r) %potential function, r is center-center distance in 
angstroms 
    values = readtable('interaction_potential.txt'); %reads from file 
    d = table2array(values(:,1)); %first column contains distances in angstroms 
    y = table2array(values(:,2)); %second column contains energies in units of kB*T 
    pp = griddedInterpolant(d,y,'makima'); %datafile is a discrete table, uses the 
modified Akima interpolation method between discrete points 
    energy = pp(double(r)); %computes a numerical value of the energy 
end 
 
function expandedGrid = nearMe(x,y,coords,sl) %finds the center coordinates of all 
pores at distances close enough to (x,y) such that the pairwise interaction potential 
with (x,y) is possibly nonzero 
    %initiates 9 copies of the grid in 3x3 arrangement for periodic boundary 
conditions 
    q1 = [coords(:,1)-sl coords(:,2)+sl]; 
    q2 = [coords(:,1) coords(:,2)+sl]; 
    q3 = [coords(:,1)+sl coords(:,2)+sl]; 
    q4 = [coords(:,1)-sl coords(:,2)]; 
    q5 = coords; 
    q6 = [coords(:,1)+sl coords(:,2)]; 
    q7 = [coords(:,1)-sl coords(:,2)-sl]; 
    q8 = [coords(:,1) coords(:,2)-sl]; 
    q9 = [coords(:,1)+sl coords(:,2)-sl]; 
    expandedGrid = [q1;q2;q3;q4;q5;q6;q7;q8;q9]; 
    rowsToRemove = true(size(expandedGrid,1), 1); %by default, remove the entry 
unless told otherwise 
    same_counter = 0; %keeps track of how many points in expandedGrid have exact 
coorindates (x,y); this is only applicable to the extremely unlikely edge case of 
different pores having exactly-overlapping centers 
    %removes all entries from the expanded periodic set of points outside a 
    %200x200 angstrom square centered on (x,y) 
    for row = 1:size(expandedGrid,1) 
        if (expandedGrid(row,1) == x) && (expandedGrid(row,2) == y) %if the 
coordinate is the same as the query point... 
            same_counter = same_counter+1; %keep track of it 
        end 
        if (expandedGrid(row,1) >= x-100) && (expandedGrid(row,1) <= x+100) && 
(expandedGrid(row,2) >= y-100) && (expandedGrid(row,2) <= y+100) && 
(expandedGrid(row,1) ~= x) && (expandedGrid(row,2) ~= y) 
            rowsToRemove(row,1) = false; %within the box of interest, so do not 
remove entry 
        end 
    end 
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    expandedGrid(rowsToRemove, :) = []; 
    temp = repmat([x y], same_counter-1, 1); 
    expandedGrid = [expandedGrid; temp]; 
    %we end up with a list of all pore centers within a 200x200 box of the 
    %query point, EXCEPT for the coordinates of the query point itself, 
    %since we don't want a nonexistent self-self pairwise interaction 
    %contributing to our energy computations. 
end 
 
function polygonPoints(n,s,p) %n = oligo number; s = side length; p = centers file to 
plot 
%plots randomly-angled symmetric pentamers from the centers file generated 
%from the Monte Carlo simulation. The code here is ONLY for purposes of 
%visualization. the actual pentagon orientations, vertices, and distance 
%matrix used in CODEX are generated in our CODEX pentagon-plotting script, 
%not here. The output to the entire Monte Carlo simulation is just a file 
%of pore centers. 
    if  p == 0 
        centers = readmatrix("finalCenters.csv"); %filename 
    elseif p == 1 
        centers = readmatrix("originalCenters.csv"); %filename 
    else 
        centers = readmatrix("expandedFinalCenters.csv"); %filename 
    end 
    randi = zeros(1,n); %to be filled with coordinates of the vertices of a regular 
n-gon assuming center is (0,0) 
    circumradius = (double(s)/2)/(sin(pi/n)); 
    for j = 1:size(centers,1) %cycles through pore centers, generating a randomly-
angled regular pentagon at each center 
        randStart = rand*2*pi/n; 
        for i = 1:n 
            randi(i) = randStart+2*pi*i/n; 
        end 
        x_coord = centers(j,1)+circumradius*cos(randi); 
        y_coord = centers(j,2)+circumradius*sin(randi); 
        patch(x_coord, y_coord, 'blue'); %plots the entire grid of pentagons 
    end 
end 
 
function dist = ANNDistance(coords, sl) %computes an average nearest neighbor (NN) 
distance for given center coordinates (coords) and side length of non-periodic 
membrane patch (sl) 
    %initiates 9 copies of the grid in 3x3 arrangement for periodic boundary 
conditions 
    q1 = [coords(:,1)-sl coords(:,2)+sl]; 
    q2 = [coords(:,1) coords(:,2)+sl]; 
    q3 = [coords(:,1)+sl coords(:,2)+sl]; 
    q4 = [coords(:,1)-sl coords(:,2)]; 
    q5 = coords; 
    q6 = [coords(:,1)+sl coords(:,2)]; 
    q7 = [coords(:,1)-sl coords(:,2)-sl]; 
    q8 = [coords(:,1) coords(:,2)-sl]; 
    q9 = [coords(:,1)+sl coords(:,2)-sl]; 
    expandedGrid = [q1;q2;q3;q4;q5;q6;q7;q8;q9]; 
    dist = 0; %running sum of NN distances 
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    idx = knnsearch(expandedGrid,coords,"K",2); 
    for i = 1:size(coords,1) %cycles through each pore in ONLY the non-expanded 
grid... 
        dist = dist + distance(coords(i,:), expandedGrid(idx(i,2),:)); %...but NN 
computations take into account centers that appear as a result of periodic boundary 
conditions 
    end 
    dist = dist/size(coords,1); %computes the actual average by dividing by number of 
pores 
end 
 
function dist = distance(a, b) %used by many other functions but not directly called 
by main program — computes the distance between two ordered pairs a: (a(1), a(2)) and 
b: (b(1), b(2)) 
    dist = sqrt((a(1)-b(1))^2+(a(2)-b(2))^2); 
end 
 
%-------------------------------------------------------------------------% 
% End of ClusteringMonteCarlo.m 
%-------------------------------------------------------------------------% 
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Interaction potential used in the clustering simulation (‘interaction_potential.txt’) 
 
First column is x-coordinate in angstrom, second column is y-coordinate (energy) in units kBT 
 
-50 10000000.0 
0 10000000.0 
10 10000000.0 
20 10000000.0 
25.56605531 -1.351146862 
25.72576996 -2.443453329 
25.91423324 -3.521822236 
26.03881066 -4.623287671 
26.41254292 -6.26791972 
26.69204355 -7.361819051 
27.09771874 -8.060289901 
27.50179679 -7.920516088 
28.1246839 -6.531936923 
28.52876195 -5.469098439 
28.68368515 -4.902437082 
29.08936034 -3.808537751 
29.43114968 -3.305590953 
29.77293902 -2.730168844 
30.61303804 -1.659764256 
31.11134773 -1.403711373 
31.51542577 -0.588961453 
32.05845556 0.20269194 
32.68134267 0.712806626 
33.61727048 -0.195524052 
34.10440014 -0.704842306 
34.59632124 -1.365084422 
35.03234222 -1.326059255 
36.08965315 -0.50374323 
36.68059733 0.031459063 
37.2092528 0.551529149 
38.08129475 1.055670596 
39.35741475 1.490124243 
40.10328214 1.490124243 
40.78845796 1.428002549 
41.94000053 0.884835935 
42.34407858 0.807582032 
42.74815663 0.869305511 
43.24646631 1.089518955 
43.96198791 1.272698312 
45.14387627 1.552245938 
45.8913408 1.614367633 
47.13551787 1.707550175 
47.69611627 1.606403313 
48.94029334 1.311723479 
50.99422365 1.086731443 
52.86128783 1.272698312 
53.79561849 1.125358394 
55.07014135 1.086731443 
56.75033939 0.900366359 
57.68467006 0.815148136 
61.01312322 0.621216948 
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62.53839806 0.636747372 
62.91213033 0.551529149 
64.40546224 0.434851864 
65.41805308 0.388260593 
66.42744962 0.396224912 
67.62850374 0.462328767 
68.91740091 0.373128385 
69.50834509 0.326537114 
70.22386669 0.434851864 
70.69023345 0.373128385 
71.34506349 0.318572794 
71.93600767 0.31100669 
72.37202864 0.202293724 
73.89570634 0.109111182 
75.57590438 0.217824148 
76.44794634 0.046989487 
76.8216786 -0.2166295 
77.6298347 -0.348438993 
79.54002183 -0.056944887 
80.15332606 -0.176011469 
81.0525195 -0.109111182 
82.04913887 -0.015132208 
83.32366172 -0.076855687 
84.84893657 -0.084820006 
87.0274443 -0.178002549 
88.86256555 -0.131411277 
89.79689621 -0.053759159 
90 0.0 
100 0.0 
200 0.0 
600 0.0 
1000 0.0 
1500 0.0 
 
 
 


