Supplementary Information

The SARS-CoV-2 Envelope Protein Forms Clustered
Pentamers in Lipid Bilayers

Noah H. Somberg !, Westley W. Wu !, Jodo Medeiros-Silva !, Aurelio J. Dregni !, Hyunil Jo 2,
William F. DeGrado 2 and Mei Hong '*

! Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street,
Cambridge, MA 02139

2 Department of Pharmaceutical Chemistry, 555 Mission Bay Blvd. South, University of

California, San Francisco, San Francisco, CA 94158

* Corresponding author: Professor Mei Hong, meihong@mit.edu

S1

Calculation of the overlap integral F(0).

The rate constant, k;; for 'H-driven spin diffusion is given by:

1
kij = Enwiszij(O) (1)

where wjj is the homonuclear dipolar coupling:

_ koh 2i(1—3c0529i]-)
Wij =57 Y i 2 (2)
The homonuclear dipolar coupling depends on the internuclear distance r; and the angle 6;
between the internuclear vector and the external magnetic field. Fj(0) is the overlap integral
describing the probability that single-quantum transitions occur at the same frequency for spins i
and ;.

Spin diffusion among # spins can be calculated from the time-evolution of of the n-by-1 vector of
z-magnetization M and the n-by-n exchange matrix K. The time evolution is given by:

dM(t) _ piz
— = —KM(t) (3)

For an » spin system, the exchange matrix is given by:

kab + kac +-t kan _kba _kca _kna
N _kab kba + kbc +-t kbn _kcb _knb
K= _I.Cac —kpc kea+kep +-+ ke - —knc (4)
_kan _kbn _kcn kna + knb + knc + -

Detailed balance requires that rate constants satisfy ku» = kwe, giving a symmetric matrix.
Conservation of magnetization then requires that each column sums to zero. The case for a 2-spin
system is highly tractable, and worth solving directly. Taking the two-spin system, we have k. =
kva = k, giving the 2 x 2 exchange matrix:

>_[k -k
k=15 %)
Let A and B be the z magnetization on spins A and B at time ¢. Our differential equation is:
am@) _ [A]l _ -k k1[A
a [B] = k —k] [B] (6)

The matrix —K has Trace -2k and Determinant 0. The eigenvalues then are A1 = 0 and A» = -2k,
corresponding to eigenvectors [1, 1] and [1, -1] respectively. The general solution is then:

S2

(5] =[]+ e []] (7)

Imposing the initial condition [1, 0] gives the solution

[g] ~ 0.5 [ﬂ +0.5e2kt [_11])

The model compound 5-°F-Tryptophan has two orientationally inequivalent spins in the crystal
unit cell, and is thus one such system. Fitting experimental data (See Fig. S3) to the curve 0.5+0.5¢
" gives a best fit 7 of 183 s7! with R?2=0.9935. Note this “apparent rate” is twice the magnitude of
the 'H-driven spin diffusion rate constant ;. L-Tryptophan crystalizes in P2, space group with
two molecules in the unit cell (CSD: 1275812). In the crystal lattice, the nearest neighbor F-1°F
distance between orientationally inequivalent fluorine atoms is 4.62 A. A second-moment sum
over a 10 A radius across multiple unit cells gives the effective dipolar coupling, which
corresponds to an effective distance of 4.16 A.

With the fit and the equations above, the overlap integral can be calculated directly.

Zkij

Fij(o) = 7T<wi2j>)
where <wjj>> is the powder-averaged wi:
h 1 (1-3cos?6;)) 2
w? = (%Vzﬁsj.—z I) (10)
2 2
uoh 1\° 1 2% (T /(1—3cos?6;;)
<.z.>:_z__ff I2) sing dod
Wiy <4T[y ré) am J,), 2 St ¢
2
— (#0221 1

=(Bor13) = an

The dipolar coupling constant can be calculated directly, or from the 'H-'H dipolar coupling of
= 120,120 x 2n/s for a 1 A distance:

2
toh 21

2 2 3

<w?>=|—y?=| X 1 =(120120 x (0.941)? x 14 X 2m/s ><1

i !’) 75 ' 416 A 5
= 1.726 x 107 rad?/s?

2ki; 183571

m<w?> T w1726 x 107 rad?/s2

N

=338 x 10— =34pus (12)

rad?

F;(0) =

S3

(a) 'F-Phe23 ETM

__ [Theoretical mass: 33810 1
S [3378.2Da y
9/ - —
>t :
= :
c

St :
cr | .

2000 2500 3000 3500/ 4000 4500 5000 5500 6000
m/z

(b) '°F-Phe20 ETM

N Thebretical hass: ' ' ' ' ' ' a
3378 2 Da 3379.5 i

Intensity (a.u.)

2000 2500 3000 3500 4000 4500 5000 5500 6000
m/z

Figure S1 MALDI-TOF mass spectra of synthetic peptides. (a) MALDI mass spectrum of
synthetic 4'°F-Phe23 ETM. (b) MALDI mass spectrum of synthetic 4!°F-Phe20 ETM.

S4

4-°F-Phe23 ETM
in POPC/POPS/POPE

-12571 400 ms

| 1 1 | 1
-105 -110 -115 =120 -125
F (ppm)

Figure S2. 2D F-'°F correlation spectra of 4-?F-Phe23 labeled ETM. The spectrum was
measured with 400 ms CORD irradiation under 14 kHz MAS at 260 K.

S5

Pairwise interaction potential used in clustering simulation

5 T T T T T T T T T T T T T T

o

I
(&}
T

Potential energy (k,T)

_1 O 1 1 1 1 1 1 1 L 1 L
30 40 50 60 70 80 90 100

Center-of-mass to center-of-mass distance r (A)

Figure S3. Plot of the pairwise interaction potential used to generate clustered oligomers,
reproduced from Morozova et al !.

S6

(a) (b)

»
| J L k D g4l 0.50
S A 02}
A A
I T L 1 T O 1 1 i i
-100 -120 -140 0 01 02 03 04 05
°F (ppm) Mixing Time (s)
(c) 1.0 : ' (d) 0.4 . . .
08 | 0.3}
J06R] F(0)=34ps a
%) . o . o Do2
%) i d > =
04} r=4.16 A 4
0.1
02}
0 R . . ; 0 L . . .
0 0.1 02 03 04 05 0 5 10 15 20 25
Mixing Time (s) F(0) (us)

Figure S4. ’F CODEX data of 5-!°F-tryptophan, measured under 18 kHz MAS on a 600 MHz
NMR, with a '°F Larmor frequency of 564 MHz. (a) Representative ’F CODEX Sy and S spectra,
measured at a mixing time of 400 ms. (b) Experimental CODEX S/So values (filled circles)
superimposed with the best-fit exponential decay (solid line) to 0.5 with the equation 0.5 +
0.5e~t, where ¢ = 183 s!. The equilibrium value of 0.50 is consistent with the P2; space group
of L-tryptophan (CSD: 1275812). (¢) Best-fit matrix simulation of the experimental CODEX
intensities. Second moment analysis summing over additional unit cells gives the effective distance
of r = 4.16 A. This results in best-fit overlap integral F(0) of 3.4 us. (d) RMSD between matrix-
simulated CODEX decays and the experimental data as a function of F(0) from 0.01 to 25 ps. The
best-fit simulation with the lowest RMSD was obtained at F(0) = 3.4 ps.

Reference

1. Morozova, D.; Weiss, M.; Guigas, G., Shape as a determinant of membrane protein
cluster formation. Soft Matter 2012, 8, 11905-11910.

S7

MATLAB code for matrix calculation of CODEX decay curves

3R 3R 3R 3R R 3R R X ¥ X

%

CODEX_calc.m

CODEX matrix calculation for a regular polygon of n spins

Noah H. Somberg, Westley W. Wu, Mei Hong

Written in MATLAB R2021b

July 2022

This script takes a distance matrix (which here is generated based on a
regular polygon) and calculates a time-dependent CODEX decay using
1H-driven spin diffusion theory, and plots the results

gamma = 251.185e6; % Gyromagnetic ratio of fluorine
mu_0 = 1.25663706212e-6; % Vacuum permeability

hbar = 1.054571817e-34; % Planck constant

gammaProt = 267.52218744e6; % Proton gyro ratio

ang = 1le-10; % One angstrom

powd = 0.2; % Powder average of angular dependence

uplimit = 5000; % Upper bound of CODEX plot in ms (x axis)
step = 1; % Time increment in ms (smaller equals smoother curves)

n

= 5; % Oligomer number

%s = 8; % Nearest neighbor distance

time_ax = @:step:uplimit;
FO = 3.4; % Overlap integra

S

%
%

= 8.8; % NN distance in A

Create a polygon with n sides of length n at [0,0] with initial rotation
0@ degrees

poly = createPoly(n,s,[9;0],0);
dismatrix = zeros(n,n); % Initialize a matrix for all distances

for pl = 1:n

for p2 = 1:n % For each set of coordinates
xdist = abs(poly(1,p2) - poly(1,pl)); % Get x dist
ydist = abs(poly(2,p2) - poly(2,pl)); % Get y dist
dismatrix(pl,p2) = sqrt(xdist”2 + ydist”2); % Get total dist
end

end

%

Calculate known couplings to double check parameter values are correct

prot_la = (mu_® * hbar * gammaProt”2)/(4*pi*ang”3); % 1A 1H dipolar coup
prot_la_hz = prot_la/(2*pi); % Convert to Hz, should be 120120 Hz

S8

f 1a = (mu_© * hbar * gamma”2)/(4*pi*ang”3); % 1 A F-F dip coup (in rads!)
dipcoup = f 1la;

MOmatrix = eye(n); % Initial state is identity matrix

np=uplimit/step+1l; % Number of points

W=dismatrix.”(-3)*dipcoup; % Homonuclear dipolar coupling strength
Wsqu=W.”2; % Coupling squared

for i=1:n % Detailed balance
Wsqu(i,i)=0; % Zero the diagonal of the coupling matrix
Wsqu_sums = sum(Wsqu,1); % Sum each column
Wsqu(i,i) = -Wsqu_sums(i); % Diag set to neg sum

end

% Calculate the exchange matrix K
K=0.5*pi*Wsqu*powd*F0/1000000;

Mt is a 3d matrix:

first axis is the ending spin,

second axis is starting spin,

3rd axis is time

Mt = zeros(n,n,np);

prop = expm(step/1000*K); % Calculate the propagator

3R 3R ¥« X

for currSpin = 1:n
% For each spin,
% calc the dip coup matrix W and the dip coup square

MO = M@matrix(:,currSpin); % Extract the vector for init mag on spin
currMat = expm(0/1000*K); % Calculate the initial SD matrix

t idx = 1; % Initialize a time index

for t = @:step:uplimit
% For each time step, calculate exchange process
Mt (currSpin, :,t _idx) = currMat*Me; % Calculate Mt
currMat = prop*currMat; % Increment exchange matrix

t idx = t_idx + 1; % Increment time index
end
end

Mt_avg = zeros(2,np); % Initialize a matrix for avg magnetization
Mt _avg(l,:) = @:step:uplimit; % First row is time, second row is M(t) avg

% Calculate average over all spins

for t _idx = 1:np
% Calc avg mag at each time pt

S9

end

Mt_avg(2,t_idx) = trace(Mt(:,:,t_idx))/n;

sim = Mt_avg(2,:);

% Plot the result

figure;

set(gca, 'FontName', 'Arial')

hold on

plot(time_ax./1000,sim, 'k','LineWidth',?2)
x1im([@,5]);

ylim([e, 1.1]);
xticks([©:1:5]);
yticks([0:0.2:1]);

box on

set(gca, 'FontName', 'Arial’)
set(gca, 'FontSize',16)
set(gca, 'linewidth',2)

function points = createPoly(n,s,origin,rot)

% Outputs a set of points forming a regular polygon with n sides of
% length s centered at origin, with an initial rotation with respect to
% the x axis of rot

theta = 360/n; % Angle for drawing polygon radial vectors
points = zeros(2,n); % Initialize output matrix

Rotmat [cosd(theta), -sind(theta); sind(theta), cosd(theta)];
% Length of first vector based on side, using law of cosines
veclen = sqgrt(s”2/(2-2*cosd(theta)));

xtran
ytran

origin(1);
origin(2);

% Get first vertex from length of radial vector and initial inclination
% angle
points(:,1) = [veclen*cosd(rot); veclen*sind(rot)];

% Calculate remaining points by applying rotation matrix
for i = 2:n

points(:,i) = Rotmat*points(:,i-1);
end

% Translate the shape to the specified origin
points(1,:) points(1, :)+xtran;
points(2,:) points(2,:)+ytran;

S10

S11

MATLAB code for simulating a Random Sequential Adsorption of oligomers to a square

3R 3% 3R R 3R 3R o° R R X X ¥ R

—h 3R 3R ¥

.F

r

RSAsimulation.m

Random sequential adsorption of pores

Westley W. Wu, Noah H. Somberg, Mei Hong

Written in MATLAB R2021b

July 2022

This script takes a specified phospholipid to protein ratio, oligomer
number, and lipid head group area to place an correspondingly-computed
number of pores randomly on a 1000 A x 1000 A area, checking for overlap
with already-placed pores before placing new ones. Outputs the final
coordinates of the center of each oligomer in
'centers_[phospholipid:protein ratio]_[oligomer number].csv'

RSAsimulation() places pore centers by randomly adding centers in sequence.
finalCenters is an output of this function so that other CODEX simulation
scripts can use the output of this function directly.
unction finalCenters = RSAsimulation()
w = 1000.0; % Width of membrane patch in angstroms
counter = @; % Checks how many pores have already been added

LPRatio = double(input("Lipid:protein ratio: ")); % 10-40

oligoNum = double(input("Oligomer number: ")); % 4, 5, 6 etc.

lipidArea = double(input("Area per lipid: ")); % ~60 ang”"2

radius_set = 10; % Radius of the circular footprint of the channel

% Computes the number of pores

numPores =
loor((w”2)/(((LPRatio/2.0)*oligoNum*1ipidArea)+pi*(double(radius_set)"2)));

% Initializes array in which the ordered pairs for the final center
% locations are to be stored
center_tuples = zeros(numPores, 2);

while counter < numPores %places the pores sequentially
X_random = w*rand;
y_random = w*rand;
% Checks to see if there is already a pore that could overlap with
% where we want to place the new pore
if checkCircle(center_tuples(1:(counter+l),:), x_random, y_ random,
adius_set)
% If there is no overlap, the pore is placed
center_tuples(counter+l,1) = x_random;
center_tuples(counter+l,2) = y_random;
counter = counter + 1;
end
end

finalCenters = center_tuples;
% Saves the file of pore centers to use later if needed
writematrix(finalCenters,

strcat('centers_',string(LPRatio), ' ',string(oligoNum),'.csv'));

e

nd

S12

—h 3R R ¥ X

yesNo returns true if we can place an oligomer at (x,y) given a list of
previous pore locations and false if we cannot. oldCenters contains the
list of ordered pairs of already-placed pores, and r is the radius around
each oligomer center where there cannot be another oligomer.

unction yesNo = checkCircle(oldCenters, x, y, r)

yesNo = true;

%vectorized computation of distance from (x, y) to every existing point
hitPoints = repmat([x y], size(oldCenters,1), 1);

distances = sqrt(sum(((hitPoints-oldCenters).”2),2));

for i = 1:size(distances,1) % Cycles through already-placed pores
if (distances(i,1) <= 2*r) % Verifies center-center distance is OK
% If even a single overlap occurs, yesNo is set to false and we
% break out of the function because there is no need to cycle
% through remaining entries in oldCenters
yesNo = false;
break
end
end

S13

MATLAB code for Monte Carlo simulation of pore clustering

ClusteringMonteCarlo.m

Simulated clustering of oligomers given a pairwise interaction potential
Westley W. Wu, Noah H. Somberg, Mei Hong

Written in MATLAB R2021b

July 2022

This script takes a specified number of pores and places them randomly on
a 1000 A x 1000 A area. It then applies the interaction potential and
simulates with a Metropolis Monte Carlo method. The interaction potential
is read from the file 'interaction_potential.txt'. This simulation uses
periodic boundary conditions and outputs the final coordinates of the
center of each oligomer in 'finalCenters.csv'

3R 3% 3R R 3R 3R o° R R X X ¥ R

%lolololololode Begin main program %%k%k%kkkss

%%% Initialize a random list of ordered pairs to serve as an initial random
%%% distribution of pores

% How many pores we place — for 1:17 P:L ratio in a 1000 A x 1000 A box,

% 349 pores are appropriate

npores = 349;

% Generates a membrane patch with 1:17 P:L ratio given the number of pores
sl = sqrt(1000000* (npores/349));

% Initial pore center locations are created. MATLAB randomly picks these

% center coordinates based on the number of pores specified by npores. Note
% that oligomer overlap is allowed

coords = sl*rand(npores,2);

% Saves a record of these initial centers just for future reference
writematrix(coords, 'originalCenters.csv');

% Number of iterations of the Metropolis Monte Carlo algorithm we want to
% simulate. In other words, how many individual oligomer positional changes
% we consider making

ntimes = 50000;

%%% For later plotting of average nearest neighbor (NN) distances

% Average NN distances table: first column will be the iteration the

% simulation is on. The second column will be the NN distance averaged over
% all npores oligomers.

nnVtime = zeros(ntimes+1, 2);

% Computes an average NN distance for the initial pore setup prior to any

% Monte Carlo simulations

nnVtime(1l, :) = [@ ANNDistance(coords, sl)];

For each cycle, we attempt to move a randomly-chosen oligomer to a randomly-
chosen position. We then use the change in energy between the current and
proposed configurations to decide if we should accept or reject the proposed
configuration. Periodic boundary conditions are used.
or i = 1l:ntimes
currentRow = randi(npores); % Chooses a random oligomer to try and move
% coordsFinal always refers to a proposed state of the system. Here,

—h 3R 3R 3 ¥

S14

% we reset the proposed state of the system as the most recently-accepted
% state at the start of each loop
coordsFinal = coords;

% Gets positional information about randomly-chosen point
current_x = coords(currentRow,1);
current_y = coords(currentRow,2);

%computes the energy of initial arrangement

nearOriginal = nearMe(current_x, current_y, coords, sl); %finds nearest points to
include in an energy calculation of the initial state

E_i = computeEnergy(coords(currentRow,:), nearOriginal); %actually computes the
energy

%picks up the point we randomly chose before and moves it to a random

%location

finalCoordsForPoint = sl*rand(1,2); %chooses random destination

coordsFinal(currentRow, :) = finalCoordsForPoint; %changes the position of the
point to the proposed new state

%gathers positional information about the point's new location
current_x_f = coordsFinal(currentRow,1);
current_y_f = coordsFinal(currentRow,2);

%computes the energy of propsed final state

nearFinal = nearMe(current_x_f, current_y_ f, coordsFinal, sl); %finds nearest
points to include in an energy calculation of the final state

E_f = computeEnergy(coordsFinal(currentRow,:), nearFinal); %actually computes the
energy

%decision time: do we accept the new state?
if E_i-E_f < @ %if the energy of the proposed state is less favorable than the
energy of the starting state
if rand <= exp(E_i-E_f) %acceptance criterion
coords = coordsFinal; %if accept, change system
end
else %if the energy of the proposed state is lower, we always accept the proposed
state and work from there next iteration
coords = coordsFinal;
end
nnVtime(i+l, :) = [i ANNDistance(coords, sl)]; %updates NN distance datatable
disp(i); %displays which iteration we are on, just for reference and can delete
this line if so desired
end

%writes centers of a 3x3 extended grid (to display periodicity)
ql = [coords(:,1)-sl coords(:,2)+s1];

g2 = [coords(:,1) coords(:,2)+sl];

g3 = [coords(:,1)+sl coords(:,2)+sl];

g4 = [coords(:,1)-sl coords(:,2)];

g5 = coords;

g6 = [coords(:,1)+sl coords(:,2)];

q7 = [coords(:,1)-sl coords(:,2)-s1];

g8 = [coords(:,1) coords(:,2)-sl];

q9 = [coords(:,1)+sl coords(:,2)-s1];

S15

expandedGrid = [q1;92;93;94;95;06;97;98;99];

%saves results

writematrix(expandedGrid, 'expandedFinalCenters.csv'); %saves final pore center
positions with periodic boundary conditions

writematrix(coords, 'finalCenters.csv'); %saves final pore centers w/o periodicity
writematrix(nnVtime, 'avg NN_dist v _time.csv'); %saves the time vs average nearest
neighbor data

%figures, for descriptions of figures see their titles

figure(1);

plot(nnVtime(:,1),nnVtime(:,2));

title('Average nearest neighbor distance over time');
xlabel('Timestep');

ylabel('Mean NN distance (angstrom)');

x1im([© ntimes]);

figure(2);
polygonPoints(5, 8, 0);
x1lim([-sl 2*sl]);
ylim([-s1l 2*sl1]);
title('Final centers');

figure(3);
polygonPoints(5, 8, 1);
xlim([-sl 2*sl]);
ylim([-s1l 2*sl1]);
title('Original centers');

figure(4);

polygonPoints(5, 8, 2);

x1lim([-sl 2*sl]);

ylim([-s1 2*sl1]);

title('Final centers w/ periodic boundary conditions');

figure(5);

X = movmean(nnVtime(:,1),500);

y = movmean(nnVtime(:,2),500);

plot(x,y)

title('Average nearest neighbor distance over time');
xlabel('Timestep');

ylabel('Moving average of mean NN distance (angstrom)');

%ohkodelodode functions used in main simulation listed below %%%%%%%%

function energy = computeEnergy(pt, nearby) %computes the energy of the system
provided a given center location (pt) and a list of its nearest neighbors (nearby)
%vectorized approach to end up with a list of all distances from the
%specified point to all the points in the matrix of nearby points
pointMatrix = repmat(pt, size(nearby,1), 1);
dist = sqrt(sum(((pointMatrix-nearby).”2),2));

%computes the energies from distance information

S16

if size(dist,1)>=1 %if there are any distances to compute energies from
dist = double(dist); %converts to double just to be safe
energies = potential(dist); %runs the distance list through the potential
energy function
energy = sum(energies, 'all'); %adds together all the individual pairwise
energies computed in the line above
else %if a pore center has no near neighbors, we don't bother computing energy
energy =
end
end

function energy = potential(r) %potential function, r is center-center distance in
angstroms

values = readtable('interaction_potential.txt'); %reads from file

d = table2array(values(:,1)); %first column contains distances in angstroms

y = table2array(values(:,2)); %second column contains energies in units of kB*T

= griddedInterpolant(d,y, 'makima'); %datafile is a discrete table, uses the

modified Akima interpolation method between discrete points

energy = pp(double(r)); %computes a numerical value of the energy
end

function expandedGrid = nearMe(x,y,coords,sl) %finds the center coordinates of all
pores at distances close enough to (x,y) such that the pairwise interaction potential
with (x,y) is possibly nonzero

%initiates 9 copies of the grid in 3x3 arrangement for periodic boundary
conditions

ql [coords(:,1)-s1 coords(:,2)+s1];

g2 = [coords(:,1) coords(:,2)+sl];

g3 = [coords(:,1)+sl coords(:,2)+sl];

g4 = [coords(:,1)-sl coords(:,2)];

g5 = coords;

g6 = [coords(:,1)+sl coords(:,2)];

q7 = [coords(:,1)-sl coords(:,2)-s1];

g8 = [coords(:,1) coords(:,2)-s1];

q9 = [coords(:,1)+sl coords(:,2)-s1];

expandedGrid = [q1;92;93;94;95;96;97;98;99];

rowsToRemove = true(size(expandedGrid,l), 1); %by default, remove the entry
unless told otherwise

same_counter = 0; %keeps track of how many points in expandedGrid have exact
coorindates (x,y); this is only applicable to the extremely unlikely edge case of
different pores having exactly-overlapping centers

%removes all entries from the expanded periodic set of points outside a

%200x200 angstrom square centered on (X,y)

for row = 1l:size(expandedGrid,1)

if (expandedGrid(row,1) == x) && (expandedGrid(row,2) == y) %if the
coordinate is the same as the query point...
same_counter = same_counter+l; %keep track of it

end

if (expandedGrid(row,1) >= x-100) && (expandedGrid(row,1l) <= x+100) &&
(expandedGrid(row,2) >= y-100) && (expandedGrid(row,2) <= y+100) &&
(expandedGrid(row,1) ~= x) && (expandedGrid(row,2) ~=y)

rowsToRemove(row,1) = false; %within the box of interest, so do not

remove entry

end

end

S17

expandedGrid(rowsToRemove, :) = [];
temp = repmat([x y], same_counter-1, 1);
expandedGrid = [expandedGrid; temp];
%we end up with a list of all pore centers within a 200x200 box of the
%query point, EXCEPT for the coordinates of the query point itself,
%since we don't want a nonexistent self-self pairwise interaction
%contributing to our energy computations.

end

function polygonPoints(n,s,p) %n = oligo number; s = side length; p = centers file to
plot

%plots randomly-angled symmetric pentamers from the centers file generated

%from the Monte Carlo simulation. The code here is ONLY for purposes of
%visualization. the actual pentagon orientations, vertices, and distance

%matrix used in CODEX are generated in our CODEX pentagon-plotting script,

%not here. The output to the entire Monte Carlo simulation is just a file

%0f pore centers.

if p==20
centers = readmatrix("finalCenters.csv"); %filename
elseif p ==1
centers = readmatrix("originalCenters.csv"); %filename
else
centers = readmatrix("expandedFinalCenters.csv"); %filename
end

randi = zeros(1,n); %to be filled with coordinates of the vertices of a regular
n-gon assuming center is (0,0)
circumradius = (double(s)/2)/(sin(pi/n));
for j = 1:size(centers,1) %cycles through pore centers, generating a randomly-
angled regular pentagon at each center
randStart = rand*2*pi/n;
for i = 1:n
randi(i) = randStart+2*pi*i/n;
end
x_coord = centers(j,1)+circumradius*cos(randi);
y_coord = centers(j,2)+circumradius*sin(randi);
patch(x_coord, y_coord, 'blue'); %plots the entire grid of pentagons

end
end

function dist = ANNDistance(coords, sl) %computes an average nearest neighbor (NN)
distance for given center coordinates (coords) and side length of non-periodic
membrane patch (sl)

%initiates 9 copies of the grid in 3x3 arrangement for periodic boundary
conditions

ql [coords(:,1)-s1 coords(:,2)+s1];

g2 = [coords(:,1) coords(:,2)+sl1];

g3 = [coords(:,1)+sl coords(:,2)+sl];

g4 = [coords(:,1)-sl coords(:,2)];

g5 = coords;

g6 = [coords(:,1)+sl coords(:,2)];

q7 = [coords(:,1)-sl coords(:,2)-s1];

g8 = [coords(:,1) coords(:,2)-s1];

q9 = [coords(:,1)+sl coords(:,2)-s1];

expandedGrid = [q1;92;93;94;95;96;97;98;99];

dist = @; %running sum of NN distances

S18

idx = knnsearch(expandedGrid, coords,"K",2);

for i = 1:size(coords,1l) %cycles through each pore in ONLY the non-expanded
grid...

dist = dist + distance(coords(i,:), expandedGrid(idx(i,2),:)); %...but NN

computations take into account centers that appear as a result of periodic boundary
conditions

end

dist = dist/size(coords,1); %computes the actual average by dividing by number of
pores
end

function dist = distance(a, b) %used by many other functions but not directly called
by main program — computes the distance between two ordered pairs a: (a(1l), a(2)) and
b: (b(1), b(2))

dist = sqrt((a(1l)-b(1))*2+(a(2)-b(2))"2);

end

Y e e e LT LR L PP %
% End of ClusteringMonteCarlo.m

Y e e e L E T e L PR %

S19

Interaction potential used in the clustering simulation (‘interaction_potential.txt’)
First column is x-coordinate in angstrom, second column is y-coordinate (energy) in units ksT

-50 10000000.0
0 10000000.0
10 10000000.0
20 10000000.0

25.56605531 -1.351146862
25.72576996 -2.443453329
25.91423324 -3.521822236
26.03881066 -4.623287671
26.41254292 -6.26791972

26.69204355 -7.361819051
27.09771874 -8.060289901
27.50179679 -7.920516088
28.1246839 -6.531936923
28.52876195 -5.469098439
28.68368515 -4.902437082
29.08936034 -3.808537751
29.43114968 -3.305590953
29.77293902 -2.730168844
30.61303804 -1.659764256
31.11134773 -1.403711373
31.51542577 -0.588961453
32.05845556 0.20269194

32.68134267 0.712806626

33.61727048 -0.195524052
34.10440014 -0.704842306
34.59632124 -1.365084422
35.03234222 -1.326059255
36.08965315 -0.50374323

36.68059733 0.031459063

37.2092528 0.551529149
38.08129475 1.055670596
39.35741475 1.490124243

40.10328214 1.490124243

40.78845796 1.428002549
41.94000053 ©0.884835935

42.34407858 ©0.807582032
42.74815663 0.869305511
43.24646631 1.089518955

43.96198791 1.272698312
45.14387627 1.552245938
45.8913408 1.614367633

47.13551787 1.707550175

47.69611627 1.606403313

48.94029334 1.311723479
50.99422365 1.086731443

52.86128783 1.272698312
53.79561849 1.125358394
55.07014135 1.086731443

56.75033939 0.900366359
57.68467006 ©.815148136
61.01312322 0.621216948

S20

62.
62.
64.
65.
66.
67.
68.
69.
70.
70.
71.
71.
72.
73.
75.
76.
76.
77.
79.
80.
81.
82.
83.
84.
87.
88.
89.
90

100
200
600
100
150

53839806
91213033
40546224
41805308
42744962
62850374
91740091
50834509
22386669
69023345
34506349
93600767
37202864
89570634
57590438
44794634
8216786
6298347
54002183
15332606
0525195
04913887
32366172
84893657
0274443
86256555
79689621
Q.

0
0

OO0
OO0

OO OO0

[L R R I e
OO0 OOOOO

.636747372
.551529149
.434851864
.388260593
.396224912
.462328767
.373128385
.326537114
.434851864
.373128385
.318572794
.31100669

.202293724
.109111182
.217824148
.046989487

.2166295

.348438993
.056944887
.176011469
.109111182
.015132208
.076855687
.084820006
.178002549
.131411277
.053759159

S21

