
1

Simulated Design-Build-Test-Learn Cycles for Consistent
Comparison of Machine Learning Methods in Metabolic
Engineering
Supporting Information

Author 1: Paul van Lent

Delft Bioinformatics Lab, Delft University of Technology Van Mourik, 2628 XE Delft, The Netherlands

Author 2: Joep Schmitz

DSM Science and Innovation, Biodata and Translational Sciences, Delft

Author 3: Thomas Abeel

Delft Bioinformatics Lab, Delft University of Technology Van Mourik, 2628 XE Delft, The Netherlands

Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA
02142, USA (United States of America)

Email: t.abeel@tudelft.nl

Phone number: +31 15 27 85114

Synthetic Pathway: Thermodynamic flux analysis constraints
We included a synthetic pathway with symbolic metabolites and reactions that was inspired on a
real-world pathway with thermodynamics. The pathway resembles the Shikimate pathway, which is
an important pathway for many aromatic precursors. It draws from the two substrates
phosphoenolpyruvate and erythrose-4-phosphate and uses ATP and NADPH 1. The focus of our study
was not to generate the best kinetic model, which would require extensive validation and testing of
predictions made by the model. Rather, we aimed to establish a way to make kinetic models with
desired properties that can be semi-automated to generate more than one pathway optimization
problem for more elaborate validation of optimization strategies in future work 2,3. For the pathway
used in this study, all the modelling constraints used can be found in the Python code that is
provided on AbeelLab/simulated-dbtl (github.com). The most important properties are reported in
the main text, and we further elaborate on the metabolite concentration bounds.

Table S1:Metabolite that were included in the synthetic pathway. Seed IDs are used for adding the thermodynamic
constraints on the flux directionality profile. For some other constraints that were used before thermodynamic flux analysis
was performed, the SeedID values were already in the model. The concentration bounds are used for further constraining
the solution space and were mostly taken from SABIORK4. If the concentration could not be found, we assumed that the
concentration was bound between 0.00001 and 0.001 mol. The full parameterization can also be found in the file
Synthetic_PathwayA.ipynb

Metabolite name Seed ID Concentration

A_c cpd02857 [0.000340*0.8, 0. 000340*1.2]
mol

B_c cpd00699 -

C_c cpd01716 -

mailto:t.abeel@tudelft.nl
https://github.com/AbeelLab/simulated-dbtl

2

D_c cpd00383 -

E_c cpd02030 -

F_c cpd00932 -

G_c cpd00216 [0.000045*0.8,0.000045*1.2]
mol

Glc-D_e Already in model [0.056*0.8,0.056*1.2] mol

Pi_e Already in model [0.001*0.8,0.001*1.2] mol

Co2_e Already in model [1e-7*0.8,1e-7*1.2] mol

O2 Already in model [0.062*0.8,0.062*1.2] mol

Synthetic Pathway: ORACLE parameter sampling additional constraints
Additional constraints used for parameterization of the kinetic model are reported here and can also
be found in the python notebook Synthetic_PathwayA.ipynb. These constraints were used from the
tutorials provided in the SkiMPY package, although we did not at all as observed that it could lead to
poor biomass growth in the batch fermentation simulation. The following additional constraints
were used:

1. Glucose transporter vmax is around 10 mmol/gDW/h
2. The acetate transporter is unsaturated
3. ATP maintenance is saturated

Using ORACLE sampling, the following kinetic parameters were determined for each reaction (Table
S2).

Table S2: Kinetic parameters that were found using ORACLE sampling. ORACLE sampling finds large sets of kinetic
parameters that are consistent with the steady-state flux defined by thermodynamic flux balance analysis. We chose a
parameter set where the dynamics were stable and the timescales of the dynamics when perturbing a parameter are within
the timescales of one cell-cycle (see reference for a more elaborate explanation of what is considered physiologically
relevant in ORACLE) 5.

Reaction Km
substrate 1
(μmol)

Km
substrate 2
(μmol)

Vmax
(μmol/s)

K
equilibrium

Km
product 1

Km
product 2

A 1613.07 20.03 15193.97

B 814.68 31472.31

C 307.26 14893.06 7799269.43 3946.54

D 42725.09 192.59 5809120.89 30.51 227.53 0.856

E 1695.23 3505.46 66347.89 74208.67 26345.98 1706.60

F 1252.32 769.28 98247.12 0.048 6139.34 417.49

G 3024.44 124061.73 672620138
10853

74.45 2137.69

Training set sizes larger than 1000
We increased the training set sizes of Figure 4 to larger values, which would normally not be

encountered in Metabolic Engineering, to test whether certain algorithms saturate. We noticed that

Stochastic Gradient Descent saturates in predictive performance, even though for the top 100

prediction it outperforms the nonlinear methods when limited in samples (N=50). We observe that

3

Random Forest and Gradient Boosting performs well for the R^2. For the four algorithms, we

performed Bayesian hyperparameter optimization.

Figure S1: Performance of the four algorithms when trained on set sizes of up to 5000 samples. The nonlinear ensemble
methods are the best performers, although Neural Networks tend to also the top 100 quite well.

Effect of noise on predictive performance
We tested homoscedastic and heteroscedastic noise with 4% and 15% noise percentages.

Homoscedastic noise is independent of the mean experimental value (Figure S2A, B).

Heteroscedastic noise has a mean dependent standard deviation (Figure S2C, D). To assess the effect

of noise on predictive performance, we compared the four different noise models (homoscedastic

4% noise, homoscedastic 15% noise, heteroscedastic 4% noise, heteroscedastic 15% noise) to the no

noise scenario. This was performed for the four best performing algorithms (linear Support Vector

Machine, Gradient Boosting, Random Forest, and Neural Network). Each model was trained with

Bayesian hyperparameter optimization twenty times and the top 100 prediction and R^2 value was

calculated (see Methods). We tested for 50 samples and 200 samples and performed a multiple

hypothesis testing corrected t-test (Bonferroni). The results are summarised in Table S3. Over the 20

runs, we do not observe significant effects on the R^2. Sometimes differences are observed in the

top 100 prediction for the 4% heteroscedastic noise model (Table S4).

4

Figure S2: Two different noise models with 4% and 15% noise. The level of noise for the heteroscedastic case is dependent
on the experimentally determined mean value (I.e., variance increases with increasing mean).

Table S3: Results for all methods for the top R2. We tested for each algorithm between all noise models and no noise,
which results in 10 tests for each algorithm. In the table, we report whether significant differences between a noise model
and the no noise scenario were observed. N.s. means non-significant differences

Algorithm N=50 N=200

Neural Network n.s. n.s.

Gradient Boosting n.s. n.s.

Random Forest n.s. n.s.

Linear SVM n.s. n.s.

Table S4: Results for all methods for the top 100 prediction. Here we do sometimes observe some difference between no
noise and the heteroscedastic model. The significantly different pairwise tests are reported in the table. N.s. means non-
significant differences.

Algorithm N=50 N=200

Neural Network Heteroscedastic noise (4%) n.s.

Gradient Boosting n.s. Heteroscedastic noise (4%)

Random Forest n.s. n.s.

Linear SVM Heteroscedastic noise (4%)

n.s.

The automated recommendation algorithm and feature importance
All code can be found in the comb_sampling.py file. The two most essential functions are:

1. scan_combinatorial_space
2. generate_frequency matrix
3. find_set_designs (hardcoded version)

5

Here, we show an example of the predicted frequencies along the designs space for enzyme A
(N=100).

Figure S3: Frequency of promoters for enzyme A as a function of a threshold (>=J).

Then, we take the AUC for all the promoter strengths and normalize. Doing this for every enzyme we
get a probability distribution to sample for the next DBTL cycle.

Figure S4: Estimated probability distribution to sample promoters from for next DBTL cycle round.

We can also calculate the entropy of the probability distribution for each enzyme, which gives an

indication of how important each enzyme (feature). As can be seen, enzyme G, C, and A are the most

important enzymes because their entropy decreases more rapidly than others. A decrease in

entropy indicates that the probability distribution is more biased (favours certain promoter

strengths).

6

Figure S5: estimated entropies of the features in the learned space. As can be seen, Enzyme A, C, G have the largest
contributions to high flux. If the entropy is 0, then this means that one promoter is completely fixed in that region where the
flux is higher than that value.

Example run of 5 cycles: GBR with 25 designs, 15% homoscedastic noise

Figure S6: One example run of the fully automated recommendation algorithm. Every cycle 25 designs were built, and the
top 100 and R^2 are calculated to follow the performance of the optimization. We noticed that in this example run the best
performing strain is in the predicted top 100 from round three onwards.

Statistical analysis of the optimality of designs
Important in the implementation of DBTL cycles is the initial sampling. In this paper we have mostly
chosen random sampling scenarios (each promoter is chosen with equal probability), but many
other initial sampling strategies exist. For example, the Automated Recommendation Tool uses Latin
Hypercube Sampling, which outperforms random sampling slightly (see Figure S8) 6. The effects of
the initial sampling on model performance and optimization of DBTL cycles can be easily assessed
using simulated DBTL cycles, both empirically and using optimality criteria such as D-optimality7.

7

D-optimality of initial sampling scenario’s
Given that we have a linear model consisting of main-effects and interactions between features.
Specific to our problem that has seven perturbed enzymes, the linear model could be written down
as follows:

𝑌 = 𝛽0  + ∑ 𝛽𝑖 

7

𝑖=1

𝑥𝑖  + ∑ ∑ 𝛽𝑖𝑗

7

𝑗=𝑖+1

6

𝑖=1

𝑥𝑖 𝑥𝑗  + 𝑒𝑟𝑟𝑜𝑟

Here 𝑌 product flux through reaction G, 𝛽0 is an intercept term, 𝛽𝑖 are the main factor parameters,
and 𝛽𝑖𝑗 are the interaction parameters. The number of parameters of a main-factor and interaction

model for this case has 𝑝 =
(𝑘+1)(𝑘+2)

2
= 36 parameter terms. The model can be written in matrix

notation as:

𝑌 = 𝑋𝛽 + 𝑒𝑟𝑟𝑜𝑟

Where Y is the 𝑛-dimensional response vector, and X is the 𝑛 ∗ 𝑝 model matrix8. Assuming that all 𝑛
random errors are independent and identically distributed, the best linear unbiased estimator for
the parameter vector 𝛽 is given by the ordinary least squares estimator:

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌

The thing we are interested in here is the inverse of the variance-covariance matrix, which is also
known as the Fisher information matrix:

𝜎−2(𝑋𝑇𝑋)

A design set is referred to D-optimal when it maximizes the determinant of the Fisher information
matrix. Such an optimality criteria can be used to measure the efficiency of a sampling scenario with
respect to an optimal (orthogonal) design by the equation:

𝐷𝑒𝑓𝑓 = [
det(𝑋𝑇𝑋)

det(𝑋𝐷
𝑇𝑋𝐷)

]

1/𝑝

Where 𝑋𝐷 is the D-optimal model matrix. When 𝐷𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 is close to one, the design is considered

optimal given this criterion. To show how this might be used to assess sampling scenarios, we show
here the optimality criterion for a Latin Hypercube sampling and Random Sampling compared to an
optimal design strategy, implemented using the dexpy-package.

Figure S7A shows the D-efficiency for random sampling and Latin Hypercube sampling (LHS) with
respect to the D-efficiency of a D-optimal design scenario for 50 and 200 designs. A value close to
one would indicate that the sampling strategy has a similar D- efficiency to a D-optimal design. Both
LHS and random sampling have a low D-optimality compared to a D-optimal design, as expected.
Also, LHS has a lower variance in D-efficiency than random sampling, which is also expected due to
the constraints that are imposed in the Latin Hypercube algorithm. Interestingly, when considering
model performance in terms of the Pearson Correlation Coefficient (𝑅2), we observe that LHS and
random sampling seem to outperform D-optimal designs. While this observation is not completely
clear from the top 100 prediction, this could suggest that D-optimality is not necessarily an
appropriate optimality criterion when the modelling problem is nonlinear, as here a linear model
with interacting factors was assumed. Further work on this matter would be required to make
conclusive remarks on this.

8

Figure S7: Comparing sampling scenarios based on D-efficiency and model performance. A) D-efficiency of Latin
Hypercube sampling and random sampling for N=50 and N=200 with respect to a D-optimal design scenario. When the
number of samples is higher, D-efficiency is higher. B, C) Model performance for D-optimal designs, Latin Hypercube
sampling, and random sampling (30 runs). Overall, no significant difference was observed between the three sampling
strategies when the number of samples is small (50 strains). However, if the number of strains built is increased to 200,
Latin Hypercube sampling and random sampling outperform D-optimal designs. D, E) For the top 100 prediction, there is
not really a pattern observed, or a significant difference between the three methods. Random sampling has a slightly larger
variance for the different runs, indicating that the other methods are more stable.

9

DBTL cycle scenario simulation for the four best performing

algorithms.
Results on the performance of algorithms over multiple DBTL cycles are reported in DBTL Cycle
strategies analysis.xlsx: Table S5

The Automated Recommendation Tool on simulated data
One notable recommendation algorithm is the Automated Recommendation Tool (ART)9. Simulated
Design-Build-Test-Learn cycles can be used to benchmark methods easily. Here, we highlight how
this can be used to evaluate the performance of different recommendation algorithms. ART outputs
a list of a predefined number of strains you want to build.

Here, five DBTL cycles were performed for ten runs, with an exploration/exploitation (𝛼) parameter
that changes over the course of the five cycles. For this example, the 𝛼-parameter was set to 0.8,
0.6,0.4,0.2 for DBTL round 2,3,4,5, respectively. ART recommendations (blue) were compared to the
method described in this paper (orange) by their best recommended strain compared to the best
performing strain in the full combinatorial space. As can be seen, ART performs better than the
Gradient Boosting recommendation strategy described in this paper. We hypothesize that this can
be attributed to the 𝛼-parameter that ART uses, as well as a slightly higher initial recommendation
strategy (Latin Hypercube sampling). Other settings might lead to different results on performance.
This would have to be further tested using simulated DBTL cycles.

Figure S8: ART is compared to the recommendation algorithm described in this study, which in this case uses Gradient
Boosting. The ART algorithm is performing better than the Gradient Boosting based recommendation algorithm in this
example.

Additional objectives for strain optimization
The focus in this paper has been on metabolic flux optimization of a synthetic pathway. In some

cases, this might not be the only factor a metabolic engineer wants to consider. Factors like biomass

growth, the accumulation of toxic intermediates, or genetic stability might need to be accounted for

when optimizing strains. In this regard, metabolic engineering can be considered a multi-objective

optimization problem, and one can then consider tools for optimization as described in10. One

10

simple solution for multi-objective optimization is that you aggregate the optimization targets (e.g.,

biomass, product formation) in one scalar value that is used as the target variable.

Figure S8 shows the biomass growth of the initial strain and the best producing strain in a multi-

species batch reactor 2. The best producing strain has less biomass growth. We therefore assume

that biomass here does not have a drastic effect on the producing capabilities of the optimized

strain. If the pathway considered here would have toxic intermediate compounds that have an

inhibiting effect on biomass growth, this could be considered by doing multi-objective

optimization10.

Figure S9: A multispecies batch bioprocess implemented using SKiMpy 2. The initial strain produces more biomass than the
best producer when computing for a glucose feed. However, the best producer produces >10 times more flux towards
product G then the initial strain. When performing multi-objective optimization, the learned target variable could be a
composition of both Biomass and flux through product G, weighted by their relative importance.

Figure S10: Intracellular metabolite concentrations for the initial strain and the best producing strain. The best producing
strain has very high levels of intracellular concentrations. If during strain optimization some metabolites are considered
toxic, this could be accounted for by giving a negative weight to high concentrations in the multi-objective optimization
problem10.

11

References
1. Averesch NJH, Krömer JO. Metabolic engineering of the shikimate pathway for production of

aromatics and derived compounds-Present and future strain construction strategies. Front
Bioeng Biotechnol. 2018;6(MAR):32. doi:10.3389/FBIOE.2018.00032/BIBTEX

2. Weilandt DR, Salvy P, Masid M, et al. Symbolic Kinetic Models in Python (SKiMpy): Intuitive
modeling of large-scale biological kinetic models. bioRxiv. Published online January 20,
2022:2022.01.17.476618. doi:10.1101/2022.01.17.476618

3. Miskovic L, Hatzimanikatis V. Production of biofuels and biochemicals: in need of an ORACLE.
Trends Biotechnol. 2010;28(8):391-397. doi:10.1016/J.TIBTECH.2010.05.003

4. Wittig U, Rey M, Weidemann A, … RK-N acids, 2018 undefined. SABIO-RK: an updated
resource for manually curated biochemical reaction kinetics. academic.oup.com. Accessed
February 11, 2023. https://academic.oup.com/nar/article-abstract/46/D1/D656/4577570

5. Choudhury S, Moret M, Salvy P, Weilandt D, Hatzimanikatis V, Miskovic L. Reconstructing
Kinetic Models for Dynamical Studies of Metabolism using Generative Adversarial Networks.
Nat Mach Intell 2022 48. 2022;4(8):710-719. doi:10.1038/s42256-022-00519-y

6. McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code. Technometrics.
2000;42(1):55-61. doi:10.1080/00401706.2000.10485979

7. Carbonell P, Faulon JL, Breitling R. Efficient learning in metabolic pathway designs through
optimal assembling. IFAC-PapersOnLine. 2019;52(26):7-12. doi:10.1016/J.IFACOL.2019.12.228

8. Jones B, Allen-Moyer K, Goos P. A-optimal versus D-optimal design of screening experiments.
https://doi.org/101080/0022406520201757391. 2020;53(4):369-382.
doi:10.1080/00224065.2020.1757391

9. Radivojević T, Costello Z, Workman K, Garcia Martin H. A machine learning Automated
Recommendation Tool for synthetic biology. Nat Commun. Published online 2020.
doi:10.1038/s41467-020-18008-4

10. Gunantara N. A review of multi-objective optimization: Methods and its applications.
http://www.editorialmanager.com/cogenteng. 2018;5(1):1-16.
doi:10.1080/23311916.2018.1502242

	Author 1: Paul van Lent
	Author 2: Joep Schmitz

	Author 3: Thomas Abeel
	Synthetic Pathway: Thermodynamic flux analysis constraints
	Synthetic Pathway: ORACLE parameter sampling additional constraints
	Training set sizes larger than 1000
	Effect of noise on predictive performance
	The automated recommendation algorithm and feature importance
	Example run of 5 cycles: GBR with 25 designs, 15% homoscedastic noise
	Statistical analysis of the optimality of designs
	D-optimality of initial sampling scenario’s

	DBTL cycle scenario simulation for the four best performing algorithms.
	The Automated Recommendation Tool on simulated data
	Additional objectives for strain optimization
	References

