# **Supporting information**

# Highly Active and Durable Rh–Mo-Based Catalyst for the NO–CO–C<sub>3</sub>H<sub>6</sub>–O<sub>2</sub> Reaction Prepared by Using Hybrid Clustering

Shun Hayashi<sup>†,</sup>\*, Shinji Endo<sup>‡</sup>, Hiroki Miura<sup>‡,§,∥</sup>, Tetsuya Shishido<sup>‡,§,∥,</sup>\*

<sup>†</sup>Division of Physical Sciences, Department of Science and Engineering, National Museum of Nature and Science, Ibaraki 305–0005, Japan

<sup>‡</sup>Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192–0397, Japan

<sup>§</sup>Research Center for Hydrogen Energy–Based Society, Tokyo Metropolitan University, Tokyo 192–0397, Japan

"Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto 615-8520, Japan

E-mail: s-hayashi@kahaku.go.jp (SH); shishido-tetsuya@tmu.ac.jp (TS)

## **List of Figures**

S1. (a) FT-IR and (b)  $^{1}$ H and (c)  $^{13}C{^{1}H}$  NMR spectra of [(RhCp\*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>].

S2. (a) FT-IR and (b)  ${}^{1}$ H and (c)  ${}^{13}C{}^{1}$ H NMR spectra of [(RhCp\*)\_4V\_6O\_{19}].

S3. Rh K-edge (a) EXAFS and (b) FT-EXAFS spectra of (i) Rh<sub>4</sub>Mo<sub>4</sub>/Al<sub>2</sub>O<sub>3</sub>, (ii) Rh-Mo/Al<sub>2</sub>O<sub>3</sub>, and (iii) [(RhCp\*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>].

S4. DRIFT spectra of adsorbed CO species on (a) Rh<sub>4</sub>Mo<sub>4</sub>/Al<sub>2</sub>O<sub>3</sub> and (b) Rh-Mo/Al<sub>2</sub>O<sub>3</sub>.

S5. Conversions of NO to  $N_2$ ,  $C_3H_6$  to  $CO_2$ , and CO to  $CO_2$  in the NO-CO- $C_3H_6$ - $O_2$  reaction over (a)  $Rh_4Mo_4/Al_2O_3$ , (b)  $Rh-Mo/Al_2O$ , and (c)  $Rh/Al_2O_3$ .

S6. Conversions of NO to  $N_2$ ,  $C_3H_6$  to  $CO_2$ , and CO to  $CO_2$  in NO- $C_3H_6$ - $O_2$  and NO-CO- $C_3H_6$ - $O_2$  over  $Rh_4Mo_4/Al_2O_3$ .

S7. DRIFT spectra of adsorbed species in a flow of NO on (i)  $Rh_4Mo_4/Al_2O_3$  and (ii)  $Rh_Mo/Al_2O_3$ .

### **List of Tables**

- S1. IR bands of adsorbed CO species
- S2. Amount of CO<sub>2</sub> generated under CO/He flow.
- S3. Loading amounts of Rh and Mo estimated from ICP-MS analysis.

1. Chemicals. (Pentamethylcyclopentadienyl)Rhodium(III) dichloride dimer was purchased from TCI. Rhodium(III) chloride, ammonium molybdate(VI) tetrahydrate, disodium molybdate(VI) dihydrate, and ammonium metavanadate were purchased from Wako Chemicals. Sodium metavanadate was obtained from Nacalai Tesque.  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (Sumitomo Chemical, AKP-G015; JRC-ALO-8 equivalent) was supplied by the Catalysis Society of Japan. Before use,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> was calcined under air flow at 773 K for 3 h. Deionized water (Milli-Q, >18 M $\Omega$  cm) was used in all experiments.

2. Synthesis of hybrid clusters. [(RhCp\*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] was synthesized as per a literature procedure.<sup>S1</sup> Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O (1.58 g, 6.53 mmol) was dissolved in water (6.4 mL), and [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (400 mg, 0.653 mmol) was added. The mixture was then stirred for 4 h at room temperature. After the reaction, the mixture was concentrated by using a rotary evaporator and the product was extracted with dichloromethane (DCM). The DCM layer was washed with water, and the crude product was obtained by evaporating the solvent. The purified product was obtained via recrystallization from DCM/toluene. IR (KBr pellet, cm<sup>-1</sup>): 924, 899, 683, 635, 576, 536. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 1.75 (s). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  9.13 (s), 90.35 (d, *J*<sub>C-Rh</sub> = 9.5 Hz).

[(RhCp\*)<sub>4</sub>V<sub>6</sub>O<sub>19</sub>] was synthesized according to a literature procedure.<sup>S2</sup> NaVO<sub>3</sub> (800 mg, 6.56 mmol) was added to water (20 mL) and stirred for 2 h for complete dissolution. [RhCp\*Cl<sub>2</sub>]<sub>2</sub> (400 mg, 0.653 mmol) was then added, and the mixture was stirred for 4 h at room temperature. After the reaction, the mixture was concentrated by using a rotary evaporator and the product was extracted with DCM. The DCM layer was washed with water, and the crude product was obtained by evaporating the solvent. The purified product was obtained via recrystallization from DCM/toluene.

IR (KBr pellet, cm<sup>-1</sup>): 935, 683, 557, 488. <sup>1</sup>H NMR (CDCl<sub>3</sub>): 1.94 (s). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  9.39 (s), 94.17 (d,  $J_{C-Rh} = 8.6$  Hz).



Figure S1. (a) FT-IR and (b)  $^{1}$ H and (c)  $^{13}C{^{1}H}$  NMR spectra of [(RhCp\*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>].



Figure S2. (a) FT-IR and (b)  ${}^{1}$ H and (c)  ${}^{13}C{}^{1}$ H} NMR spectra of [(RhCp\*)\_4V\_6O\_{19}].



Figure S3. Rh K-edge (a) EXAFS and (b) FT-EXAFS spectra of (i) Rh<sub>4</sub>Mo<sub>4</sub>/Al<sub>2</sub>O<sub>3</sub>, (ii) Rh-Mo/Al<sub>2</sub>O<sub>3</sub>, and (iii) [(RhCp\*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>].



Figure S4. DRIFT spectra of adsorbed CO species on (a)  $Rh_4Mo_4/Al_2O_3$  and (b)  $Rh-Mo/Al_2O_3$ . The spectrum was curve-fitted by applying two Voigt functions with a linear background.

| Table S1. IR bands | of adsorbed | CO species. <sup><math>a</math></sup> |
|--------------------|-------------|---------------------------------------|
|--------------------|-------------|---------------------------------------|

| Catalyst                             | $v_{\rm s}$ /cm <sup>-1</sup> | $v_{\rm a}/{ m cm}^{-1}$ | $v_{ m bridged}$ / $ m cm^{-1}$ | $A_{\rm as}/A_{\rm s}$ | 2α /° |
|--------------------------------------|-------------------------------|--------------------------|---------------------------------|------------------------|-------|
| Rh4Mo4/Al2O3                         | 2096                          | 2026                     | _                               | 0.97                   | 89    |
| Rh-Mo/Al <sub>2</sub> O <sub>3</sub> | 2094                          | 2019                     | 1849                            | 2.18                   | 112   |
| _                                    |                               |                          |                                 |                        |       |

 $a \tan^2 \alpha = A_{\rm as}/A_{\rm s}$ 





Figure S5. Conversions of NO to  $N_2$  (red),  $C_3H_6$  to  $CO_2$  (blue), and CO to  $CO_2$  (green) in the NO-CO- $C_3H_6$ - $O_2$  reaction over (a)  $Rh_4Mo_4/Al_2O_3$ , (b) Rh- $Mo/Al_2O$ , and (c)  $Rh/Al_2O_3$ .



Figure S6. Conversions of NO to  $N_2$  (red),  $C_3H_6$  to  $CO_2$  (blue), and CO to  $CO_2$  (green) in NO- $C_3H_6$ - $O_2$  (solid line) and NO-CO- $C_3H_6$ - $O_2$  (dotted line) over Rh<sub>4</sub>Mo<sub>4</sub>/Al<sub>2</sub>O<sub>3</sub>.

| Catalyst                             | Temp. /K | <i>n</i> <sub>CO2</sub> /µmol | $n_{\rm CO2}/n_{\rm Rh}$ |
|--------------------------------------|----------|-------------------------------|--------------------------|
| Rh4Mo4/Al2O3                         | 473      | 2.56                          | 0.13                     |
|                                      | 573      | 49.4                          | 2.54                     |
| Rh-Mo/Al <sub>2</sub> O <sub>3</sub> | 473      | -                             | _                        |
|                                      | 573      | 3.67                          | 0.19                     |
| Rh/Al <sub>2</sub> O <sub>3</sub>    | 473      | -                             | _                        |
|                                      | 573      | 4.04                          | 0.21                     |

Table S2. Amount of  $CO_2$  generated under CO/He flow.



Figure S7. DRIFT spectra of adsorbed species in a flow of NO on (i)  $Rh_4Mo_4/Al_2O_3$  and (ii)  $Rh_4Mo_4/Al_2O_3$  and (ii)  $Rh_4Mo_4/Al_2O_3$ . Gas composition: NO (1000 ppm) balanced with He.

| Catalyst                                                        | Calcd. (wt%) |      | As-prepa | As-prepared (wt%) |      | After aging <sup>a</sup> (wt%) |  |
|-----------------------------------------------------------------|--------------|------|----------|-------------------|------|--------------------------------|--|
|                                                                 | Rh           | Mo   | Rh       | Мо                | Rh   | Мо                             |  |
| Rh <sub>4</sub> Mo <sub>4</sub> /Al <sub>2</sub> O <sub>3</sub> | 1.00         | 0.93 | 0.94     | 0.92              | 1.03 | 1.00                           |  |
| Rh-Mo/Al <sub>2</sub> O <sub>3</sub>                            | 1.00         | 0.93 | 0.91     | 0.96              | 1.01 | 1.06                           |  |

Table S3. Loading amounts of Rh and Mo estimated from ICP-MS analysis.

<sup>*a*</sup>1273 K, 5 h, air

#### References

S1. Hayashi, Y.; Toriumi, K.; Isobe, K. Novel Triple Cubane–Type Organometallic Oxide Clusters:  $[MCp*MoO_4]_4 \cdot nH_2O$  (M = Rh and Ir; Cp\* = C<sub>5</sub>Me<sub>5</sub>; n = 2 for Rh and 0 for Ir). *J. Am. Chem. Soc.* **1988**, *110*, 3666–3668.

S2. Hayashi, Y.; Ozawa, Y.; Isobe, K. Site–Selective Oxygen Exchange and Substitution of Organometallic Groups in an Amphiphilic Quadruple–Cubane–Type Cluster. Synthesis and Molecular Structure of  $[(MCp^*)_4V_6O_{19}]$  (M = Rh, Ir). *Inorg. Chem.* **1991**, *30*, 1025–1033.