SUPPORTING INFORMATION

Discovery and In Vitro Characterization of SPL028: Deuterated N,N-Dimethyltryptamine

Marie Layzell^{*},¹ Peter Rands,¹ Meghan Good,¹ Zelah Joel,¹ Rick Cousins,² Tiffanie Benway,¹ Ellen James,¹ Carol Routledge¹

¹Small Pharma., 50 Featherstone Street, London, EC1Y 8RT

²Cinnabar Consulting Ltd., 43 Pedley Lane, Clifton, Beds SG17 5QT, UK

TABLE OF CONTENTS

S1.	Chemistry, Experimental Information	3
S2.	In Vitro Studies, Experimental Information	12
S3.	¹ H-NMR data for test compounds 7, 9i-9vi, 12 and 14	17
S4.	HPLC data for test compounds 7, 9i-9vi, 12 and 14.	26
S5.	Table S1: Mean In Vitro Percent Inhibition with 10 µM 9i	35
S6:	Table S2. In Vitro Receptor, Transporter and Ion Channel Binding Assays	41
S7.	Table S3: In Vitro Enzyme Inhibition Assays	69

Throughout the testing process, no unexpected or unusually high safety hazards were encountered. Continue to adhere to standard safety protocols for a safe working environment.

S1. Chemistry, Experimental Information

General Synthetic Methods. Reagents and solvents were obtained from commercial suppliers and used without further purification. Organic solutions were concentrated under reduced pressure on a rotary evaporator using a water bath. All new compounds gave satisfactory ¹H NMR, HPLC and LC/MS results. All final compounds have an HPLC purity of \geq 95%. HPLC analyses were performed using the following conditions on Agilent 1100/1200 series liquid chromatograph or equivalent:

Analytical HPLC Method A

Column: Triart Phenyl 3.0 μ m, 4.6 × 150 mm. Mobile phase: A = Deionised H₂O:TFA (100:0.05); B = Acetonitrile:TFA (100:0.05). Gradient: T = 0, 95% solvent A, 5% solvent B; T = 13 min, 62% solvent A, 38% solvent B; T = 26 min, 5% solvent A, 95% solvent B; T = 30.5 min, 5% solvent A, 95% solvent B; T = 31 min, 95% solvent A, 5% solvent B; stop time, 31 min. Flow = 1.0 mL/min. UV 220 nm.

Analytical HPLC Method B

Column: Acquity BEH Phenyl 4.6 x 30 mm; 1.7 μ m particle size. Mobile phase: A = Deionised H₂O:TFA (100:0.03); B = Acetonitrile:TFA (100:0.03). Gradient: T = 0, 95% solvent A, 5% solvent B; T = 5 min, 95% solvent A, 5% solvent B; T = 15 min, 5% solvent A, 95% solvent B; T = 16.5 min, 95% solvent A, 5% solvent B; stop time, 17 min. Flow = 2.0 mL/min. UV 220 nm.

Analytical HPLC-MS

HPLC: Column: Triart Phenyl 3.0 μ m, 4.6 × 150 mm. Mobile phase: A = Deionised H₂O:TFA (100:0.05); B = Acetonitrile:TFA (100:0.05). Gradient: T = 0, 95% solvent A, 5% solvent B; T = 13 min, 62% solvent A, 38% solvent B; T = 26 min, 5% solvent A, 95% solvent B; T = 30.5 min, 5% solvent A, 95% solvent B; T = 31 min, 95% solvent A, 5% solvent B; stop time, 31 min. Flow = 1.0 mL/min. UV 220 nm.

Mass Spectrometry: System: Agilent 6100 series Quadrupole LC-MS or equivalent. Drying gas flow: 12.0 L/min. Drying gas temp: 350°C. Nebulizer pressure: 35 psig. Fragmentor: 110V. Gain: 1.0.

¹H Nuclear magnetic resonance (NMR) spectra were recorded on a Jeol AS400 spectrometer (399.78 MHz), except for **9i** which was recorded on a Bruker Avance Neo spectrometer (400.13 MHz). All spectra were recorded at room temperature. Chemical shifts are reported in ppm relative to deuterated solvent as an internal standard (δ_H DMSO-d₆ 2.50 ppm, δ_H chloroform-d 7.26 ppm,) with the following convention for describing multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad signal, dd = doublet of doublets, etc.).

Indole-3-(*N*,*N*-dimethyl)-acetamide (6). To a 5 L vessel under nitrogen was charged indole-3-acetic acid (4) (1 equiv, 1.467 mol), 1hydroxybenzotriazole (~20% wet) (1.2 eq, 1.760mol) and dichloromethane (DCM) (2313mL) to give a milky white suspension. N-Ethyl-N'-(3dimethylaminopropyl)carbodiimide hydrochloride (1.2 eq, 1.760 mol) was then charged portion-wise over 5 min at 16–22°C. The reaction mixture was stirred for 2 hours at ambient temperature before 2M dimethylamine in THF (1.5 eq, 2.200mol) was charged dropwise over 20 minutes at 20–30°C. The resultant solution was stirred at ambient temperature for 1 hour where HPLC Method A indicated 1.1% indole-3-acetic acid (4) remained and 98.1% of Indole-3-(*N*,*N*-dimethyl)-acetamide (6). The reaction mixture was then charged with 10% K₂CO₃ (1285 mL) and stirred for 5 min. The layers were separated, and the upper aqueous layer extracted with DCM (643 mL x 2). The organic extracts were combined and washed with saturated brine (643 mL). The organic extracts were then dried over MgSO₄, filtered and concentrated in vacuo at 45°C. This provided 303.1 g of crude Indole-3-(*N*,*N*-dimethyl)-acetamide (6) as an off-white sticky solid. The crude material was then subjected to a slurry in tert-butyl methyl ether (TBME) (2570 mL) at 50°C for 2 hours before being cooled to ambient temperature, filtered and washed with TBME (514mL x 2). The filter cake was then dried in vacuo at 50°C to afford Indole-3-(*N*,*N*-dimethyl)-acetamide (6) as an off-white solid; yield 90% (266.2 g, 2.81 mol). ¹H NMR (399.78 MHz, [D₁]CHCl₃): δ = 8.82 (br s, 1H), 7.64 (d, *J* = 8 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.12 (d, *J* = 7.2 Hz, 1H), 6.96 (s, 1H), 3.83 (s, 2H), 2.99-3.00 (2 x s, 6H). HPLC method A: retention time = 13.97 min; peak area, 98.5%.

3-(3-Methylbutyl)-1H-indole or *N*,*N*-**Dimethyltryptamine (1).** To a 5L vessel under nitrogen was charged **indole-3-(***N*,*N*-**dimethyl)-acetamide (6)** (272.5 g, 1.347 mol) and THF (1363 mL) to give an off-white suspension. 2 M LiAlH₄ in THF (505.3 mL, 1.213 mol) was then charged dropwise over 35 minutes at 20–56°C to give an amber solution. The solution was heated to 60°C for 2 hours where HPLC Method A indicated **indole-3-(***N*,*N*-**dimethyl)-acetamide (6)** not detected, product 92.5%, impurity 1 2.6%, and impurity 2 1.9%. The complete reaction mixture was cooled to ambient temperature and then charged to a solution of 25% Rochelle's salts (aq) (2725 mL) dropwise over 30 minutes at 20–30°C. The resultant milky white suspension was allowed to stir at 20-25°C for 1 hour after which the layers were separated and the upper organic layer washed with saturated brine (681 mL). The organic layer was then dried over MgSO₄, filtered and concentrated in vacuo at 45°C.

The resultant crude oil was subjected to an azeotrope from EtOH (545 mL x 2). This afforded the title product as an oil: yield 92% (234.6 g, 1.24 mol). ¹H NMR (399.78 MHz, [D₁]CHCl₃): δ = 8.17 (br s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.02 (s, 1H), 2.97 (t, *J* = 8.4 Hz, 2H), 2.67 (t, *J* = 8.4 Hz, 2H), 2.37 (s, 6H). HPLC method A: retention time = 10.66 min; peak area, 95.0%.

3-(3-Methylbutyl)-1H-indole fumarate or *N*,*N*-**Dimethyltryptamine fumarate (7).** To a 5 L flange flask under nitrogen was charged fumaric acid (152.7 g 1.315 mol) and *N*,*N*-**Dimethyltryptamine (1)** (248.2 g, 1.315 mol) as a solution in EtOH (2928 mL). The mixture was heated to 75°C to give a dark brown solution. The solution was polish filtered into a preheated (80°C) 5 L jacketed vessel. The solution was then cooled to 70°C and seeded with Pattern A (0.1 wt%), the seed was allowed to mature for 30 min before cooling to 0°C at a rate of 5°C/hour. After stirring for an additional 4 hours at 0°C, the batch was filtered and washed with cold ethanol (496 mL x 2) and then dried at 50°C overnight. This afforded the title product as a crystalline beige-coloured solid; yield 78% (312.4 g, 1.02 mol). ¹H NMR (399.78 MHz, [D₆]DMSO): δ = 10.93 (br s, 1H), 7.58 (d, *J* = *8.0 Hz*, 1H), 7.35 (d, *J* = *8.0 Hz*, 1H), 7.19 (s, 1H), 7.08 (t, *J* = *8.0 Hz*, 1H), 6.99 (t, *J* = *7.6 Hz*, 1H), 6.54 (s, 2H), 3.02 (m, 4H), 2.63 (s, 6H). HPLC method A: retention time = 10.43 min; peak area, 100.0%

General Procedure for the Synthesis of Compounds 9i-9vi: To a 250 mL 3-neck flask under nitrogen was charged appropriate ratio of solid LiAlH₄ (1.013 g, 26.7 mmol), LiAlD₄ (1.120 g, 26.7 mmol) and THF (100 mL). The resultant suspension was stirred for 30 minutes before **6** (1 eq, 29.7 mmol) was charged portion-wise over 15 minutes at 20–40°C. The reaction mixture was then heated to reflux (66°C) for 2 hours where HPLC indicated no starting material **6** remained. The mixture was cooled to 0°C and quenched with 25% Rochelle's salts (aq) (120 mL) over 30

min at $<30^{\circ}$ C. The resultant milky suspension was stirred for 1 hour and then allowed to separate. The lower aqueous layer was removed and the upper organic layer washed with saturated brine (30 mL). The organics were then dried over MgSO₄, filtered and concentrated in vacuo. The crude was then taken up in EtOH (52 mL) and charged with fumaric acid (2.66 g, 22.917 mmol) before heating to 75°C. The resultant solution was allowed to cool to ambient temperature overnight before further cooling to 0–5°C for 1 hour. The solids were isolated by filtration and washed with cold EtOH (6.5 mL x 2). The filter cake was dried at 50°C overnight to provide target compounds **9i-vi**. ¹H NMR spectra, LCMS and HPLC chromatograms for compounds **9i-vi** in Figures S-S.

2-(1*H***-indol-3-yl)-***N***,***N***-dimethylethan-1-amine-1,1-***d***₂ fumarate (9i): LiAlH₄:LiAlD₄ ratio (0:1). Solid; yield 65% (5.3 g, 17.3 mmol); ¹H NMR (400 MHz, [D₆]DMSO): \delta = 12.96 (br s, 1H), 10.97 (br s, 1H), 7.56 (br d, J = 7.9 Hz, 1H), 7.34 (dt, J = 8.1, 1.0, 1.0 Hz, 1H), 7.18 (br d, J = 2.4 Hz, 1H), 7.07 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 6.98 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.53 (s, 2H), 2.95 (s, 2H), 2.55 (s, 6H). HPLC method A: retention time = 10.58 min; peak area = 99.3%. HPLC-MS analysis: retention time = 10.638 min, m/z = 191.1, peak area = 96.6%; retention time = 10.655 min, m/z = 190.1, peak area = 2.7%; retention time = 10.673 min, m/z = 189.1, peak area = 0.7%.**

2-(1*H***-indol-3-yl)-***N***,***N***-dimethylethan-1-amine-1,1-***d***₂ fumarate (9ii): LiAlH₄:LiAlD₄ ratio (1:1). Solid; yield 63% (5.7 g, 18.6 mmol); ¹H NMR (399.78 MHz, [D₆]DMSO): \delta = 10.92 (s, 1H), 7.57 (d, J = 7.3 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 2.5 Hz, 1H), 7.07 (td, J = 8.0, 0.9 Hz, 1H), 6.99 (td, J = 8.0, 0.9 Hz, 1H), 6.53 (s, 2H) 3.02 (m, 3H), 2.66 (m, 6H). HPLC method A: retention time = 10.60 min; peak area = 99.9%. HPLC-MS analysis: retention time = 10.650 min, m/z = 191.1, peak area = 21.7%; retention time = 10.660 min, m/z = 190.1, peak area = 48.3%; retention time = 10.678 min, m/z = 189.1, peak area = 30.0%.**

2-(1*H***-indol-3-yl)-***N***,***N***-dimethylethan-1-amine-1,1-***d***₂ fumarate (9iii): LiAlH₄:LiAlD₄ ratio (1:2). Solid; yield 52% (4.2 g, 13.7 mmol); ¹H NMR (399.78 MHz, [D₆]DMSO): \delta = 10.89 (br s, 2H), 7.56 (d, J = 7.8Hz, 1H), 7.34 (d, J = 8.2Hz, 1H), 7.18 (d, J = 2.3 Hz, 1H), 7.06 (td, J = 8.0, 0.9 Hz, 1H), 6.99 (td, J = 8.0, 0.9 Hz, 1H), 6.54 (s, 2H) 3.02 (m, 3H), 2.66 (m, 6H). HPLC method A: retention time = 10.58 min; peak area = 99.9%. HPLC-MS analysis: retention time = 10.650 min; m/z = 191.1, peak area = 36.8%; retention time = 10.660 min, m/z = 190.1, peak area = 46.8%; retention time = 10.678 min, m/z = 189.1, peak area = 16.5%.**

2-(1*H***-indol-3-yl)-***N***,***N***-dimethylethan-1-amine-1,1-***d***₂ fumarate (9iv): LiAlH₄:LiAlD₄ ratio (1:3). Solid; yield 68% (5.4 g, 17.6 mmol); ¹H NMR (399.78 MHz, [D₆]DMSO): \delta = 10.91 (br s, 1H), 7.56 (d,** *J* **= 7.8Hz, 1H), 7.34 (d,** *J* **= 8.2Hz, 1H), 7.19 (d,** *J* **= 2.3 Hz, 1H), 7.06 (td,** *J* **= 8.0, 0.9 Hz, 1H), 6.99 (td,** *J* **= 8.0, 0.9 Hz, 1H), 6.54 (s, 2H) 3.02 (s, 2.7H), 2.66 (s, 6H). HPLC method A: retention time = 10.59 min; peak area = 99.8%. HPLC-MS analysis: retention time = 10.637 min; m/z = 191.1; peak area = 49.2%: retention time = 10.649 min; m/z = 190.1; peak area = 41.5%: retention time = 10.670 min; m/z = 189.1; peak area = 9.3%.**

2-(1*H***-indol-3-yl)-***N***,***N***-dimethylethan-1-amine-1,1-***d***₂ fumarate (9v): LiAlH₄:LiAlD₄ ratio (0:1). Solid; yield 52% (4.2 g, 13.7 mmol); ¹H NMR (399.78 MHz, [D₆]DMSO): \delta = 10.92 (br s, 1H), 7.59 (d, J = 7.8Hz, 1H), 7.35 (d, J = 8.2Hz, 1H), 7.20 (d, J = 2.3 Hz, 1H), 7.08 (td, J = 8.0, 0.9 Hz, 1H), 6.99 (td, J = 8.0, 0.9 Hz, 1H), 6.54 (s, 2H) 3.02 (s, 3.6H), 2.66 (s, 6H). HPLC method A: retention time = 10.59 min; peak area = 99.8%. HPLC-MS analysis: retention time = 10.644 min; m/z = 191.1; peak area = 11.2%: retention time = 10.651 min; m/z = 190.1; peak area = 41.3%: retention time = 10.664 min; m/z = 189.1; peak area = 47.5%.**

2-(1*H***-indol-3-yl)-***N***,***N***-dimethylethan-1-amine-1,1-***d***₂ fumarate (9vi): LiAlH₄:LiAlD₄ ratio (0:1). Solid; yield 62% (5.0 g, 16.3 mmol); ¹H NMR (399.78 MHz, [D₆]DMSO): \delta = 10.94 (br s, 1H), 7.59 (d, J = 7.8Hz, 1H), 7.35 (d, J = 8.2Hz, 1H), 7.20 (d, J = 2.3 Hz, 1H), 7.08 (td, J = 8.0, 0.9 Hz, 1H), 6.99 (td, J = 8.0, 0.9 Hz, 1H), 6.54 (s, 2H) 3.02 (m, 3.5H), 2.66 (s, 6H). HPLC method A: retention time = 10.58 min; peak area = 99.4%. HPLC-MS analysis: retention time = 10.633 min, m/z = 191.1, peak area = 7.4%; retention time = 10.640 min, m/z = 190.1, peak area = 35.3%; retention time = 10.654 min, m/z = 189.1, peak area = 57.4%.**

2-(1H-Indol-3-yl)-*N*,*N*-**bis(methyl-d₃)acetamide (10):** EDC.HCl (15.7 g, 81.90 mmol) was added to 3-indoleacetic acid **4** (12.0 g, 68.50 mmol) and HOBt.H₂O (1.16 g, 75.75 mmol) in DCM (108 mL) at room temperature. The reaction was stirred for 1 hour after which DIPEA (35.6 mL, 205.75 mmol) and D₆-dimethylamine HCl (9.0 g, 102.76 mmol) were added (temperature maintained below 30°C). The reaction was stirred for 1 hour at room temperature after which analysis by HPLC indicated 65.6% of **10** with 28.9% of **4** remaining. DIPEA (11.9 mL, 68.78 mmol) was added and the reaction was stirred for 1 hour at room temperature. HPLC indicated no change in conversion. Aqueous potassium carbonate (6.0 g in 54 mL water) was added and the phases were separated. The aqueous phase was extracted with DCM (2 x 30 mL). The combined organics were washed with brine (2 x 30 mL) then aqueous citric acid (20 w/w%, 50 mL), dried over MgSO₄ and filtered. The filtrate was stripped and the resulting solids were slurried in TBME (120 mL) and isolated by filtration. Purification by flash column chromatography yielded the title compound. Solid; yield 58% (8.34 g, 40.4 mmol).¹H NMR (399.78 MHz, [D₁]CHCl₃): $\delta = 8.53$ (br s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.19 (dt, J = 1.2, 7.6 Hz, 1H), 7.13 (dt, J = 1.2, 8.0 Hz 1H), 7.02 (d, J = 2.4 Hz, 1H), 3.83 (s, 2H). HPLC method B: retention time = 7.04 min; peak area = 98.4%.

2-(1H-indol-3-yl)-*N*,*N***-bis(methyl-d3)ethan-1-amine (11):** LiAlH₄ (1 M in THF, 17.3 mL, 17.28 mmol) was added to a suspension of **9** (4.0 g, 19.20 mmol) in THF (10 mL) at <30°C. The resulting reaction was heated to 60–65°C and stirred for 2 hours. HPLC analysis indicated complete consumption of **9**. The reaction was cooled to room temperature and quenched into aqueous Rochelle's salts (10 g in 30 mL water) at <30°C. After stirring for 1 hour, the phases were separated. The aqueous was extracted with THF (20 mL). The combined organics were washed with brine (20 mL), dried over MgSO₄, filtered and stripped (azeotroped with ethanol, 20 mL) to afford **10**. ¹H NMR confirmed the identity of the title compound **11** and indicated 8.5% ethanol was present (no THF). Oil; yield 97% (3.63 g, 18.7 mmol). ¹H NMR (399.79 MHz, [D₁]CHCl₃): δ = 8.08 (br s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.20 (dt, *J* = 1.2, 8.0 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 1.6 Hz, 1H), 2.97 (t, *J* = 8.4 Hz, 2H), 2.66 (t, *J* = 8.0 Hz, 2H). HPLC method B: retention time = 2.55 min; peak area = 99.86%.

2-(1H-indol-3-yl)-*N*,*N***-bis(methyl-d3)ethan-1-amine fumarate (12): 11** (3.6 g active, 18.53 mmol) was dissolved in ethanol (43 mL) at room temperature. Fumaric acid (2.15 g, 18.53 mmol) was added and the solution was heated to 75°C (solids crystallized during heating and did not re-dissolve). The resulting suspension was cooled to 0–5°C and stirred for 1 hour. The solids were isolated by filtration, washed with ethanol (2 x 7 mL) and pulled dry. Further drying in a vacuum oven at 50°C yielded the desired title compound **12**. Solid; yield 87% (4.98 g, 16.6 mmol). ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 10.93$ (br s, 1H), 7.58 (d, *J* = *7.6 Hz*, 1H), 7.35 (d, *J* = *8..4 Hz*, 1H), 7.19 (d, *J* = *1.6 Hz*, 1H), 7.08 (dt, *J* = *1.2, 8.0 Hz*, 1H), 6.53 (s, 2H), 3.03 (m, 4H). HPLC method A: retention time = 10.29 min; peak area = 99.9%. HPLC-MS analysis: retention time = 10.307 min, m/z = 195.2, peak area = 98.9%; retention time = 10.316 min, m/z = 194.2, peak area = 1.0%; retention time = 10.322 min, m/z = 193.2, peak area = <0.01%.

2-(1H-Indol-3-yl)-*N*,*N*-**bis(methyl-d₃)ethan-1-amine-1,1-d₂ (13):** LiAlD₄ (1 M in THF, 17.3 mL, 17.28 mmol) was added to a suspension of **10** (4.0 g, 19.20 mmol) in THF (10 mL) at <30°C. The resulting reaction was heated to 60–65°C and stirred for 2 hours. HPLC analysis indicated complete consumption of **9**. The reaction was cooled to room temperature and quenched into aqueous Rochelle's salts (10 g in 30 mL water) at <30°C. After stirring for 1 hour, the phases were separated. The aqueous was extracted with THF (20 mL). The combined organics were washed with brine (20 mL), dried over MgSO₄, filtered and stripped (azeotroped with ethanol, 20 mL) to give the title compound **13**. Amber oil (4.01 g). ¹H NMR confirmed the identity of the product and indicated 8.6% ethanol was present (no THF). ¹H NMR (399.78 MHz, [D₁]CHCl₃): $\delta = 8.12$ (br s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.20 (dt, J = 1.2, 8.0 Hz, 1H), 7.13 (dt, J = 1.2, 8.0 Hz, 1H), 7.02 (d, J = 1.6 Hz, 1H), 2.95 (s, 2H). HPLC method B: retention time = 2.55 min; peak area = 91.4%.

2-(1H-Indol-3-yl)-*N*,*N*-bis(methyl-d₃)ethan-1-amine-1,1-d₂ fumarate (14): 13 (3.6 g active, 18.53 mmol) was dissolved in ethanol (43 mL) at room temperature. Fumaric acid (2.15 g, 18.53 mmol) was added and the solution was heated to 75°C (solids crystallized during heating and did not re-dissolve). The resulting suspension was cooled to 0–5°C and stirred for 1 hour. The solids were isolated by filtration, washed with ethanol (2 x 7 mL) and pulled dry. Further drying in a vacuum oven at 50°C yielded the title compound 14. Solid: 81%, (4.62 g, 14.8 mmol). ¹H NMR (399.78 MHz, [D₆]DMSO): $\delta = {}^{1}$ H NMR (400 MHz, [D₆]DMSO): $\delta = 10.93$ (br s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 2.4 Hz, 1H), 7.08 (dt, J = 1.2, 8.0 Hz, 1H), 6.99 (dt, J = 1.2, 8.0 Hz, 1H), 6.53 (s, 2H), 3.00 (s, 2H). HPLC method A: retention time = 10.29 min; peak area = 99.9%. HPLC-MS analysis: retention time = 10.302 min, m/z = 197.2, peak area = 96.6%; retention time = 10.317 min, m/z = 196.2, peak area = 3.3%; retention time = 10.342 min, m/z = 195.2, peak area = 0.1%.

S2. In Vitro Studies, Experimental Information

In vitro studies investigating metabolic stability and physicochemical properties were performed by Sygnature Discovery Ltd (Nottingham, UK). Receptor affinities were determined at Eurofins Panlabs Discovery Services, Taiwan, Ltd. (Taipei, Taiwan).

In vitro intrinsic clearance in whole hepatocytes and mitochondrial fractions of hepatocytes were used to screen all 8 deuterated DMT molecules. Human hepatocytes from 10 donors (male and female) were thawed in a water bath at 37°C and decanted into hepatocyte buffer solution (26.2 mM NaHCO₃, 9 mM HEPES, 2.2 mM D-fructose, Dulbecco's Modified Eagle Medium, in MilliQ purified water), which was centrifuged, the supernatant removed and resuspended in hepatocyte buffer solution at the final assay concentration (nominal 0.5 million cells/mL). **7** and deuterated DMT compounds, together with positive control stocks (diltiazem [CYP3A4 metabolism] and diclofenac [CYP2C9, CYP3A4 and glucuronidation metabolism]), were prepared at 10 mM in DMSO and diluted to 100 x the assay concentration in 9:1 acetonitrile:DMSO.

Hepatocytes were added to pre-warmed incubation tubes (37°C) together with compound stock solution (at 3.1 μ M freebase; 5 μ M fumarate), 0.9% (v/v) acetonitrile and 0.1% (v/v) DMSO to achieve a final count of 0.362 million viable cells/mL, shaken orbitally though the experiment. Aliquots were taken from the incubation tubes at 4, 8, 15, 30, 45, and 60 min and quenched 1:4 with ice-cold acidified methanol or acetonitrile-containing internal standard, before protein precipitation at –12 °C for a minimum of 12 hours before centrifugation at 4°C. Supernatants were transferred to 96-well plates for ultra-high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

MS peak areas were used to generate ln (MS response) vs time plots. Subsequent intrinsic clearance (μ L/min/million cells) and half-life ($t_{1/2}$, min) values were calculated using the following equations:

 $Half Life = \frac{\ln{(2)}}{k}$

 $Intrinsic clearance = \frac{-1000k}{cell density(\frac{millions}{mL})}$

k = slope of ln (MS peak response or area)vs. plot

Human liver mitochondrial fractions (XenoTech, Sekisui, mixed gender, 5-donor pool) were assayed using a similar methodology to the human hepatocyte experiments, with a final substrate concentration of 0.6 μ M (1 μ M fumarate) and liver mitochondrial concentration of 0.5 mg/mL.

Statistical analysis was performed using IBM SPSS Statistics v28.0. A simple linear regression was run to assess the effect of deuteration on half-life and clearance. Half-life and clearance in **9i** and **7** were compared using an independent two-sample t-test. Statistical significance was assumed at the 5% level.

Blood/plasma ratio was determined using fresh human blood and plasma samples from a donor panel aliquoted and pre-incubated at 37 °C for 5 min. **9i** (0.6 μ M freebase; 1 μ M fumarate), 7 (0.6 μ M freebase; 1 μ M fumarate), diclofenac (positive control, 5 μ M) and verapamil (positive control, 5 μ M) were prepared at 2 mM in DMSO, while chloroquine (positive control, 5 μ M) was prepared at 2 mM in water, before all were further diluted to 100 x the final assay concentration in methanol.

Stocks of **9i**, **7** and controls were separately spiked 1:100 into the blood and plasma samples, which were incubated at 37 °C for 30 min, with shaking for 15 sec at 15 and 30 min. After 30 min plasma samples were quenched 1:3 into ice-cold methanol-containing internal standard; blood samples were centrifuged, an aliquot of the plasma was taken and supernatant quenched 1:3 into ice-cold methanol-containing internal standard, before protein precipitation between the matrix-matched plasma samples at -12 °C for a minimum of 12 hours before centrifugation at 4 °C. Supernatants were transferred to 96-well plates for LC-MS/MS analysis.

Plasma protein binding was assayed using thawed pooled donor plasma, which was centrifuged, and the resulting supernatant decanted into a fresh vessel, with pH adjusted to 7.4 using lactic acid or NaOH. Stocks of **9i** and **7** were prepared at 10 mM in DMSO and further diluted to 100 x the assay concentration, which were then spiked 1:100 into the plasma samples to achieve a final concentration of 3.2 μ M (5 μ M fumarate), except for **7** and **9i** which were prepared at 1 μ M (1.6 μ M fumarate) due to a technical error.

For each sample, 200 µL of the spiked plasma was added to the red compartment of a Rapid Equilibrium Dialysis (RED) plate (Thermo Fisher Scientific, UK) with 350 µL phosphate-buffered saline (PBS) added to the buffer compartment before sealing the RED plate with a breathable

lid and shaking on an orbital shaker in a 37 °C incubator at 5% CO₂ for 4 hours. A sample of the plasma/drug was taken and mixed with an equal volume of PBS, and a sample was taken from the buffer side and mixed with an equal volume of blank plasma before quenching 1:3 with ice-cold acetonitrile-containing internal standard. The matrix-matched quenched samples were mixed before protein precipitation at -12 °C for a minimum of 12 hours before centrifugation at 4 °C.

Supernatants were transferred to 96-well plates for LC-MS/MS analysis; values were derived for fraction of unbound and bound drug, together with recovery, following the preparation of matrix-matched standard curve and quality control samples to allow for quantification of the concentration in each sample.

The distribution coefficient log $D_{7.4}$ measures the partition of substances in octanol and aqueous solutions in a solution at pH 7.4, i.e., approximating that of blood. A 10 mM stock of **9i** and **7** diluted in DMSO were prepared together with 10 mM control markers (ketoconazole, propranolol and verapamil). These were added to incubation tubes together with octanol before shaking for 5 min; buffer was added, and the tubes were shaken for a further 90 min at room temperature. The tubes were then centrifuged at room temperature and samples taken from both octanol and buffer fractions, which were diluted to give similar responses on LC-MS/MS before being transferred to 96-well plates with methanol-containing internal standard prior to LC-MS/MS analysis.

Competitive binding of **9i** and **7** against specific radiolabelled probes was assessed at a fixed concentration of $6 \mu M$ (10 μM fumarate) using a standard panel of receptors, transporters, ion channels and enzymes, including those of particular interest (details in Tables S2 and S3). The

receptor/ion channel screening panel consisted of 92 receptors, including the Safety Screen 87 Panel, 5-HT₇, 5-HT₆, 5-HT_{5A}, α_{2C} and σ_1 receptors. The 5-HT_{2D}, mGluR₂ and imidazoline I₂ receptor were not tested as they were not available at the time of assay. *In vitro* inhibition of several enzymes by **9i** and **7** was assessed, including MAO-A and MAO-B, sodium/potassium ATPase, acetylcholinesterase, cyclo-oxygenase (COX-1 and COX-2), angiotensin converting enzyme (ACE), cathepsin G, phosphodiesterases (3A and 4D2), serine/threonine protein kinase PKC α , insulin receptor protein kinase and lymphocyte-specific protein tyrosine kinase (Supplementary Table 2). Effects of **9i** and **7** on enzyme activity were measured using spectrophotometric quantitation.

 IC_{50}/K_i values were subsequently determined for **9i** and **7** only where radioligand binding was inhibited by >50% at a concentration of 10 μ M. Freebase concentrations of **9i** and **7** used for IC_{50}/K_i determination were 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 μ M. Mean values were calculated from two separate assays. IC_{50} and Hill coefficient (nH) values were determined by a non-linear, least squares regression analysis using MathIQTM (ID Business Solutions Ltd., UK). Ki values were calculated by applying the Cheng and Prusoff equation¹ of the observed IC_{50} for the test compound, the assay radioligand concentration and historical K_D values of the ligand (obtained experimentally at Eurofins Panlabs, Inc.). nH defines the slope of the competitive binding curve where values significantly different than 1.0, may suggest that the binding displacement does not follow the laws of mass action with a single binding site.

S3. ¹H-NMR data for test compounds 7, 9i-9vi, 12 and 14.

Compound example 9i

Compound example 9ii

Compound example 9iii

Compound example 9iv

Compound example 9v

Compound example 9vi

Compound example 12

Compound example 14

S4. HPLC data for test compounds 7, 9i-9vi, 12 and 14.

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
						0.0492
1	9.741	MM	0.0742	3.88420	8.72299e-1	0.0402
2	10.291	MM	0.1138	8049.75830	1178.90552	99.8572
3	11.460	MM	0.0933	1.67731	2.99644e-1	0.0208
4	12.309	MM	0.2037	5.94807	4.86751e-1	0.0738
Total	s :			8061.26788	1180.56421	

Compound example 7

Area Percent Report

Sorted By	:	Sign	nal		
Multiplier	:	1.00	000		
Dilution	:	1.00	000		
Do not use Multiplier	å	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	do
1	10.025	MM	0.1932	6.18901	5.34007e-1	0.0990
2	10.577	MM	0.0997	6205.53418	1037.36975	99.3028
3	11.603	MM	0.3375	8.32092	4.10872e-1	0.1332

Compound example 9i (SPL028i GSK387-5C)

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.629	MM	0.1301	2.96942	3.80264e-1	0.0406
2	10.584	MM	0.1066	7295.20459	1140.14697	99.8607
3	13.512	MM	0.1110	2.72276	4.08686e-1	0.0373

Compound example 9ii (SPL028ii GK384C)

Peak #	eak RetTime? # [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.629	MM	0.1301	2.96942	3.80264e-1	0.0406
2	10.584	MM	0.1066	7295.20459	1140.14697	99.8607
3	13.512	MM	0.1110	2.72276	4.08686e-1	0.0373

Compound example 9iii (SPL028iii GK387-1C)

Area Percent Report

Sorted By					Sigr	nal		
Multiplier				:	1.00	000		
Dilution			:	1.00	000			
Do	not	use	Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	8.625	MM	0.0761	1.46230	3.20251e-1	0.0222
2	10.585	MM	0.1025	6584.67969	1070.60669	99.8061
3	12.603	MM	0.1202	2.38108	3.30208e-1	0.0361

Compound example 9iv (SPL028iv GK387-2C)

1	10.584	MM	0.1084	7849.46289	1206.84558	99.3502
2	12.634	MM	0.2874	19.21431	1.11412	0.2432
3	13.524	MM	0.0899	2.86761	5.31860e-1	0.0363

Compound example 9v (SPL028v GK387-3C)

Area Percent Report

Sorted By				:	Sign	nal		
Multiplier				:	1.00	000		
Di	luti	on		:	1.00	000		
Do	not	use	Multiplier	&	Dilution	Factor	with	ISTDS

Peak #	eak RetTime Typ # [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.584	MM	0.1084	7849.46289	1206.84558	99.3502
2	12.634	MM	0.2874	19.21431	1.11412	0.2432
3	13.524	MM	0.0899	2.86761	5.31860e-1	0.0363

Compound example 9vi (SPL028vi GK387-4C)

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 9.741 MM	0.0742	3.88420	8.72299e-1	0.0482
2 10.291 MM	0.1138	8049.75830	1178.90552	99.8572
3 11.460 MM	0.0933	1.67731	2.99644e-1	0.0208
4 12.309 MM	0.2037	5.94807	4.86751e-1	0.0738
Totals :		8061.26788	1180.56421	

Compound example **12** (JCCA2559)

	[maro]	-0 -
1 9.741 MM 0.0742 3.8842 2 10.291 MM 0.1138 8049.7583 3 11.460 MM 0.0933 1.6773	20 8.72299e-1 30 1178.90552 31 2.99644e-1 07 4.86751e-1	0.0482 99.8572 0.0208 0.0738

Totals :

8061.26788 1180.56421

Compound example 14 JCCA2560

	9i
Adenosine A ₁ (human)	-3
Adenosine A _{2A} (human)	8
Adrenergic α_{1A} (human)	85
Adrenergic α_{1B} (human)	87
Adrenergic α_{1D} (human)	63
Adrenergic α_{2A} (human)	69
Adrenergic α_{2B} (human)	80
Adrenergic α_{2C} (human)	58
Adrenergic β_1 (human)	8
Adrenergic β_2 (human)	-8
Androgen (testosterone)	7
Angiotensin AT ₁ (human)	8
Bradykinin B ₂ (human)	-1
Cannabinoid CB ₁ (human)	12

S5. Table S1: Mean In Vitro Percent Inhibition with 10 μM 9i
Cannabinoid CB ₂ (human	l) -14
------------------------------------	--------

- Chemokine CCR₁ (human) -13
- Chemokine CXCR₂ (human) -6
- Cholecystokinin CCK₁ (human) -8
- Cholecystokinin CCK₂ (human) -5
- D_1 (human)

41

27

7

- D_{2L} (human) 39
- D_{2S} (human)
- Endothelin ET_A (human)
- Estrogen Erα (human)
- GABA_A (chloride channel, TBOB) (rat) 0
- GABA_A (flunitrazepam, central) (rat) -4
- GABA_A (Ro-15-1788, hippocampus) (rat)
- GABA_{B1A} (human) -10
- Glucocorticoid (human) 1 -4
- Glutamate, AMPA (rat)

Glutamate, kainate (rat)	8
--------------------------	---

- Glutamate, NMDA (agonism) (rat) -3
- Glutamate, NMDA (glycine) (rat) -10
- Glutamate, NMDA (phencyclidine) (rat) 5
- Glutamate, NMDA (polyamine) 7
- Glycine, strychnine-sensitive (rat) -4
- Histamine H_1 (human) 91
- Histamine H_2 (human)

0

- Leukotriene, CysLT₁ (human) -3
- Melanocortin MC₁ (human) -1
- Melanocortin MC₄ (human) -2
- Muscarinic M_1 (human) 3
- Muscarinic M_2 (human) 4
- Muscarinic M_3 (human) 15
- Muscarinic M₄ (human)
- Neuropeptide Y, Y₁ (human)

N	icotinic, nACh _{α1} (human) -1
---	--------------------------------	-------	------

- Nicotinic, nACh_{$\alpha3\beta4$} (human) 64
- Opioid, δ_1 (human) -11
- Opioid, κ (human) -1
- Opioid, µ (human)

5

6

- Platelet activating factor (human)
- PPARγ (human) -3
- Progesterone, PR_B (human) -21
- Serotonin 5-HT_{1A} (human) 98
- Serotonin 5-HT_{1B} (human) 76
- Serotonin 5-HT_{2A} (human) 94
- Serotonin 5-HT_{2B} (human) 96
- Serotonin 5-HT_{2C} (human) 93
- Serotonin 5-HT₃ (human)
- Serotonin 5-HT_{5A} (human) 70
- Serotonin 5-HT₆ (human)

Serotonin 5-HT ₇ (human)	96
-------------------------------------	----

- Sigma, σ_1 (human) 45
- Tachykinin, NK₁ 18
- Vasopressin, V1_A -5
- Adenosine (guinea pig)

0

25

- Dopamine (human) 22
- GABA (rat)
- Norepinephrine (human) 49
- Serotonin
- Calcium, L-type (benzothiazepine) (rat) 29
- Calcium, L-type (dihydropyridine) (rat) -19
- Calcium, L-type (phenylalkylamine) (rat) 47
- Calcium, N-type (rat) -5
- Potassium channel, K_{ATP} (hamster) 15
- Potassium channel, hERG (human) 22
- Sodium channel, site 2 (rat)

Sodium/potassium ATPase (pig)	4
-------------------------------	---

- Acetylcholinesterase (human) 39
- Angiotensin converting enzyme (human) 5
- Cyclooxygenase, COX-1 (human) 14
- Cyclooxygenase, COX-2 (human) 15
- Monoamine oxidase A (human) 84
- Monoamine oxidase B (human) 6
- Peptidase, Cathepsin G (human) 1
- Phosphodiesterase, PDE3A (human) -6
- Phosphodiesterase, PDE4D2 (human) -2
- Serine/threonine protein kinase, PCKα (human)-2Insulin receptor protein tyrosine kinase (human)36Lymphocyte-specific protein tyrosine kinase (human)9

Biological Methods

All radioligands and reagents used in the in vitro studies were supplied by Perkin Elmer and cell lines or tissue by Perkin Elmer, EPDST,

Charles River, and Eurofins Discovery Services.

	Source	B _{max}	Incubation	Radioligand	Specific	Non-specific
		(pmole/mg			binding	ligand
		protein)			(K _D)*	
Receptors						
Adenosine A ₁	Human	2.70	90 min at 25 °C; 20	1.0 nM [³ H]-	85% (1.40	100 µM R(-)-
	recombinant		mM HEPES (pH 7.4),	DPCPX	nM)	PIA
	CHO-K1 cells		10 mM magnesium			
			chloride, 100 mM			
			sodium chloride			
Adenosine A _{2A}	Human	7.0	90 min at 25 °C; 50	0.05 μM [³ H]-	85% (0.064	50.0 µM NECA
	recombinant		mM TRIS-HCl (pH	CGS-21680	μΜ)	
	HEK-293 cells		7.4), 10 mM			

S6: Table S2. In Vitro Receptor, Transporter and Ion Channel Binding Assays

			magnesium chloride,			
			1 mM EDTA, 2			
			IU/mL adenosine			
			deaminase			
Adrenergic α_{1A}	Human	8.70	60 min at 25 °C; 50	0.2 nM [³ H]-	90% (0.57	10.0 µM
	recombinant		mM HEPES (pH 7.4),	prazosin	nM)	phentolamine
	Chem-1 cells		5 mM magnesium			
			chloride, 1 mM			
			calcium chloride,			
			0.2% BSA			
Adrenergic α_{1B}	Human	6.20	60 min at 25 °C; 50	0.2 nM [³ H]-	90% (0.13	10.0 µM
	recombinant		mM HEPES (pH 7.4),	prazosin	nM)	phentolamine
	Chem-1 cells		10 mM magnesium			
			chloride, 1 mM			
			EDTA			

Adrenergic α_{1D}	Human	0.17	60 min at 25 °C; 50	0.6 nM [³ H]-	80% (0.58	10.0 µM
	recombinant		mM TRIS-HCl (pH	prazosin	nM)	phentolamine
	HEK-293 cells		7.4)			
Adrenergic α_{2A}	Human	16.0	60 min at 25 °C; 50	1.50 nM [³ H]-	95% (1.50	10.0 µM WB-
	recombinant		mM TRIS-HCl (pH	rauwolscine	nM)	1401
	CHO-K1 cells		7.4), 1 mM EDTA			
Adrenergic α_{2B}	Human	12.0	60 min at 25 °C; 50	2.50 nM [³ H]-	90% (2.10	10 µM prazosin
	recombinant		mM TRIS-HCl (pH	rauwolscine	nM)	
	CHO-K1 cells		7.4), 1 mM EDTA,			
			12.5 mM magnesium			
			chloride, 0.2% BSA			
Adrenergic α_{2C}	Human	12.0	60 min at 25 °C; 50	0.50 nM [³ H]-	95% (0.4	10 µM WB-401
	recombinant		mM TRIS-HCl (pH	rauwolscine	nM)	
	CHO-K1 cells		7.4), 1 mM EDTA			

Adrenergic β_1	Human	0.071	120 min at 25 °C; 50	0.03 nM [₁₂₅ I]-	95% (0.041	100 µM S(-)-
	recombinant		mM TRIS-HCl (pH	cyanopindolol	nM)	propanolol
	CHO-K1 cells		7.4), 1.4 mM ascorbic			
			acid, 5 mM EDTA,			
			120 mM magnesium			
			chloride, 1.5 mM			
			calcium chloride,			
			0.001% BSA			
Adrenergic β_2	Human	0.44	60 min at 25 °C; 50	0.2 nM [³ H]-CGP-	95% (0.44	10.0 µM ICI-
	recombinant		mM TRIS-HCl (pH	12177	nM)	118551
	CHO cells		7.4), 0.5 mM EDTA,			
			5 mM magnesium			
			chloride, 120 mM			
			NaCl			

Androgen	Human	0.25	20 h at 4 °C; 25 mM	0.5 nM [3H]-	75% (0.71	1.0 µM
(testosterone)	LNCaP clone		HEPES (pH 7.4),	methyltrienolone	nM)	testosterone
	FGC cells		10% glycerol, 1 mM			
			EDTA, 10 mM			
			molybdate			
Angiotensin AT ₁	Human	16.0	180 min at 37 °C; 50	20.0 pM [¹²⁵ I]-	90% (0.056	
	recombinant		mM TRIS-HCl (pH	(Sar ¹ , Ile ⁸)-	nM)	
	CHO-K1 cells		7.4), 5 mM	angiotensin II		
			magnesium chloride,			
			0.1% BSA, 1 mM			
			EDTA			
Bradykinin B ₂	Human	9.40	60 min at 25 °C; 50	0.5 nM [³ H]-	90% (0.85	5.0 µM
	recombinant		mM HEPES (pH 7.4),	bradykinin	nM)	bradykinin
	Chem-1 cells		0.2% BSA, 1 mM			
			calcium chloride, 5			
			mM magnesium			

bacitracin Cannabinoid CB₁ 60 min at 37 °C; 50 15.0 2.0 nM [³H]-10.0 µM CP-Human 78% (18.0 recombinant mM HEPES (pH 7.4), SR141716A nM) 55,940 Chem-1 cells 0.2% BSA, 1 mM calcium chloride, 5 mM magnesium chloride Cannabinoid CB₂ 90 min at 37 °C; 20 2.40 nM [³H]-Human 1.70 80% (4.90 10 uM R(+)recombinant mM HEPES (pH 7.0), WIN-55,212-2 nM) WIN-55,212-2 CHO-K1 cells 0.5% BSA Chemokine CCR₁ Human 1.10 180 min at 25 °C; 50 0.1 nM [¹²⁵I]-MIP-72% (0.46 0.1 µM MCP-3 recombinant mM HEPES (pH 7.4), 1α nM) Chem-2 cells 0.2% BSA, 1 mM calcium chloride, 5

chloride, 0.05 mM

mM magnesium

Chemokine	Human	0.28	60 min at 25 °C; 25	15.0 pM [¹²⁵ I]-IL-8	80% (12.0	10.0 nM IL-8
CXCR ₂	recombinant		mM HEPES (pH 7.4),	(80%)	pM)	
	CHO-K1 cells		0.2% BSA, 2 mM			
			calcium chloride, 1			
			mM magnesium			
			chloride			
Cholecystokinin	Human	2.30	180 min at 25 °C; 25	0.11 nM [¹²⁵ I]-	85% (0.59	1.0 μM L-
CCK ₁	recombinant		mM HEPES (pH 7.4),	CCK-8	nM)	364,718
	1321-N1 cells		0.1% BSA, 1 mM			
			calcium chloride, 5			
			mM magnesium			
			chloride			

Cholecystokinin	Human	9.40	180 min at 25 °C; 50	0.05 nM [¹²⁵ I]-	90% (0.069	1.0 µM
CCK ₂	recombinant		mM HEPES (pH 7.4),	CCK-8	nM)	sincalide
	Chem-1 cells		0.1% BSA, 1 mM			
			calcium chloride, 5			
			mM magnesium			
			chloride			
Dopamine D ₁	Human	0.63	120 min at 37 °C; 50	1.40 nM [³ H]-	90% (1.40	10.0 µM (+)-
	recombinant		mM TRIS-HCl (pH	SCH-23390	nM)	butaclamol
	CHO cells		7.4), 1.4 mM ascorbic			
			acid, 0.001% BSA,			
			150 mM sodium			
			chloride			
Dopamine D _{2L}	Human	0.48	1.0% DMSO	0.16 nM [³ H]-	85% (0.08	10.0 µM
	recombinant		120 min at 25 °C; 50	spiperone	Nm)	haloperidol
	CHO cells		mM TRIS-HCl (pH			
			7.4), 1.4 mM ascorbic			

			acid, 0.001% BSA,			
			150 mM sodium			
			chloride			
Dopamine D _{2S}	Human	1.60	120 min at 25 °C; 50	0.16 nM [³ H]-	90% (0.09	10.0 µM
	recombinant		mM TRIS-HCl (pH	spiperone	nM)	haloperidol
	CHO cells		7.4), 1.4 mM ascorbic			
			acid, 0.001% BSA,			
			150 mM sodium			
			chloride			
Endothelin ET _A	Human	0.35	120 min at 37 °C; 50	0.03 nM [¹²⁵ I]-	90% (0.048	0.1 µM
	recombinant		mM TRIS-HCl (pH	endothelin-1	nM)	endothelin-1
	CHO-S cells		7.4), 0.1% BSA, 0.5			
			mM calcium chloride			
Estrogen ERa	Human	1400	120 min at 25 °C; 10	0.5 nM [³ H]-	85% (0.2	1.0 µM
	recombinant		mM TRIS-HCl (pH	estradiol	nM)	diethylstilbestrol
	insect Sf9 cells					

7.4), 0.1% BSA, 10%

glycerol, 1 mM DTT

GABA _A (chloride	Wistar rat	2.10	120 min at 25 °C; 50	3.0 nM [³ H]-TBOB	78% (0.026	200 µM
channel, TBOB)	brain (minus		mM potassium		μΜ)	picrotoxin
	cerebellum)		phosphate (pH 7.4),			
			200 mM sodium			
			chloride			
GABA _A	Wistar rat	1.20	60 min at 25 °C; 50	1.0 nM [³ H]-	91% (4.40	10.0 µM
(flunitrazepam,	brain (minus		mM phosphate buffer	flunitrazepam	nM)	diazepam
central)	cerebellum)		(pH 7.4)			
GABA _A (Ro-15-	Wistar rat	1.20	120 min at 4 °C; 50	1.0 nM [³ H]-Ro-	96% (1.20	10.0 µM
1788,	hippocampus		mM TRIS-citrate (pH	15-1788	nM)	diazepam
hippocampus)			7.4)			
GABA _{B1A}	Human	48.0	180 min at 25 °C; 50	4.0 nM [³ H]-CGP-	90% (3.30	30.0 mM
	recombinant		mM TRIS-HCl (pH	54626	nM)	GABA
	CHO-K1 cells					

			7.4), 2.5 mM calcium			
			chloride, 0.1% BSA			
Glucocorticoid	Human	1.0	24 h min at 4 °C; 1.5	5.0 nM [³ H]-	97% (4.60	10.0 µM
	recombinant		mM potassium	dexamethasone	nM)	dexamethasone
	insect cells		phosphate, 8 mM			
			sodium phosphate			
			(pH 7.4), 137 mM			
			sodium chloride, 2.7			
			mM potassium			
			chloride, 0.2% BSA			
Glutamate, AMPA	Wistar rat	17.0	90 min at 4 °C; 50	5.0 nM [³ H]-	90% (0.99	1.0 mM L-
	cerebral cortex		mM TRIS-HCl (pH	AMPA	μΜ)	glutamic acid
			7.4), 200 mM			
			potassium thiocyanate			

Glutamate, kainate	Wistar rat	0.21	120 min at 4 °C; 50	6.0 nM [³ H]-kainic	80% (5.40	1.0 mM L-
	cerebral cortex		mM TRIS-HCl (pH	acid	nM)	glutamic acid
			7.4)			
Glutamate mGluR5	Human	0.68	120 min at 25 °C; 25	0.03 µM [³ H]-	85% (0.026	1.0 mM L-
	recombinant		mM HEPES (pH 7.4),	quisqualic acid	μΜ)	glutamic acid
	CHO-K1 cells		2.5 mM calcium			
			chloride, 1 mM			
			magnesium chloride			
Glutamate, NMDA	Wistar rat	2.30	20 min at 4 °C; 50	2.0 nM [³ H]-CGP-	70% (19.0	1.0 mM L-
(agonism)	cerebral cortex		mM TRIS-HCl (pH	39653	nM)	glutamic acid
			7.4)			
Glutamate, NMDA	Wistar rat	3.70	30 min at 4 °C; 50	0.33 nM [³ H]-	85% (6.0	10.0 µM MDL-
(glycine)	cerebral cortex		mM HEPES (pH 7.7)	MDL-105,519	nM)	105,519
Glutamate, NMDA	Wistar rat	0.78	45 min at 25 °C; 10	4.0 nM [³ H]-TCP	94% (8.40	1.0 μM MK-801
(phencyclidine)	cerebral cortex		mM TRIS-HCl (pH		nM)	
			7.4)			

Glutamate, NMDA	Wistar rat	1.10	120 min at 4 °C; 50	2.0 nM [³ H]-	80% (0.026	10.0 µM
(polyamine)	cerebral cortex		mM TRIS-HCl (pH	ifenprodil	μΜ)	ifenprodil
			7.4)			
Glycine,	Wistar rat	0.35	10 min at 4 °C; 50	10.0 nM [³ H]-	77% (13.0	1.0 mM glycine
strychnine-	spinal cord		mM potassium	strychnine	nM)	
sensitive			phosphate (pH 7.4),			
			200 mM sodium			
			chloride			
Histamine H ₁	Human	6.70	180 min at 25 °C; 50	1.20 nM [³ H]-	94% (1.10	1.0 µM
	recombinant		mM TRIS-HCl (pH	pyrilamine	nM)	pyrilamine
	CHO-K1 cells		7.4), 5 mM			
			magnesium chloride			
Histamine H ₂	Human	6.90	120 min at 25 °C; 50	0.1 nM [¹²⁵ I]-	90% (0.45	3.0 µM tiotidine
	recombinant		mM phosphate buffer	aminopotentidine	nM)	
	CHO-K1 cells		(pH 7.4), 0.2% gelatin			

Leukotriene	Human	3.0	30 min at 25 °C; 50	0.3 nM [³ H]-	93% (0.21	0.3 µM
CysLT ₁	recombinant		mM TRIS-HCl (pH	leukotriene D4	nM)	leukotriene D4
	CHO-K1 cells		7.4), 5 mM calcium			
			chloride, 5 mM			
			magnesium chloride,			
			100 µg/ml bacitracin,			
			1 mM benzamidine,			
			0.1 mM PMSF			
Melanocortin MC ₁	Human	0.53	120 min at 37 °C; 25	0.04 nM [¹²⁵ I]-	90% (0.037	1.0 μM NDP-α-
	recombinant		mM HEPES-KOH	NDP-α-MSH	nM)	MSH
	CHO-K1 cells		(pH 7.0), 100 mM			
			sodium chloride, 1			
			mM 1,10-			
			phenanthroline, 1.5			
			mM calcium chloride,			
			1 mM magnesium			

			sulfate, 1 complete			
			protease inhibitor			
			tablet 100/ml			
Melanocortin MC ₄	Human	3.90	120 min at 37 °C; 25	20.0 pM [¹²⁵ I]-	90% (0.5	3.0 μM NDP-α-
	recombinant		mM HEPES-KOH	NDP-a-MSH	nM)	MSH
	HEK-293 cells		(pH 7.0), 100 mM			
			sodium chloride, 1			
			mM 1,10-			
			phenanthroline, 1.5			
			mM calcium chloride,			
			1 mM magnesium			
			sulfate, 1 complete			
			protease inhibitor			
			tablet 100/ml			

Muscarinic M ₁	Human	2.0	120 min at 25 °C; 50	0.8 nM [³ H]-N-	95% (0.26	1.0 µM atropine
	recombinant		mM TRIS-HCl (pH	methylscopolamine	nM)	
	CHO-K1 cells		7.4), 10 mM			
			magnesium chloride,			
			1 mM EDTA			
Muscarinic M ₂	Human	5.10	120 min at 25 °C; 50	0.8 nM [³ H]-N-	95% (0.58	1.0 µM atropine
	recombinant		mM TRIS-HCl (pH	methylscopolamine	nM)	
	CHO-K1 cells		7.4), 10 mM			
			magnesium chloride,			
			1 mM EDTA			
Muscarinic M ₃	Human	5.40	120 min at 25 °C; 50	0.8 nM [³ H]-N-	95% (0.75	1.0 µM atropine
	recombinant		mM TRIS-HCl (pH	methylscopolamine	nM)	
	CHO-K1 cells		7.4), 10 mM			
			magnesium chloride,			
			1 mM EDTA			

Muscarinic M ₄	Human	1.60	120 min at 25 °C; 50	0.8 nM [³ H]-N-	95% (0.22	1.0 µM atropine
	recombinant		mM TRIS-HCl (pH	methylscopolamine	nM)	
	CHO-K1 cells		7.4), 10 mM			
			magnesium chloride,			
			1 mM EDTA			
Neuropeptide Y Y ₁	Human SK-N-	0.58	60 min at 37 °C; 25	15.0 pM [¹²⁵ I]-	80% (0.24	1.0 µM
	MC cells		mM HEPES (pH 7.4),	peptide YY	nM)	neuropeptide Y
			1 mM magnesium			(human, rat)
			chloride, 2.5 mM			
			calcium chloride,			
			0.1% BSA, 0.01%			
			bacitracin			
Nicotinic $nAChR_{\alpha 1}$	Human RD	1.0	120 min at 25 °C; 147	0.6 nM [¹²⁵ I]-α-	85% (1.10	1.0 μΜ α-
	cells		mM sodium chloride	bungarotoxin	nM)	bungarotoxin
			(pH 7.4), 4 mM			
			potassium chloride,			

2.2 mM calcium

Nicotinic	Human	1.50	60 min at 25 °C; 50	0.05 nM [³ H]-	90% (0.13	10.0 µM
$nAChR_{\alpha 3\beta 4}$	recombinant		mM TRIS-HCl (pH	epibatidine	nM)	epibatidine
	CHO-K1 cells		7.4)			
Opioid δ_1	Human	1.40	60 min at 25 °C; 50	1.30 nM [³ H]-	95% (0.053	1.0 µM
	recombinant		mM TRIS-HCl (pH	naltrindole	nM)	naltrindole
	HEK-293 cells		7.4), 1 mM EDTA, 10			
			mM magnesium			
			chloride			
Opioid ĸ	Human	1.10	60 min at 25 °C; 50	0.6 nM [³ H]-	90% (0.41	10.0 µM
	recombinant		mM TRIS-HCl (pH	diprenorphine	nM)	naloxone
	HEK-293 cells		7.4)			
Opioid µ	Human	3.80	60 min at 25 °C; 50	0.6 nM [³ H]-	90% (0.41	10.0 µM
	recombinant		mM TRIS-HCl (pH	diprenorphine	nM)	naloxone
	CHO-K1 cells		7.4)			

Platelet activating	Human	0.78	60 min at 25 °C; 25	1.0 nM [³ H]-PAF	80% (1.50	10.0 µM C16-
factor	recombinant		mM HEPES (pH 7.4),		nM)	PAF
	CHO-K1 cells		10 mM magnesium			
			chloride, 0.3% BSA			
PPARγ	Human	5400	24 h at 4 °C; 10 mM	5.0 nM [³ H]-	95% (20.0	10.0 µM
	recombinant		TRIS-HCl (pH 7.4), 1	rosiglitazone	nM)	rosiglitazone
	insect cells		mM EDTA, 10%			
			glycerol, 1 mM DTT,			
			1 μg/ml benzamidine,			
			10 mM sodium			
			molybdate, 0.1% non-			
			fat dried milk			
Progesterone PR _B	Human T-47D	0.0002	20 h at 4 °C; 5 mM	0.5 nM [³ H]-	91% (2.0	1.0 μM R-5020
	cells	fmole/cell	sodium phosphate	progesterone	nM)	
			(pH 7.4), 10%			
			glycerol, 10 mM			

			mM sodium			
			molybdate			
Serotonin 5-HT _{1A}	Human	1.30	60 min at 25 °C; 50	1.50 nM [³ H]-8-	75% (2.0	10.0 µM
	recombinant		mM TRIS-HCl (pH	OH-DPAT	nM)	metergoline
	CHO-K1 cells		7.4), 0.1% ascorbic			
			acid, 0.5 mM EDTA,			
			10 mM magnesium			
			sulfate			
Serotonin 5-HT _{1B}	Human	22.0	90 min at 37 °C; 50	1.0 nM [³ H]-	90% (3.20	10.0 µM
	recombinant		mM TRIS-HCl (pH	GR125743]	nM)	serotonin
	Chem-1 cells		7.4), 1 mM EDTA, 10			
			mM magnesium			
			chloride			

monothiolglycerol, 20

Serotonin 5-HT _{2A}	Human	0.51	60 min at 25 °C; 50	0.5 nM [³ H]-	90% (0.2	1.0 µM
	recombinant		mM TRIS-HCl (pH	ketanserin	nM)	mianserin
	CHO-K1 cells		7.4)			
Serotonin 5-HT _{2B}	Human	1.10	60 min at 25 °C; 50	1.20 nM [³ H]-	80% (2/10	10.0 µM
	recombinant		mM TRIS-HCl (pH	lysergic acid	nM)	serotonin
	CHO-K1 cells		7.4), 0.1% ascorbic	diethylamide		
			acid, 4 mM calcium			
			chloride			
Serotonin 5-HT _{2C}	Human	4.90	60 min at 25 °C; 50	1.0 nM [³ H]-	90% (1.10	1.0 µM
	recombinant		mM TRIS-HCl (pH	mesulergine	nM)	mianserin
	CHO-K1 cells		7.4), 0.1% ascorbic			
			acid, 10 µM pargyline			
Serotonin 5-HT ₃	Human	11.0	60 min at 25 °C; 50	0.69 nM [³ H]-GR-	90% (0.2	10.0 µM MDL-
	recombinant		mM TRIS-HCl (pH	65630	nM)	72222
	HEK-293 cells		7.4), 1 mM EDTA, 5			

mM magnesium

Serotonin 5- HT_{5A}	Human	4.30	60 min at 25 °C; 50	1.70 nM [³ H]-	80% (1.80	100 µM
	recombinant		mM TRIS-HCl (pH	lysergic acid	nM)	serotonin
	CHO-K1 cells		7.4), 0.5 mM EDTA,	diethylamide		
			10 mM magnesium			
			chloride			
Serotonin 5-HT ₆	Human	1.70	120 min at 37 °C; 50	1.50 nM [³ H]-	90% (1.30	5.0 µM
	recombinant		mM TRIS-HCl (pH	lysergic acid	nM)	serotonin
	HeLa cells		7.4), 150 mM sodium	diethylamide		
			chloride, 2 mM			
			ascorbic acid, 0.001%			
			BSA			
Serotonin 5-HT ₇	Human	0.95	120 min at 25 °C; 50	5.50 nM [³ H]-	90% (7.40	10.0 µM
	recombinant		mM TRIS-HCl (pH	lysergic acid	nM)	serotonin
	CHO-K1 cells		7.4), 0.5 mM EDTA,	diethylamide		

10 mM magnesium

Sigma σ1	Human Jurkat	1.08	120 min at 37 °C; 50	15.0 nM [³ H]-	90% (16.0	10.0 µM
	cells		mM TRIS-HCl (pH	pentazocine	nM)	haloperidol
			8.0)			
Tachykinin NK ₁	Human	1.70	90 min at 4 °C; 20	0.8 nm [³ H]-	90% (2.10	10.0 μM L-
	recombinant		mM HEPES (pH 7.4),	substance P	nM)	703,606
	CHO cells		1 mM manganese			
			chloride, 0.1% BSA			
Vasopressin V _{1A}	Human	2.80	120 min at 25 °C; 50	0.03 nM [¹²⁵ I]	85% (7.40	10.0 uM (Arg ⁸)-
	recombinant		mM TRIS-HCl (pH	Phenylacetyl-	pM)	vasopressin
	HEK-293 cells		7.4), 5 mM	Tyr(Me)-		
			magnesium chloride,	PheGlnAsnArgPro-		
			0.1% BSA	ArgTyr		

Transporters

Adenosine	Duncan	0.24	30 min at 25 °C; 50	0.5 nM [³ H]-nitro-	90% (0.26	5.0 µM nitro-
	Hartley-		mM TRIS-HCl (pH	benzylthioinosine	nM)	benzyl-
	derived		7.4)			thioinosine
	Guinea pig					
	cerebral cortex					
Dopamine	Human	0.047	180 min at 4 °C; 50	0.15 nM [³ H]-RTI-	90% (0.58	10.0 µM
	recombinant		mM TRIS-HCl (pH	55	nM)	nomifensine
	CHO-S cells		7.4), 100 mM sodium			
			chloride, 1 µM			
			leupeptin, 10 µM			
			PMSF			
GABA	Wistar rat	60.0	20 min at 25 °C; 10	6.0 nM [³ H]-	80% (0.3	10.0 µM NO-
	brain (minus		mM HEPES (pH 7.5),	GABA	μΜ)	711
	cerebellum)		120 mM sodium			
			chloride, 4 mM			

			calcium acetate, 10				
			uM isoguvacine, 10				
			uM S(-)-baclofen				
Norepinephrine	Human	2.50	180 min at 4 °C; 50	0.2 nM [³ H]-RTI-	75% (0.024	10.0 µM	
	recombinant		mM TRIS-HCl (pH	55	μΜ)	desipramine	
	MDCK cells		7.4), 100 mM sodium				
			chloride, 1 µM				
			leupeptin, 10 µM				
			PMSF				
Serotonin	Human	4.40	60 min at 25 °C; 50	0.4 nM [³ H]-	95% (0.078	10.0 µM	
	recombinant		mM TRIS-HCl (pH	paroxetine	nM)	imipramine	
	HEK-293 cells		7.4), 120 mM sodium				
			chloride, 5 mM				
			potassium chloride				

Ion channels

Calcium, L-type	Wistar rat	0.21	180 min at 4 °C; 50	2.0 nM [³ H]-	73% (16.0	10.0 µM
(benzothiazepine)	brain (minus		mM TRIS-HCl (pH	diltiazem	nM)	diltiazem
	cerebellum)		7.4), 0.1% BSA			
Calcium, L-type	Wistar rat	0.23	90 min at 25 °C; 50	0.1 nM [³ H]-	91% (0.18	1.0 µM
(dihydropyridine)	cerebral cortex		mM TRIS-HCl (pH	nitrendipine	nM)	nitrendipine
			7.4)			
Calcium, L-type	Wistar rat	1.60	60 min at 25 °C; 50	0.4 nM [³ H]-(-)-	80% (14.0	10 µM
(phenylalkylamine)	cerebral cortex		mM HEPES (pH 7.4)	desmethoxy	nM)	desmethoxy
				verapamil		verapamil
Calcium, N-type	Wistar rat	0.88	30 min at 4 °C; 20	10.0 pM [¹²⁵ I]-ω-	96% (0.051	0.1 μΜ ω-
	frontal brain		mM TRIS-HCl (pH	conotoxin GVIA	nM)	conotoxin
			7.4), 0.5% BSA			GVIA
Potassium, ATP	Hamster	1.0	120 min at 25 °C; 50	5.0 nM [³ H]-	90% (0.64	1.0 µM
	pancreatic		mM MOPS (pH 7.4),	glyburide	nM)	glyburide
	HIT-T15 beta		0.1 mM calcium			

Potassium, hERG	Human	6.30	60 min at 25 °C; 10	1.50 nM [³ H]-	90% (6.80	10.0 µM
	recombinant		mM HEPES (pH 7.4),	astemizole	nM)	astemizole
	HEK-293 cells		0.1% BSA, 5 mM			
			potassium chloride,			
			0.8 mM magnesium			
			chloride, 130 mM			
			sodium chloride, 1			
			mM EGTA, 10 mM			
			glucose			
Sodium, site 2	Wistar rat	0.7	60 min at 37 °C; 10	5.0 nM [³ H]-	77% (0.052	100 µM
	brain (minus		mM HEPES, 50 mM	batrachotoxinin	μΜ)	veratridine
	cerebellum)		TRIS-HCl (pH 7.4),			
			130 mM choline			
			potassium chloride,			
			0.8 mM magnesium			
			chloride, 5.5 mM			

glucose, 40 µg/ml

LqTx

*Historical values. Vehicle for SPL026 and SPL028 was 1.0% dimethylsulfoxide was unless otherwise stated.

BSA, bovine serum albumin; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid); EGTA, ethylene glycol tetraacetic acid; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; MOPS, 3-(N-morpholino)propanesulfonic acid; PMSF, phenylmethylsulfonyl fluoride; TRIS-HCl, tris(hydroxymethyl)aminomethane hydrochloride

S7. Table S3: *In Vitro* Enzyme Inhibition Assays

Enzyme	Tissue	Substrate	Incubation buffer	Pre-	Incubation	Spectro-
				incubation		photometric
						quantitation
Sodium/potassium	Pig heart	100 µM ATP	50 mM TRIS-HCl (pH	15 min at 37	60 min at 37	Pi
ATPase			7.0), 20 mM potassium	°C	°C	
			chloride, 5 mM			
			magnesium chloride,			
			100 mM sodium			
			chloride			
Acetylcholinesterase	Human	700 µM	0.1 M sodium	15 min at 25	20 min at 37	Thiocholine
	recombinant	acetylthiocholine	phosphate	°C	°C	
	HEK-293					
	cells					

Cyclo-oxygenase 1	Human	3.0 µM	200 mM TRIS-HCl (pH	15 min at 25	3 min at 25	Resorufin
	recombinant	arachidonic acid	8.0), 6 µM EDTA, 10	°C	°C	
	Baculovirus		μM hematin			
	infected Sf9					
	cells					
Cyclo-oxygenase 2	Human	3.0 µM	200 mM TRIS-HCl (pH	15 min at 25	3 min at 25	Resorufin
	recombinant	arachidonic acid	8.0), 6 µM EDTA, 10	°C	°C	
	Insect Sf9		μM hematin			
	cells					
Monoamine oxidase	Human	50.0 µM	100 mM potassium	15 min at 37	60 min at 37	4-hydroxy-
A	recombinant	kynuramine	phosphate (pH 7.4)	°C	°C	quinoline
	Insect cells					
Monoamine oxidase	Human	50.0 µM	100 mM potassium	15 min at 37	60 min at 37	4-hydroxy-
В	recombinant	kynuramine	phosphate (pH 7.4)	°C	°C	quinoline
	Insect cells					

Angiotensin	Human	25.0 µM Abz-	50 mM MES (pH 6.5)	15 min at 25	30 min at 25	Abz-FR-OH
converting enzyme	recombinant	FRK (Dnp)-P		°C	°C	
	mouse					
	myeloma					
	cells					
Cathepsin G	Human	10.0 μM N-	50 mM sodium acetate	15 min at 25	30 min at 25	AMC
	neutrophils	succinyl-ala-ala-	(pH 5.5), 1 mM DTT, 2	°C	°C	
		pro-phe-AMC	mM EDTA			
Phosphodiesterase	Human	0.1 μM FAM-	10 mM TRIS-HCl (pH	15 min at 25	15 min at 25	Fluorescein-
PDE3A	recombinant	cAMP	7.2), 10 mM	°C	°C	AMP-IMAP
	Insect Sf9		magnesium chloride,			
	cells		0.05% sodium azide,			
			0.1% phosphate-free			
			BSA			
Phosphodiesterase	Human	0.1 µM FAM-	10 mM TRIS-HCl (pH	15 min at 25	15 min at 25	Fluorescein-
PDE4D2	recombinant	cAMP	7.2), 10 mM	°C	°C	AMP-IMAP
	Insect Sf9		magnesium chloride,			
------------------	--------------	------------------	------------------------	--------------	--------------	----------------------------
	cells		0.05% sodium azide,			
			0.1% phosphate-free			
			BSA			
Serine/threonine	Human	250 μg/mL	20 mM HEPES (pH	15 min at 25	10 min at 25	[³² P]-histone
protein kinase,	recombinant	histone	7.2), 8 mM magnesium	°C	°C	
РКСа	Insect Sf9		chloride, 0.08 mM			
	cells		calcium chloride, 100			
			μg/mL			
			phosphatidylserine, 20			
			µg/mL diacylglycerol			
Insulin receptor	Human	$200 \ \mu g/mL$	50 mM HEPES (pH	15 min at 37	30 min at 37	[³² P]-
protein tyrosine	recombinant	poly(glu:tyr)	7.4), 10 mM	°C	°C	poly(glu:tyr)
kinase	Insect cells		magnesium chloride, 1			
			mM DTT, 200 μM			
			sodium orthovanadate,			

2 mM manganese

			chloride			
Lymphocyte-	Human	200 µg/mL	50 mM HEPES (pH	15 min at 37	30 min at 37	[³² P]-
specific protein	recombinant	poly(glu:tyr)	7.4), 20 mM	°C	°C	poly(glu:tyr)
tyrosine kinase	Insect cells		magnesium chloride, 1			
			mM DTT, 200 μM			
			sodium orthovanadate,			
			2 mM manganese			
			chloride			

Vehicle for SPL026 and SPL028 was 1.0% dimethylsulfoxide was unless otherwise stated.

AMP-IMAP, adenosine monophosphate-immobilized metal ion affinity for phosphochemicals; BSA, bovine serum albumin; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid); FAM-cAMP, green fluorescent cyclic adenosine monophosphate; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; MES, 2-(N-morpholino)ethanesulfonic acid; TRIS-HCl, tris(hydroxymethyl)aminomethane hydrochloride

References

 Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem. Pharmacol.* 1973, *22*, 3099–3108.