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Synthetic Pathway: Thermodynamic flux analysis constraints 
We included a synthetic pathway with symbolic metabolites and reactions that was inspired on a 
real-world pathway with thermodynamics. The pathway resembles the Shikimate pathway, which is 
an important pathway for many aromatic precursors. It draws from the two substrates 
phosphoenolpyruvate and erythrose-4-phosphate and uses ATP and NADPH 1. The focus of our study 
was not to generate the best kinetic model, which would require extensive validation and testing of 
predictions made by the model. Rather, we aimed to establish a way to make kinetic models with 
desired properties that can be semi-automated to generate more than one pathway optimization 
problem for more elaborate validation of optimization strategies in future work 2,3. For the pathway 
used in this study, all the modelling constraints used can be found in the Python code that is 
provided on AbeelLab/simulated-dbtl (github.com). The most important properties are reported in 
the main text, and we further elaborate on the metabolite concentration bounds. 
 
 
Table S1:Metabolite that were included in the synthetic pathway. Seed IDs are used for adding the thermodynamic 
constraints on the flux directionality profile. For some other constraints that were used before thermodynamic flux analysis 
was performed, the SeedID values were already in the model. The concentration bounds are used for further constraining 
the solution space and were mostly taken from SABIORK4. If the concentration could not be found, we assumed that the 
concentration was bound between 0.00001 and 0.001 mol. The full parameterization can also be found in the file 
Synthetic_PathwayA.ipynb 

Metabolite name Seed ID Concentration 

A_c cpd02857 [0.000340*0.8, 0. 000340*1.2] 
mol 

B_c cpd00699 -  

C_c cpd01716 - 
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D_c cpd00383 - 

E_c cpd02030 - 

F_c cpd00932 - 

G_c cpd00216 [0.000045*0.8,0.000045*1.2] 
mol 

   

Glc-D_e Already in model [0.056*0.8,0.056*1.2] mol 

Pi_e Already in model [0.001*0.8,0.001*1.2] mol 

Co2_e Already in model [1e-7*0.8,1e-7*1.2] mol 

O2 Already in model [0.062*0.8,0.062*1.2] mol 

 

Synthetic Pathway: ORACLE parameter sampling additional constraints 
Additional constraints used for parameterization of the kinetic model are reported here and can also 
be found in the python notebook Synthetic_PathwayA.ipynb. These constraints were used from the 
tutorials provided in the SkiMPY package, although we did not at all as observed that it could lead to 
poor biomass growth in the batch fermentation simulation. The following additional constraints 
were used: 

1. Glucose transporter vmax is around 10 mmol/gDW/h 
2. The acetate transporter is unsaturated 
3. ATP maintenance is saturated 

 
Using ORACLE sampling, the following kinetic parameters were determined for each reaction (Table 
S2). 
 
 
Table S2: Kinetic parameters that were found using ORACLE sampling. ORACLE sampling finds large sets of kinetic 
parameters that are consistent with the steady-state flux defined by thermodynamic flux balance analysis. We chose a 
parameter set where the dynamics were stable and the timescales of the dynamics when perturbing a parameter are within 
the timescales of one cell-cycle (see reference for a more elaborate explanation of what is considered physiologically 
relevant in ORACLE) 5. 

Reaction Km 
substrate 1 
(μmol) 

Km 
substrate 2 
(μmol) 

Vmax  
(μmol/s) 

K 
equilibrium 

Km 
product 1 

Km 
product 2 

A 1613.07 20.03 15193.97    

B 814.68  31472.31    

C 307.26  14893.06 7799269.43 3946.54  

D 42725.09 192.59 5809120.89 30.51 227.53 0.856 

E 1695.23 3505.46 66347.89 74208.67 26345.98 1706.60 

F 1252.32 769.28 98247.12 0.048 6139.34 417.49 

G 3024.44  124061.73 672620138
10853 

74.45 2137.69 

 

Training set sizes larger than 1000  
We increased the training set sizes of Figure 4 to larger values, which would normally not be 

encountered in Metabolic Engineering, to test whether certain algorithms saturate. We noticed that 

Stochastic Gradient Descent saturates in predictive performance, even though for the top 100 

prediction it outperforms the nonlinear methods when limited in samples (N=50). We observe that 
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Random Forest and Gradient Boosting performs well for the R^2. For the four algorithms, we 

performed Bayesian hyperparameter optimization.  

 

 

Figure S1: Performance of the four algorithms when trained on set sizes of up to 5000 samples. The nonlinear ensemble 
methods are the best performers, although Neural Networks tend to also the top 100 quite well. 

 

Effect of noise on predictive performance 
We tested homoscedastic and heteroscedastic noise with 4% and 15% noise percentages. 

Homoscedastic noise is independent of the mean experimental value (Figure S2A, B). 

Heteroscedastic noise has a mean dependent standard deviation (Figure S2C, D). To assess the effect 

of noise on predictive performance, we compared the four different noise models (homoscedastic 

4% noise, homoscedastic 15% noise, heteroscedastic 4% noise, heteroscedastic 15% noise) to the no 

noise scenario. This was performed for the four best performing algorithms (linear Support Vector 

Machine, Gradient Boosting, Random Forest, and Neural Network). Each model was trained with 

Bayesian hyperparameter optimization twenty times and the top 100 prediction and R^2 value was 

calculated (see Methods). We tested for 50 samples and 200 samples and performed a multiple 

hypothesis testing corrected t-test (Bonferroni). The results are summarised in Table S3. Over the 20 

runs, we do not observe significant effects on the R^2. Sometimes differences are observed in the 

top 100 prediction for the 4% heteroscedastic noise model (Table S4).  
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Figure S2: Two different noise models with 4% and 15% noise. The level of noise for the heteroscedastic case is dependent 
on the experimentally determined mean value (I.e., variance increases with increasing mean). 

Table S3:  Results for all methods for the top R2. We tested for each algorithm between all noise models and no noise, 
which results in 10 tests for each algorithm. In the table, we report whether significant differences between a noise model 
and the no noise scenario were observed. N.s. means non-significant differences 

Algorithm N=50 N=200 

Neural Network n.s. n.s. 

Gradient Boosting n.s. n.s. 

Random Forest n.s. n.s. 

Linear SVM n.s. n.s. 

 

Table S4: Results for all methods for the top 100 prediction. Here we do sometimes observe some difference between no 
noise and the heteroscedastic model. The significantly different pairwise tests are reported in the table. N.s. means non-
significant differences. 

Algorithm N=50 N=200 

Neural Network Heteroscedastic noise (4%) n.s. 

Gradient Boosting n.s. Heteroscedastic noise (4%) 
 

Random Forest n.s. n.s. 

Linear SVM Heteroscedastic noise (4%) 
 

n.s. 

 

The automated recommendation algorithm and feature importance 
All code can be found in the comb_sampling.py file. The two most essential functions are: 

1. scan_combinatorial_space 
2. generate_frequency matrix 
3. find_set_designs (hardcoded version) 
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Here, we show an example of the predicted frequencies along the designs space for enzyme A 
(N=100). 

 

Figure S3: Frequency of promoters for enzyme A as a function of a threshold (>=J). 

Then, we take the AUC for all the promoter strengths and normalize. Doing this for every enzyme we 
get a probability distribution to sample for the next DBTL cycle. 
 

 
Figure S4: Estimated probability distribution to sample promoters from for next DBTL cycle round. 

 

We can also calculate the entropy of the probability distribution for each enzyme, which gives an 

indication of how important each enzyme (feature). As can be seen, enzyme G, C, and A are the most 

important enzymes because their entropy decreases more rapidly than others. A decrease in 

entropy indicates that the probability distribution is more biased (favours certain promoter 

strengths). 
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Figure S5: estimated entropies of the features in the learned space. As can be seen, Enzyme A, C, G have the largest 
contributions to high flux. If the entropy is 0, then this means that one promoter is completely fixed in that region where the 
flux is higher than that value. 

Example run of 5 cycles: GBR with 25 designs, 15% homoscedastic noise 
 

 

Figure S6: One example run of the fully automated recommendation algorithm. Every cycle 25 designs were built, and the 
top 100 and R^2 are calculated to follow the performance of the optimization. We noticed that in this example run the best 
performing strain is in the predicted top 100 from round three onwards. 

Statistical analysis of the optimality of designs 
Important in the implementation of DBTL cycles is the initial sampling. In this paper we have mostly 
chosen random sampling scenarios (each promoter is chosen with equal probability), but many 
other initial sampling strategies exist. For example, the Automated Recommendation Tool uses Latin 
Hypercube Sampling, which outperforms random sampling slightly (see Figure S8) 6. The effects of 
the initial sampling on model performance and optimization of DBTL cycles can be easily assessed 
using simulated DBTL cycles, both empirically and using optimality criteria such as D-optimality7. 
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D-optimality of initial sampling scenario’s 
Given that we have a linear model consisting of main-effects and interactions between features. 
Specific to our problem that has seven perturbed enzymes, the linear model could be written down 
as follows: 
 

𝑌 = 𝛽0  + ∑ 𝛽𝑖 

7

𝑖=1

𝑥𝑖  + ∑ ∑ 𝛽𝑖𝑗

7

𝑗=𝑖+1

6

𝑖=1

𝑥𝑖 𝑥𝑗  + 𝑒𝑟𝑟𝑜𝑟 

 
Here 𝑌 product flux through reaction G, 𝛽0 is an intercept term, 𝛽𝑖 are the main factor parameters, 
and 𝛽𝑖𝑗  are the interaction parameters. The number of parameters of a main-factor and interaction 

model for this case has  𝑝 =
(𝑘+1)(𝑘+2)

2
= 36  parameter terms. The model can be written in matrix 

notation as: 
 

𝑌 = 𝑋𝛽 + 𝑒𝑟𝑟𝑜𝑟 
 
Where Y is the 𝑛-dimensional response vector, and X is the 𝑛 ∗ 𝑝 model matrix8. Assuming that all 𝑛 
random errors are independent and identically distributed, the best linear unbiased estimator for 
the parameter vector 𝛽 is given by the ordinary least squares estimator: 
 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 
 
The thing we are interested in here is the inverse of the variance-covariance matrix, which is also 
known as the Fisher information matrix: 
 

𝜎−2(𝑋𝑇𝑋) 
 
A design set is referred to D-optimal when it maximizes the determinant of the Fisher information 
matrix. Such an optimality criteria can be used to measure the efficiency of a sampling scenario with 
respect to an optimal (orthogonal) design by the equation: 
 

𝐷𝑒𝑓𝑓 = [
det(𝑋𝑇𝑋)

det(𝑋𝐷
𝑇𝑋𝐷)

]

1/𝑝

 

Where 𝑋𝐷 is the D-optimal model matrix. When 𝐷𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 is close to one, the design is considered 

optimal given this criterion. To show how this might be used to assess sampling scenarios, we show 
here the optimality criterion for a Latin Hypercube sampling and Random Sampling compared to an 
optimal design strategy, implemented using the dexpy-package.  
 
Figure S7A shows the D-efficiency for random sampling and Latin Hypercube sampling (LHS) with 
respect to the D-efficiency of a D-optimal design scenario for 50 and 200 designs. A value close to 
one would indicate that the sampling strategy has a similar D- efficiency to a D-optimal design. Both 
LHS and random sampling have a low D-optimality compared to a D-optimal design, as expected. 
Also, LHS has a lower variance in D-efficiency than random sampling, which is also expected due to 
the constraints that are imposed in the Latin Hypercube algorithm. Interestingly, when considering 
model performance in terms of the Pearson Correlation Coefficient (𝑅2), we observe that LHS and 
random sampling seem to outperform D-optimal designs. While this observation is not completely 
clear from the top 100 prediction, this could suggest that D-optimality is not necessarily an 
appropriate optimality criterion when the modelling problem is nonlinear, as here a linear model 
with interacting factors was assumed. Further work on this matter would be required to make 
conclusive remarks on this.  
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Figure S7: Comparing sampling scenarios based on D-efficiency and model performance. A) D-efficiency of Latin 
Hypercube sampling and random sampling for N=50 and N=200 with respect to a D-optimal design scenario. When the 
number of samples is higher, D-efficiency is higher. B, C) Model performance for D-optimal designs, Latin Hypercube 
sampling, and random sampling (30 runs). Overall, no significant difference was observed between the three sampling 
strategies when the number of samples is small (50 strains). However, if the number of strains built is increased to 200, 
Latin Hypercube sampling and random sampling outperform D-optimal designs. D, E) For the top 100 prediction, there is 
not really a pattern observed, or a significant difference between the three methods. Random sampling has a slightly larger 
variance for the different runs, indicating that the other methods are more stable.  
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DBTL cycle scenario simulation for the four best performing 

algorithms. 
Results on the performance of algorithms over multiple DBTL cycles are reported in DBTL Cycle 
strategies analysis.xlsx: Table S5 

The Automated Recommendation Tool on simulated data 
One notable recommendation algorithm is the Automated Recommendation Tool (ART)9. Simulated 
Design-Build-Test-Learn cycles can be used to benchmark methods easily. Here, we highlight how 
this can be used to evaluate the performance of different recommendation algorithms. ART outputs 
a list of a predefined number of strains you want to build.  
 
Here, five DBTL cycles were performed for ten runs, with an exploration/exploitation (𝛼) parameter 
that changes over the course of the five cycles. For this example, the 𝛼-parameter was set to 0.8, 
0.6,0.4,0.2 for DBTL round 2,3,4,5, respectively. ART recommendations (blue) were compared to the 
method described in this paper (orange) by their best recommended strain compared to the best 
performing strain in the full combinatorial space. As can be seen, ART performs better than the 
Gradient Boosting recommendation strategy described in this paper. We hypothesize that this can 
be attributed to the 𝛼-parameter that ART uses, as well as a slightly higher initial recommendation 
strategy (Latin Hypercube sampling). Other settings might lead to different results on performance. 
This would have to be further tested using simulated DBTL cycles. 
 

 
Figure S8: ART is compared to the recommendation algorithm described in this study, which in this case uses Gradient 
Boosting. The ART algorithm is performing better than the Gradient Boosting based recommendation algorithm in this 
example.  

 

Additional objectives for strain optimization 
The focus in this paper has been on metabolic flux optimization of a synthetic pathway. In some 

cases, this might not be the only factor a metabolic engineer wants to consider. Factors like biomass 

growth, the accumulation of toxic intermediates, or genetic stability might need to be accounted for 

when optimizing strains. In this regard, metabolic engineering can be considered a multi-objective 

optimization problem, and one can then consider tools for optimization as described in10. One 
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simple solution for multi-objective optimization is that you aggregate the optimization targets (e.g., 

biomass, product formation) in one scalar value that is used as the target variable.   

Figure S8 shows the biomass growth of the initial strain and the best producing strain in a multi-

species batch reactor 2. The best producing strain has less biomass growth. We therefore assume 

that biomass here does not have a drastic effect on the producing capabilities of the optimized 

strain. If the pathway considered here would have toxic intermediate compounds that have an 

inhibiting effect on biomass growth, this could be considered by doing multi-objective 

optimization10.  

 

Figure S9: A multispecies batch bioprocess implemented using SKiMpy 2. The initial strain produces more biomass than the 
best producer when computing for a glucose feed. However, the best producer produces >10 times more flux towards 
product G then the initial strain. When performing multi-objective optimization, the learned target variable could be a 
composition of both Biomass and flux through product G, weighted by their relative importance.  

 

Figure S10: Intracellular metabolite concentrations for the initial strain and the best producing strain. The best producing 
strain has very high levels of intracellular concentrations. If during strain optimization some metabolites are considered 
toxic, this could be accounted for by giving a negative weight to high concentrations in the multi-objective optimization 
problem10. 
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