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Commentary

Haemochromatosis: a gene at last?

Simon et al' in 1976 first reported the
association between the leucocyte antigens
HLA-A3 and HLA-B14 and genetic haemo-
chromatosis (GH). Now, 20 years later, Feder
et al' report the cloning of what is the strongest
candidate gene for this disorder to have been
identified so far. Formal proof from functional
studies is now required to confirm that
mutations in this gene are responsible for caus-
ing haemochromatosis. The question now
arises as to why this gene has proved so elusive.

(C Med Genet 1997;34:148-151)
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Background
Although GH may be perceived by many to be
of limited clinical importance,' prevalence
rates for primary iron overload, as determined
by measurement of serum iron indices and by
liver biopsy, suggest that GH is the commonest
single gene disorder in caucasian populations,
affecting as many as 1 in 300 people.4 Progres-
sive accumulation of dietary iron results in an
age related clinical presentation, with second-
ary end organ damage such as cirrhosis,
diabetes, and cardiomyopathy apparent in
those patients between the ages of 40 and 60.'
Diagnosis is also compounded by the non-
specific symptoms resulting from iron over-
load, such that serum iron measurements are
not automatically considered, which would
otherwise confirm the diagnosis of GH. Early
detection and treatment by repeated venesec-
tion leads to normal life expectancy.5 6 Until
now there has been no reliable, cheap, and easy
method for detecting people with GH in the
early asymptomatic phase of the disease before
the onset of iron overload. The possibility of
screening the adult population for GH using a
DNA based assay is appealing.
There was no evidence to implicate iron

storage (ferritin), transport (transferrin, trans-
ferrin receptor), or control (iron responsive)
proteins or their genes as candidate genes for
GH as these map to regions outside the region
of linkage to the major histocompatibility com-
plex (MHC).

Genetics
Major contributions to the genetics of haemo-
chromatosis have come from the group in
Rennes. They were the first to show linkage to
the MHC and subsequently proposed a
founder effect as many of the affected chromo-
somes carried the HLA-A3 allele.7 They
positioned the haemochromatosis gene (HFE)
within 1 cM of the HLA-A gene. HLA-A is at

the telomeric end of the MHC which maps to
6p2l.3 (fig 1). Progress in defining the critical
region was slow because of the lack of informa-
tive chromosomal translocations and recombi-
nations, and the lack of ordered polymorphic
markers telomeric to HLA-A. Analyses of
markers around HLA-A and HLA-F (250 kb
telomeric ofHLA-A) was originally interpreted
as suggesting that the haemochromatosis gene
lay within this region.8" A number of new
genes were identified from this region, but
none has proved to be the haemochromatosis
gene. '

Fine mapping
The critical interval for the haemochromatosis
gene expanded substantially with the analysis
of the microsatellite D6S105,1' which mapped
1-2 cM telomeric to HLA-A.""13The marker
D6S105 is now known to be 2.5 Mb telomeric
of HLA-A.'" 15 An informative recombination
supported this more telomeric position for the
haemochromatosis gene by firstly separating
the gene from HLA-F'6 and more recently
placing this recombinational breakpoint telom-
eric to the Ret-Finger Protein locus (that is,
more than 1 Mb telomeric of HLA-A and
within 1.5 Mb of D6S105).'7 Lack of recombi-
nation in this region hindered the physical
ordering of microsatellite markers which were
known to map here. The position of the gene
relative to D6S105 was unknown and the telo-
meric limit was considered to be the marker
D6S299 which mapped 2 cM telomeric of
D6S105.18 Application of a new microsatellite
marker D6S 1260`s suggested that the gene
mapped telomeric to D6S 105 and possibly
telomeric to D6S1260. This work confounded
those who still believed that the haemochroma-
tosis gene would be found closer to HLA-A
than to D6S105 as it moved the map location
of the gene at least 3 Mb telomeric of the origi-
nal candidate search area.
As no positional candidate for the disease

had been identified and the cellular phenotype
was unknown, positional cloning was the most
profitable route to identifying the gene for
haemochromatosis. For this approach to prove
successful the region containing the gene
needed to be cloned and mapped in detail. One
of the main stumbling blocks in identifying the
haemochromatosis gene has been that the fur-
ther it mapped from the MHC the less was
known about markers and YAC clones for the
region. Feder et al,' from the biotechnology
company Mercator, began by generating a
YAC contig that spanned the region from
HLA-A to D6S276 (a microsatellite marker
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Standard approaches such as exon trapping
and cDNA selection were then applied to the
region of interest. To ensure comprehensive
identification of all genes, complete genomic
sequencing of the region was undertaken. This

------ 1976 region was gene rich as had been expected from
studies around the MHC."3 Three novel genes
with amino acid sequence similarities to

- 1993 Ro/SSA ribonucleoprotein, a sodium phos-
D6S276 phate transporter, and to HLA-A2 were found

- 1995 as well as 12 histone genes. In order to identify
the haemochromatosis gene the coding se-

1996 quence and intron/exon boundaries of all these
genes were analysed. A single base substitution

Tel in the MHC class I-like gene was compatible
H. with this being the causative mutation in

* haemochromatosis.
,o and close Did this mutation fulfil other criteria re-
ler to cover quired ofthe haemochromatosis gene? Analysis
he genetic ofDNA from all the other patients showed that
'276 is 1-2 this mutation indeed occurred on 85% of all
b, confirm- haemochromatosis bearing chromosomes and
region of in 3.2% of controls, which concurred with ear-

ject to low lier predictions of carrier frequency.
kCs in the
egion, it is The mutations
. candidate The mutation found was a G to A transition at
on (947f6) nucleotide 845 of the open reading frame and
zognised as results in a cysteine to tyrosine substitution at
|studied by amino acid 282. The frequency of this
(AC 947f6 mutation in patients is compelling evidence
tion of the that this class I-like gene is indeed the haemo-

chromatosis gene or one very closely linked to
it. A second variant was found elsewhere in the
molecule, a C to G change in exon 2 resulting
in a histidine to aspartic acid change at position

the region 63.
step was to This gene has been termed HLA-H suppos-
trial clones edly as it is similar to HLA class I genes.2 There
ie region to is already an HLA-H gene (OMIM 142925)
)lymorphic which maps between HLA-A and HLA-G so
ge disequi- this nomenclature is unacceptable. Hopefully
Ipreviously confirmation of this gene as being that respon-
,e genes for sible for haemochromatosis will lead to it being
myoclonic renamed HFE or HLA-HFE; HFE was
saturated assigned to the haemochromatosis gene before
point few its identification.
w markers Twenty one of the 178 patients studied by
f the gene. Mercator lacked the Cys282Tyr mutation on
microsatel- either chromosome and carried the His63Asp
lumber of variant at a frequency of 21 %, which was simi-
With these lar to the control chromosomes. Despite
inkage dis- further analysis by sequencing the individual
for Pexcessn a exons and exon/intron boundaries of the
was 0.81, HLA-H gene, neither additional mutations nor

Lse bearing any evidence of linkage disequilibrium were
:ation. The found, suggesting that a subset of patients
um value, either had haemochromatosis through a second
lomeric of locus unrelated to chromosome 6 or were spo-
previously radic cases.
19 and had This class I-like gene is certainly the best

s approach candidate to date. What is the function of this
Le Hardy- molecule in iron metabolism? This is not going
analysis of to be an easy question to answer. The gene
if the gene appears to be expressed at a low level in a
region. In number of tissues but functional studies are

Ld cell lines required to confirm that this is indeed the
mosome 6 haemochromatosis gene.
itting hap- The high degree of sequence similarity with

other class I molecules suggests structural
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homology. The crystal structures of several
class I molecules have now been determined
and extrapolation to HLA-H shows some
interesting features. Class I molecules interact
non-covalently with 02-microglobulin. The
groove formed by the a, and a2 domains is
responsible for peptide binding in class I mol-
ecules. This molecule differs from class I
proteins in that two of the four tyrosine
residues forming the classical class I groove are
missing and there is a proline side chain block-
ing one end of the groove. These features are
found in a related molecule, the Fc receptor
(hFcRn), which forms a heterodimer with
02-microglobulin and lacks a peptide binding
groove interacting with an altogether larger
molecule, IgG. The His63Asp mutation is pre-
dicted to occur in the a, domain and is
predicted to be located on the loop between the
third and fourth f3 strands of the peptide bind-
ing domain. There are four conserved cysteine
residues in class I molecules and the second
two form a disulphide bridge giving rise to the
Ig like a3 domain which interacts with f2-
microglobulin. The common Cys282Tyr mu-
tation loses one of the these conserved residues
and is predicted to inactivate the protein by
preventing correct folding of the a3 domain and
hence interfering with its interaction with
02-microglobulin, if it does interact with this
protein. 02-microglobulin deficient mice dis-
play a progressive iron overload,24 although the
mechanism by which this occurs has not been
defined. These mice have been proposed as an
animal model for GH.2'

Various hypotheses are put forward by Feder
et ar to explain how this MHC class I-like mol-
ecule could contribute to iron loading. These
include HLA-H acting as an iron binding
ligand, a role in signal transduction by sensing
plasma iron levels, or an indirect mechanism
through association with components of the
immune system which might influence iron
metabolism. None is any more than specula-
tive.

Implications
What is important from this work is that the
Cys282Tyr mutation is by far the best marker
for chromosomes bearing the haemochromato-
sis gene. The clinical implications are that there
is now a straightforward way of identifying
patients at risk for this common and widely
underdiagnosed genetic disease. Treatment by
venesection is safe and of proven benefit in
preventing development of the disease before
the secondary end organ damage. The develop-
ment of a test to screen the adult population for
haemochromatosis will prove a major advance
in public health care.

It is instructive to note that once a tight link-
age has been established by academic research,
biotechnology companies have the resources
rapidly to identify the disease causing gene.

Why has the gene been so elusive?
The initial tight linkage to the MHC was a
major breakthrough in the days before in-
formative DNA markers. What had not been

predicted was the extent of the linkage disequi-
librium telomeric to the MHC. Lack of
chromosomal recombinations and breakpoints
forced a reliance on linkage disequilibrium
studies. There is clearly suppression of recom-
bination in this region. The accepted genome
wide conversion factor assumes that 1 Mb is
equivalent to approximately 1 cM. However,
for this region of chromosome 6, markers that
appear to be 1 cM apart are separated by a
physical distance of 6 Mb. This has also meant
that although there appeared to be a number of
Genethon markers that mapped to the region
these were not all physically close to each other.
This was also confounded by the fact that the
region containing this HLA-H gene was greatly
under represented in the YAC libraries and
absent in the public YAC map databases.
Mercator are to be congratulated on a such a

thorough piece of work. Functional studies
confirming that this MHC class I-like gene is
indeed the much sought after haemochromato-
sis gene are now awaited.
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