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1 Computational details

1.1 RPMD rate theory

The RPMD approximation to the rate constant, k, is defined via the flux–side correlation
function:

Cfs(t) =
1

(2πℏ)Nf

∫∫
dNfp dNfq e−βNHN (p,q) F (p,q) θ[s(q(t))], (S1)

where N is the number of ring-polymer beads, β = 1/kBT is the inverse temperature,
βN = β/N , f is the number of physical degrees of freedom, θ(·) is the Heaviside step function,
and s(q) defines the dividing surface; in this work, we use a dividing surface based on the
centroid of the ring polymer,

∑
i qi/N . Note that q(t) in Eq. S1 is obtained by classically

evolving q forward in time according to Hamilton’s equations of motion generated by the
N -bead ring-polymer Hamiltonian,

HN(p,q) =
N∑
i=1

[
p2
i

2m
+

m

2β2
Nℏ2

(qi − qi+1)
2 + V (qi)

]
. (S2)
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The flux through the dividing surface is given by

F (p,q) = θ̇[s(q)] = δ[s(q)]
N∑
i=1

f∑
ν=1

∂s(q)

∂qi,ν

pi,ν
m

. (S3)

Using this, we can calculate the rate constant by converging the expression of the rate:1

k = lim
t→∞

Q−1
r Cfs(t)

1− (Q−1
r +Q−1

p )
∫ t

0
dτ Cfs(τ)

. (S4)

In practice, the t → ∞ limit means that one needs to run the simulation for long enough
such that the right-hand side of Eq. S4 reaches a plateau, i.e. does not change considerably
when further increasing the length of the simulation. Finally, Qr and Qp are the reactant
and product partition functions, defined by

Qr =
1

(2πℏ)Nf

∫∫
dNfp dNfq e−βNHN (p,q) θ[−s(q)],

Qp =
1

(2πℏ)Nf

∫∫
dNfp dNfq e−βNHN (p,q) θ[s(q)].

(S5)

For the symmetric systems we study in this work, Qr = Qp.
The RPMD rate constant is obtained in the N → ∞ limit, whereas for N = 1, the above

equations reduce to classical rate theory.

1.2 Explicit and implicit baths

In our system we have two harmonic baths, which are characterized by their spectral densi-
ties. Within RPMD, we face a choice as to how to treat the bath degrees of freedom.

Explicit bath The most straightforward option is to discretize the bath into a finite set
of harmonic oscillators. One then converges the rate constant not only with the number of
ring-polymer beads, but also with the number of bath modes. This however comes with a
number of disadvantages, one being that a large number of modes are needed, which increases
the computational cost considerably. Additionally, including more bath modes also implies
that the difference in time scale between the slowest and fastest modes grows, which in
turn results in the need for shorter time steps (for the high-frequency modes) and longer
simulation times (for the low-frequency modes). In this work, we used 500 modes for each
bath with the discretization scheme described in Ref. 2. To ensure stable integration of
high-frequency modes, we used a Cayley integration algorithm in the normal modes of all
harmonic degrees of freedom, as described in Appendix A of Ref. 3. The dividing surface
was chosen such that it is perpendicular to the unstable mode at the transition state.

Implicit bath It is possible to analytically integrate out the bath degrees of freedom
within the ring-polymer framework. This procedure is outlined in the Appendix of Ref. 4.
Static effects of the bath are captured by an effective ring-polymer Hamiltonian in the phase
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space of the system only, with the bath having the effect of making the ring-polymer springs
stiffer. Dynamic friction effects are captured by a Generalized Langevin Equation (GLE).

For an Ohmic bath, we can evaluate the GLE friction kernel analytically. However, as
integrating the GLE is still very expensive, we choose to approximate the friction kernel by
its Markovian short- and long-time limits. If simulations in both of these limits give identical
results, which is usually the case, we can infer that the dynamical friction on the internal
modes of the ring polymer does not play an important role, and thereby avoid having to
integrate the GLE.

For describing a Debye bath, we can avoid evaluation of the friction kernel altogether
by noticing that: 1) by coupling the system to a harmonic oscillator, and this harmonic
oscillator in turn to an Ohmic bath, we have effectively coupled the system to a Brownian
oscillator; and 2) in the limit of an overdamped oscillator, the Brownian oscillator spectral
density reduces to a Debye spectral density.5 Hence, by tuning the frequency of the added
harmonic oscillator and the Ohmic friction (which we already know how to treat implicitly),
we can mimic the behavior of a specific Debye bath. This approach is illustrated in Figure S1.

Figure S1: Schematic diagram of the relation between a Debye bath, a Brownian bath, and
an extra system harmonic oscillator coupled to an Ohmic bath. Here it is illustrated for the
cavity mode and its bath, but the same procedure holds for the matter part of the system.
For further details, see e.g. Refs. 4 and 5.

We found that for describing the Debye bath coupled to the molecular coordinate JR(ω),
a harmonic oscillator with Ω = 2000 cm−1 coupled to an Ohmic bath with γ = 20 000 cm−1

is sufficient. For the Debye bath coupled to the cavity mode JL(ω), we need to go to
γ = 100 000 cm−1, turning the harmonic oscillator’s frequency up to Ω = 10 000 cm−1. Due
to this large frequency, we would require a much smaller time step, making the simulations
more expensive. As the calculations in the low-friction regime are already very demanding,
we opted for replacing the Debye bath entirely with its Ohmic equivalent (via Eq. (6) of the
main text). Results supporting this replacement are presented in Section 2.

For the implicit-bath calculations, we choose the dividing surface to be in the double-well
coordinate R only, i.e. s(q) =

∑
i Ri/N . We evaluated Cfs(t) using the Bennett-Chandler

approach.6,7
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Types of bath used for the figures in the main text In this study, we used both of
the approaches outlined above, as each performs well in a different regime.

For the Kramers curve for system I (Figure 1c of the main text), the implicit-bath
approach is more computationally efficient in the low-friction regime. We therefore used this
method for all calculations shown in Figure 2. For the higher friction values in Figure 1c,
approximating the friction kernel by its two limits gives slightly different results; importantly,
when taking the long-time limit of the friction kernel, Eq. S4 does not plateau, so the rate
constant becomes ill-defined with this method. Fortunately, in this regime the explicit-
bath approach becomes cheaper, so we calculated the Kramers curve in Figure 1c using this
method. Note that both approaches agree for the lower friction values in this figure, where
we deem our approximation to the friction kernel to be valid.

For the Kramers curve for system II (Figure 3b), we found that our approximation to the
friction kernel remains valid for all frictions shown, the implicit- and explicit-bath methods
give the same curve. For the cavity-modified rates in Figure 3c, we employed the implicit-
bath approach, as it has one fewer convergence parameters (the number of bath modes).

These details are summarized in Table 1. Additionally, the most important parameters
used for converging the transmission coefficient are given in Table 2.

Table 1: Summary of the types of baths used for each of the Figures in the main text.

bath treatment double-well bath cavity-mode bath

Figure 1c explicit∗ Debye Debye
Figure 2 implicit Debye† Ohmic
Figure 3b implicit Debye† Ohmic
Figure 3c implicit Debye† Ohmic

∗ It is only in this case that one needs to use an explicit bath, as the implicit-bath method
breaks down; for all of the other Figures, both approaches yield the same valid results.
† For the calculations performed with an implicit bath, the Debye spectral density was
effectively constructed by coupling the system to an extra oscillator, which in turn
experiences Ohmic friction, as described in Figure S1.

Table 2: Summary of the most important convergence parameters used (number of beads N ,
and the simulation time T , time step dt and number of trajectories n used for the calculation
of the transmission coefficient).

N T (fs) dt (fs) n

Figure 1c 32 1000 0.5 1× 106

Figure 2 512 6000 0.025 4× 105

Figure 3b 64 4500 0.015 3× 105

Figure 3c 64 4500 0.015 2.25× 105
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2 The spectral density of the cavity mode bath: Debye vs.
Ohmic

As noted in the main text, we replaced the Debye spectral density for the cavity mode used
for the HEOM calculations8 with an Ohmic spectral density, to make the computational
costs more tractable. In the following, we justify this by showing that even for the strongest
coupling between the cavity mode and its bath, this replacement does not change our results
within the error bars. This is shown in Figure S2 for τc = 100 fs, ηs = 0.1ωb and η = 0.00125
for system I (c.f. Figure 2 of the main text). Both classically and within RPMD, the
results for a Debye bath agree well with those for an Ohmic bath, although due to the high
computational cost, fewer trajectories were run such that the error bars on the RPMD results
with the Debye bath remain rather large.
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Figure S2: Comparison of the cavity-induced rate modification for the cavity coupled to an
Ohmic bath vs. a Debye bath.
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