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Supplementary Methods  

 

Coral Reef Fish and Benthic Surveys 

Coral reef fish and benthic surveys were conducted between 2003 and 2019 by three separate 

monitoring programs. The protocols for each program are as follows. 

 

State of Hawaiʻi Division of Aquatic Resources – Surveys of fish biomass and benthic cover 

were conducted at a total of 23 sites across West Hawaiʻi beginning in 2003. One site was added 

in 2005 along with another in 2007. At each site, four separate 25 m x 4 m belt transects were 

demarcated via stainless steel eye-bolts affixed to the substrate to ensure that the same swath of 

reef was resampled during each subsequent survey. The four transects were arrayed in the 

alongshore direction in an “H” pattern with two deeper and two shallower transects along the 

reef shelf. Each transect was separated from all others by approximately 10 m. 

 

Fish surveys were conducted at all sites four times per year, nominally during the months of 

May, July, September, and November. During each visit, two teams of two divers surveyed all 

four transects in a single dive (two transects per team). Before beginning the survey, divers 

extended nylon lines along the full 25 m lengths of the transects. Surveyors then completed one 

‘high swim’, traversing the full transect length while identifying, counting, and sizing all highly 

mobile species within the transect area. Divers then turned around and completed a ‘low swim’, 

identifying, enumerating, and sizing all remaining species, which tend to be those that are more 

cryptic or benthic-associated. Fishes were sized according to a binned scheme wherein fishes 

with total length (TL) ≤25 cm were assigned a letter corresponding to a 5 cm bin (A = 0.1-5 cm, 

B = 5.1-10 cm, …, E = 20.1-25 cm). TL for fishes > 25cm were rounded to the nearest 5 cm 

starting at 30 cm. Along each pass, divers swam pairwise along the transect such that each was 

responsible for a separate 25 m x 2 m belt. Data from individual divers were summed together to 

yield estimates for a full 25 m x 4 m belt.  

 

Benthic surveys were conducted in 2003, 2007, 2011, 2014, 2016, and 2017. At each site, the 

transects were set up in the same manner as for fish surveys. A benthic camera operator then 

collected photoquadrats using an Olympus camera with a 0.75 m monopod attached to keep a 

consistent elevation above the benthos. Photoquadrats were collected at every m mark along all 

four transects starting at 0 m. Thus, each transect had a total of 26 images for a total of 104 

images per site. Photos were analysed post-dive via either Photogrid (2003) or Coral Point Count 

with Excel extensions (CPCe; 2007-2017). For the photo analysis process, 20 points were 

randomly overlaid on each image and the benthic cover was annotated for each point to the 

lowest possible taxonomic rank. 

 

National Park Service – A split panel design was used with 30, 25 m x 5 m belt transects in the 

Kaloko-Honokōhau National Park. Transect locations were randomly selected using ArcGIS® 

and included all fore-reef slope, hard bottom communities between 10 and 20 m depths within 

the park’s legislated boundaries. This depth range was selected for ecological and dive 

safety reasons. Fifteen fixed (permanent) transects were randomly selected at the onset of the 

monitoring program in 2007 and marked with stainless steel pins for relocation purposes. These 

sites were subsequently re-sampled each year. The remaining 15 transect locations were 

randomly selected each year of monitoring and sampled only once (temporary). Sampling was 
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typically conducted from September - November. Only the fixed sites are used in this analysis 

for the years 2014, 2016, 2017, 2018, and 2019. All fish and benthic data collection were co-

located and co-visited at each of the sites using the same SCUBA dive team. 

 

Fish surveys were conducted at each permanently marked site with a 25 m transect positioned 

typically parallel to shore along a constant depth contour. One fish observer identified, 

enumerated, and estimated the TL (to the nearest cm) of all fishes encountered along the distance 

of the transect from the bottom to the surface in the 5 m belt. The location, bearing, survey date, 

and depth of transects were recorded after each dive. To minimise observer bias, sizing 

calibration dives were conducted using fish models of known size at the beginning of each field 

season. Observer crossover training was done using two observers side by side when possible. 

 

Benthic surveys were conducted by a diver that followed the fish observer and photographed the 

substrate at 1-m intervals along the 25 m transect at a perpendicular height of 0.5 m above the 

substrate. Post hoc image analysis of the photoquadrats was conducted using 

Photogrid® software (or other suitable software such as CPCe) with 50 randomly selected points 

per quadrat image. Per cent cover was tabulated (by lowest possible taxon, preferably species) 

for coral, macroinvertebrates, and other benthic substrate types (e.g., crustose coralline algae, 

turf algae, fleshy macroalgae, or sand).  

 

The Nature Conservancy – Coral reef monitoring surveys were designed and conducted to assess 

reef resilience along West Hawaiʻi1. A total of twenty monitoring locations were identified and 

selected in consultation with the State of Hawaiʻi Division of Aquatic Resources. Most locations 

were spaced approximately ~2.5 kilometres apart except for survey locations at Honokōhau and 

Keauhou. All locations had a shallow (5–7 m) and deep (12–15 m) monitoring site, totalling 40 

sites. Surveys predominantly occurred in October 2015, 2016, 2018, and 2019. Because the 2015 

surveys were performed during the marine heatwave, coral bleaching was widespread and 

severe. For our analysis, no distinction was made between bleached and un-bleached corals (all 

included in estimates of coral cover) in our assessment of pre-disturbance benthic cover. All sites 

except Honokōhau were marked with permanent stainless-steel eyebolts beginning in 2016. Site 

photos, field notes, and compass bearings collected in 2015 were used to align installation of 

transect markers.  

 

Fish surveys (25 m x 5 m belt transects) were collected while slowly deploying parallel 25 m 

transect lines. Each diver identified, enumerated, and estimated the sizes into 5 cm bins (i.e., 0 - 

5 cm, > 5 - 10 cm, > 10 - 15 cm, etc.) all fishes within or passing through a 5 m belt. All fish 

surveys were conducted by trained divers to reduce surveyor variability. Benthic surveys were 

conducted along each 25 m fish survey transect by photographing the bottom every m using a 

Canon Powershot camera or equivalent. The camera was mounted on a 0.8 m PVC monopod to 

ensure consistent elevation above the benthos. At total of 25 images for each survey site were 

collected, with each photo covering approximately 0.8 m x 0.6 m of the bottom. A 5 cm scale bar 

marked in 1-cm increments was included in all photographs. Twenty randomly-selected 

photographs from each transect were analysed to estimate the per cent cover of coral, algae, and 

other benthic organisms. As needed, selected photographs were imported into Adobe Photoshop 

CS5 where their colour, contrast, and tone were auto-balanced to improve photo quality prior to 

analysis. Photos were analysed using CoralNet2. Thirty random points were overlaid on each 
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photograph, and the benthic component under each point was identified to the lowest possible 

taxonomic level. All photographs were processed by the same analyst to reduce potential 

observer variability. Once completed, the raw point data from each photograph was combined to 

calculate the per cent cover of each benthic component for the survey site. 

 

Statistical Analyses 

 

Temporal change – Change over time in local land-sea human impacts and environmental factors 

for each 100 m section along the 10m isobath (Fig. 1c) were calculated based on the mean 

difference between the first five years (2000–2004) and most recent five years (2015–2019) in 

the time series. The 5-year time window was used to account for year-to-year variability in 

episodic events that are common for drivers such as waves, rainfall, and sediment. The 

distributions, change over time, and variability for most all drivers are shown in Fig. S1. Fish 

biomass metrics and phytoplankton biomass data are omitted from Fig. S1 as those data were 

unavailable at annual time steps. See Extended Data Table 1 for detailed information on local 

land-sea human impacts and environmental factors, including data collection methods, data 

sources and ancillary data sets, and specific tools or software utilised. 
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Fig. S1. The distributions (left), change over time (middle), and variability (right) for land-sea human impacts and 

environmental factors included in our analyses. The distributions in mean values were calculated from the mean of 

the first five years (2000 – 2004) and the most recent five years (2015 – 2019). Change over time (‘delta’) represents 

the most recent five years minus the first five years. Variability was calculated as the standard deviation in annual 

data from 2000 – 2019. Data shown were geographically constrained to within the northern and southern latitudinal 

extent of our reef surveys (Fig. 1b). Metrics of fish biomass and phytoplankton biomass are not shown as these data 

are unavailable at the same temporal or spatial resolution (see Methods). See Extended Data Table 1 for summary 

information on the local land-sea human drivers and environmental factors included in our analyses. See 

Supplementary Methods for detailed information on calculating each driver, including data collection methods, data 

sources and ancillary data sets, and specific tools or software utilised. 
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Coral reef trajectories pre-disturbance – We assessed the change in coral cover at 23 reefs from 

2003 to 2014 (Fig. 2). A reef was considered to have a positive trajectory or negative trajectory if 

coral cover from the 2003 survey to the 2014 survey increased or decreased by greater than 3%, 

respectively (Fig. 2b). This cut off was based on the range in mean coral cover among all 23 

reefs across the 12-year period (min = 34.1%; max = 36.9%; range = 2.8%).  

 

We then quantified local human impacts and environmental factors at each reef as follows:  

  

• Human population, wastewater pollution, nutrient loading, urban runoff, annual rainfall, 

peak rainfall, SST mean, SST variability: mean of all data from 2000–2014. This time 

frame spans 3 years prior to and inclusive of the coral reef benthic data.  

• Phytoplankton biomass and irradiance: maximum monthly climatology3.  

• Sediment and wave exposure: mean of the top five events from each year spanning 2000–

2014. 

• Fishing gear restriction values were assigned to each reef surveyed based on the 2003 

marine managed area designation (see Fishing Gear Restrictions section below). 

• Depth was assigned using in-water diver assessed values and did not change over the 

2003 – 2014 time period.  

• Fish biomass metrics: mean of all surveys for each year from 2003–2014. 

 

The difference in local human impacts and environmental factors between positive and negative 

trajectory reefs were then calculated as the difference in the mean drop-one jackknife (using 

Jackknife in Matlab v2021a) values for each impact of factor (Fig 2d; sensu4). Upper and lower 

bars in Fig. 2d represent the respective maximum and minimum differences in drop-one 

jackknife values between positive and negative trajectory reefs. Prior to calculating the drop-one 

jackknife values, we identified and removed outliers that fell outside a threshold of ± 2 standard 

deviations of the median. We formally tested for a difference in the local conditions of positive 

versus negative trajectory reefs using a multivariate permutational analysis of variance 

(PERMANOVA)5 based on a Euclidean distance similarity matrix, Type III (partial) sums-of-

squares, and unrestricted permutations of the normalised data. We used a modified version of the 

pseudo-F test statistic5 that better accounted for the variation in dispersion among positive and 

negative trajectory reefs that was apparent within our data. To achieve this, the PERMANOVA 

test was completed using updated routines in the PERMANOVA+ add-on6 for Primer v77. We 

visualised the results in Fig. 2c using a constrained analysis of principal coordinates (CAP)8 to 

capture the multidimensional and correlated nature of the data (Fig. S2), and calculated the cross-

validation allocation success (a measure of group distinctness) from the leave-one-out procedure 

of the CAP analysis. Allocation success was considered indicative of a more distinct set of 

human-environmental attributes than expected by chance alone when values exceeded 50%. This 

threshold came from the possibility of each individual observation having a 50% chance of being 

placed into one of the two groups. 
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Fig. S2. Pearson correlation (r) coefficients for all the local land-sea human impacts and environmental factors used 

in our canonical analysis of principal coordinates (CAP) analysis to quantify and visualise the relative distinctness in 

local land-sea human impacts and environmental factors between positive versus negative trajectory reefs over the 

12 years pre-disturbance. See Extended Data Table 1 for summary information on local land-sea human impacts and 

environmental factors included in our analyses. See Supplementary Methods for detailed information on calculating 

each impact or factor, including data collection methods, data sources and ancillary data sets, and specific tools or 

software utilised.  
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Fig. S3. The underlying data distributions in land-sea human impacts and environmental factors shown in Fig. 2d 

and Extended Data Fig. 3. See Extended Data Table 1 for summary information on the factors included in our 

analyses. See Supplementary Methods for detailed information on calculating each factor, including data collection 

methods, data sources and ancillary data sets, and specific tools or software utilised. 

 

Coral response to the marine heatwave – Our goal was to assess the local land-sea human 

impacts and environmental factors that best explained changes in coral cover as a consequence of 

the 2015 marine heatwave. Any potential to observe change, however, could be influenced by 

variations in starting condition. Reefs with higher initial cover (like those on positive coral cover 

trajectories pre-disturbance, Fig. 2b) had greater scope for loss, and vice versa9 (Extended Data 

Fig. 5). To account for this and ensure greater comparability across reefs (Fig. S4), we calculated 

coral cover change following10 as: 

 

%difference = [(Aa,i – Ab,i)/Ab,i] × 100 
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Fig. S4. a, Relationship between coral cover just prior to the onset of the marine heatwave in 2015 (x-axis) with 

coral cover change between 2015 and 2016 (y-axis) among reefs surveyed (n = 80; see Fig. 1b in main manuscript 

for reef locations). b, same as in a but with the relationship between coral cover in 2015 and the per cent difference 

in coral cover change between 2015 and 2016. The linear relationship in a is much reduced as a result of accounting 

for starting condition when calculating coral cover change in b. 

 

We then calculated the following predictors based on current literature and our hypotheses of the 

principal factors that drive changes in coral cover owing to severe heat stress (Extended Data 

Table 1):   

 

• Human population, wastewater pollution, nutrient loading, urban runoff, annual rainfall, 

peak rainfall, wave exposure: mean of all data from 2012–2016. This time frame spans 3 

years prior to the marine heatwave through 1 year following, which is inclusive of the 

2016 benthic surveys.  

• Sediment: mean of the top 3 events from 2006–2016.  

• SST mean and SST variability: mean from 2000–2014. 

• Degree Heating Weeks (DHW): maximum value for 2015. 

• Phytoplankton biomass and irradiance: mean from June – November 2015, representing 

the time inclusive of anomalous ocean temperatures during the marine heatwave. 

• Fishing gear restriction values were assigned to each reef surveyed based on the 2015 

marine managed area designation (see Fishing Gear Restrictions section below). 

• Depth was assigned using in-water diver assessed values and did not change over the 

2014–2016 time period.  

• Fish biomass metrics: mean of fish data that were coupled with benthic surveys: 2014 (n 

= 40) or 2015 (n = 40) and 2016 (n = 80).  

 

Prior to model fitting, we identified the presence of outliers in our predictor variables as any 

point that fell outside a threshold of ± 2 standard deviations of the median. We then applied an 

additional step to retain any point above this threshold that was within 25% of the maximum 

predictor value below the threshold. This ensured that no data points were unnecessarily 

discarded from our formal model-fitting process because of applying an arbitrary threshold cut-

off for data inclusion. The following predictors were then square-root transformed to down-

weight the influence of values at the extreme ends of their distributions: all fish biomass metrics, 

wastewater pollution, urban runoff, nutrient loading, phytoplankton biomass, and peak rainfall. A 

fourth-root transformation was applied to sediment. To reduce model overfitting, Pearson’s 
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correlation coefficients were calculated among all predictors (Fig. S5), removing one of each 

pair of highly correlated (r >0.7) predictors. This resulted in the following predictors being 

removed from the model fitting process:  

 

• The mean in sea surface temperature (SST Mean) and SST variability owing to their 

strong correlation (r = 0.83 and -0.82, respectively) with Degree Heating Weeks (DWH). 

• Annual rainfall owing to the strong positive correlation (r = 0.91) with peak rainfall 

• Irradiance owing to the positive correlation (r = 0.83) with phytoplankton biomass.  

• Herbivore biomass owing to the strong positive correlation with grazer and scraper 

biomass (r = 0.76 and 0.74, respectively). 

 

To further strive for model parsimony, we a priori excluded human population from the model 

fitting process as it was a poor indicator of human driven land-to-sea impacts at local scales (see 

Fig. 1c in main manuscript). We also excluded browser biomass as they represented <10% on 

average of total herbivore biomass across all reefs prior to, during, and post-disturbance. 

Browsers also typically feed on larger fleshy macroalgae that are rare in Hawaiʻi11. In contrast, 

we include scrapers and grazers given they target small algal turfs which are the dominant fleshy 

algae across our study region12,13. 

 

The remaining 13 predictors were used in the model fitting process (Fig. S6): Total fish biomass, 

grazer biomass, scraper biomass, wastewater pollution, nutrient input, urban runoff, sediment 

input, peak rainfall, DHW, wave exposure, phytoplankton biomass, fishing gear restrictions, and 

depth. The decision of which correlated predictors to retain was based on a hypothesis-driven 

approach, in part whether the given predictor had the potential to directly (e.g., sediment input) 

rather than indirectly (e.g., annual rainfall driving sediment input) affect heat-driven coral loss. 

 

We fitted generalized additive mixed-effects models (GAMM) using the gamm47 package for R 

v4.0.2 (www.r-project.org) to model coral cover change from 2014/2015 to 2016. We 

incorporated a random spatial factor to account for the possible influence of a change in an 

underlying variable along the coastline not quantified in this study. This was done by breaking 

the coastline up into discrete 10-km sections running north to south. Section size was determined 

using hierarchical clustering based on pairwise Euclidean distances between reefs and 

identifying an inflection point in the intra-group variance (sensu14; Fig. S7). We fitted GAMMs 

for all possible candidate models (unique combinations of the predictor variables, with a limit of 

6 predictors per model to reduce overfitting) using the UGamm wrapper function, in combination 

with the dredge function in the MuMIn package15. Non-linear smoothness in the models was 

determined using penalized cubic regression splines, with the number of knots (limited to 4 to 

reduce overfitting) spread evenly throughout each covariate. We used Akaike’s Information 

Criterion with a bias correction for small sample sizes16 (AICc) for model comparison and all 

models within ΔAICc ≤ 2 of the top model (ΔAICc = 0) are presented in Extended Data Table 2. 

To visualize the effect of predictor terms on coral cover change, we averaged the coefficients 

from the top models (ΔAICc ≤ 2) to generate a predicted dataset and set all other predictor terms 

to their median value. Finally, we calculated a measure of predictor variable relative importance 

within each candidate model by calculating the sum of AICc model weights for each predictor, 

i.e., the sum of model weights across all models containing each predictor. The relative 

importance values for all 13 predictors used in the GAMM analysis were as follows: sediment 

https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.r-project.org%2F&data=05%7C01%7Cg.j.williams%40bangor.ac.uk%7C93805cb1da934c210ec408da5602a4e6%7Cc6474c55a9234d2a9bd4ece37148dbb2%7C0%7C0%7C637916866623650974%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Zp9t03Gb8KKknMCgK0u%2FHedkxuB3PtWKyERhqIEU858%3D&reserved=0
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input (0.99), scraper biomass (0.99), total fish biomass (0.90), urban runoff (0.60), phytoplankton 

biomass (0.38), wastewater pollution (0.28), peak rainfall (0.20), nutrient loading (0.19), grazer 

biomass (0.16), DHW (0.08), wave power (0.07), depth (0.06), and fishing gear restrictions 

(0.05). 

 

 
Fig. S5. Pearson correlation (r) coefficients for all predictor variables considered for the generalized additive mixed 

effects modelling (GAMM) relating coral response to the 2015 marine heatwave to local land-sea human impacts 

and environmental factors. Where r > 0.7 for any given pairwise comparison, one of the predictors was removed. 

We chose the predictor that was considered more interpretable in driving variation in the response variable should it 

come out as important in the top models. See Extended Data Table 1 for summary information on local land-sea 

human impacts and environmental factors included in our analyses. See Supplementary Methods for detailed 

information on calculating each impact or factor, including data collection methods, data sources and ancillary data 

sets, and specific tools or software utilised.  
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Fig. S6. Predictor variable distributions used in our generalized additive mixed model (GAMM) relating coral 

response to the 2015 marine heatwave to local land-sea human impacts and environmental factors. See Extended 

Data Table 1 for summary information on factors included in our analyses. See Supplementary Methods for detailed 

information on calculating each factor, including data collection methods, data sources and ancillary data sets, and 

specific tools or software utilised. 

 

 

 

 

 

 

Fig. S7. Number of groupings owing to changes in distance 

(km) calculated from hierarchical clustering using pairwise 

Euclidean distances between reefs. The number of unique 

groups showed a rapid decline up to and over 10 km. We 

therefore explored section sizes of 10 – 30 km (in 5-km 

increments) as the random factor in our generalized additive 

mixed models (GAMM). Regardless of section size, the 

random factor remained non-significant in all of our models. 



 13 

 

Coral reefs four years post-disturbance – Our goal in this analysis was to assess the local land-

sea human impacts and environmental factors that best explained variations in the cover of reef-

building organisms four years following the 2015 marine heatwave. The cover of reef-building 

organisms for reefs surveyed in 2019 (n = 55) were parsed into three categories based on the 

following percentiles: Low, ≤ 25th; Moderate, > 25th & < 75th; High, ≥ 75th. The predictors below 

were included based on current literature and our hypotheses of the principal factors that drive 

changes in reef-builder cover across space and time following a major thermal disturbance:  

 

• Wastewater pollution, nutrient loading, urban runoff, annual rainfall, peak rainfall, wave 

exposure, phytoplankton biomass, and irradiance: mean of all data from 2016–2019.  

• Sediment: mean of top 3 events over the 2006–2019 time period 

• SST mean & SST variability: mean of all data from 2000–2018. Note that 2019 was 

excluded owing to the marine heatwave that impacted Hawaiʻi17, but occurred after our 

2019 fish and benthic surveys.  

• Fishing gear restriction values were assigned to each reef surveyed based on the 2016 

marine managed area designation (see Fishing Gear Restrictions section below). 

• Depth was assigned using in-water diver assessed values and did not change over the 

2016–2019 time period.  

• Fish biomass metrics: mean of all surveys from 2016 to 2019. 

 

We used the exact same process as in our GAMM analysis to remove outliers in our predictor 

variables (see explanation above). We then square-root transformed the following predictors to 

down-weight the influence of values at the extreme ends of their distributions: total fish biomass, 

wastewater pollution, sediment input, and nutrient loading. Pearson’s correlation coefficients 

were calculated among all predictors (Fig. S8), removing highly correlated (r > 0.7) predictors. 

This resulted in the following predictors being removed:  

 

• Phytoplankton biomass owing to the negative correlation (r = -0.71) with urban runoff. 

• Annual rainfall owing to the strong positive correlation (r = 0.91) with peak rainfall.  

• Herbivore biomass owing to the strong positive correlation with total fish biomass and 

grazer biomass (r = 0.83 and 0.82, respectively).  

• Removal of the mean and variability in SST owing to the negligible range in values 

(range of 0.1ºC and 0.025ºC among reefs, respectively).  

 

For the reasons outlined in our GAMM analysis and for continuity, we also a priori excluded 

human population and the biomass of browsers from the model fitting process. The remaining 12 

predictors were used in the model fitting process (Fig. S9): Total fish biomass, grazer biomass, 

scraper biomass, wastewater pollution, nutrient input, urban runoff, peak rainfall, sediment input, 

wave exposure, irradiance, depth, and fishing gear restrictions. See the ‘Local Land-Sea Human 

Impacts and Environmental Factors’ section below for more details on how each predictor was 

derived.  

 

We used ordinal logistic regression (OLR) to determine the probability of a given reef having a 

Low, Moderate, or High cover of reef-building organisms based on our 12 predictor variables. 

Logit models are multivariate extensions of generalized linear regression models that provide 
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parameter estimates via maximum likelihood estimation (MLE) to model the relative log odds of 

observing a reef-builder cover category or less versus observing the remaining higher categories: 

 

𝑙𝑛 (
𝑃(𝑦𝑖  ≤ 𝑗)

𝑃(𝑦𝑖  > 𝑗
) =  𝐶𝑗 + 𝐵1𝑧𝑖1 + ∙ ∙ ∙  + 𝐵𝑘𝑧𝑖𝑘 

 

Here, i indexes each of N observations, with categories yi, and the left-hand side of the equation 

is the logit of the probability of a reef-builder category of j or lower, for j = 1 (High) or 2 

(Moderate). Reefs with Low reef-builder cover contributed to the regression through calculation 

of the log odds. Each Cj is an MLE-computed model intercept, and each B is the MLE coefficient 

corresponding to each standardised independent variable zik, for k = 1, …, n, where n is the 

number of predictors used in a given model. A fundamental component of this model is the 

assumption of proportional odds, or parallel regression, which implies Bk values are independent 

of the logit level j. The validity of this parallel regression assumption was ascertained using 

Brant’s Wald test18, as well as a likelihood ratio test (α = 0.05). 

 

All possible candidate models were computed, with the total number of predictors in any given 

candidate model limited to 4 (to reduce overfitting and to account for the lower response variable 

replication compared to our GAMM analysis). Models were computed using the multinomial 

logistic regression function mnrfit in Matlab v2021a. We used AICc for model comparison and 

all models within ΔAICc ≤ 2 of the top model (ΔAICc = 0) are presented in Extended Data Table 

3. We combined this model selection procedure with an interpretation of the covariates to refine 

our model selection. Simply selecting the model with the smallest AICc (i.e., top-ranking model) 

could result in a model with an equally sufficient goodness of fit being ignored despite that 

model potentially containing parameter estimates that are more consistent given the variability in 

the underlying data. McFadden’s pseudo-R2 was computed for the highest ranked models, and 

ranged from 0.20 to 0.22. Unlike traditional R2 values, McFadden’s pseudo-R2 values of 0.2–0.4 

represent an excellent fit19. Models within ΔAICc ≤2 of Model 1 in Extended Data Table 3 

demonstrated comparable levels of goodness of fit and parsimony20,21. Many of the parameter 

coefficients within these models were very sensitive to the data and their estimates did not differ 

significantly from zero (p < 0.05). These probabilities were computed using a normal distribution 

and we compared this outcome with a Student’s t-test to compute the p values, setting the 

parameter ‘EstDisp’ equal to ‘on’ in the mnrfit function. The results remained largely the same 

using both approaches. Models 1 and 2 contained parameters with coefficient estimates 

significantly different from zero, namely scraper biomass and wastewater pollution. We 

therefore examined changes in the probability of a given reef having Low, Moderate, or High 

reef-builder cover based on variations in these two land-sea predictors (Fig. 4). Probability 

curves for High, Moderate, and Low were calculated based on changing Scraper Biomass and 

Wastewater Pollution and holding all other predictors at their mean.  
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Fig. S8. Pearson correlation (r) coefficients for all predictor variables considered for the ordinal logistic regression 

(OLR) relating the percentage cover of reef-builders (hard coral + crustose coralline algae) four years following the 

2015 marine heatwave to local land-sea human impacts and environmental factors. Where r = > 0.7 for any given 

pairwise comparison, one of the predictors was removed. We chose the predictor that was considered more 

interpretable in driving variation in the response variable should it come out as important in the top models. See 

Extended Data Table 1 for summary information on local land-sea human impacts and environmental factors 

included in our analyses. See Supplementary Methods for detailed information on calculating each impact or factor, 

including data collection methods, data sources and ancillary data sets, and specific tools or software utilised.  
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Fig. S9. Predictor variable distributions used in our ordinal logistic regression (OLR) relating the percentage cover 

of reef-builders (hard coral + crustose coralline algae) four years following the 2015 marine heatwave to local land-

sea human impacts and environmental factors. See Extended Data Table 1 for summary information on factors 

included in our analyses. See Supplementary Methods for detailed information on calculating each factor, including 

data collection methods, data sources and ancillary data sets, and specific tools or software utilised. 

 

Resource management scenarios – The resource management scenarios presented in Fig. 4b 

were selected based on the following rationale. We chose 250 kg ha-1 as the management target 

for scraper biomass as this value is close to the biomass of scrapers within Kealakekua Bay, a 

marine protected area where no fishing has been allowed since 1969. The long-term mean 

(2003–2019; n = 17) in scraper biomass is 243 kg ha-1 while the short-term mean (2016–2019; n 

= 4) is 302 kg ha-1. Our value is more aligned with the long-term mean to represent a more 

conservative estimate of scraper biomass on a reef with fisheries protection. In addition, we 

compared our upper (250 kg ha-1) and lower (30 kg ha-1) scraper biomass values to the 

distribution of scraper biomass among all reefs (n = 80) in 2019, the most recent time point in 

which all reefs were surveyed within the same year (Fig. S10). The upper and lower limits 

represent the 92nd and 36th percentile, respectively. For wastewater pollution, we used our 2019, 

100 m grid cell values that fell along the 10m isobath (same as Fig. 1c) but constrained the 

latitudinal extent to be consistent with the northern- and southern-most locations of the 2019 reef 

surveys. This approach provided far greater replication and a more representative assessment of 
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wastewater pollution along the coastline for which to assess our management scenarios. The 

upper (600,000 L ha-1) and lower (2,500 L h-1) values chosen for wastewater pollution 

represented the 95th and 36th percentiles of the 2019 distribution, respectively (Fig. S11).  
 

 
Fig. S10. Distribution of scraper biomass in the most recent year (2019) in which all reefs (n = 80) were surveyed 

for reef fish. Scraper biomass bars are in 50 kg ha-1 intervals except for the last bar that is the sum proportion of all 

reef surveys between 300–672 kg ha-1, which is the maximum biomass value. Inset figure represents the cumulative 

density estimate, where the height of each bar is equal to the cumulative relative number of observations in the bar 

and all previous bars. Scraper biomass from the monitoring site within Kealakekua Bay, a marine protected where 

no fishing has been allowed since 1969, is shown in red. The vertical dashed and solid red lines represent the long-

term average (243 kg ha-1; 2003–2019; n = 17) and recent average (302 kg ha-1; 2016–2019; n = 4) scraper biomass, 

respectively. The horizontal dashed and solid red lines are the intersection of these respective biomass values along 

the y-axis, which is the relative proportional or percentile values for the long-term average (0.92) and more recent 

average (0.93) in scraper biomass. 
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Fig. S11. Distribution of wastewater pollution from our 2019, 100 m grid cell values that fell along the 10 m isobath 

(same as Fig. 1c) within the northern and southern latitudinal extent of the reef surveys (Fig. 1b). Inset figure 

represents the cumulative density estimate, where the height of each bar is equal to the cumulative relative number 

of observations in the bar and all previous bars. The management scenarios for the upper (600,000 L ha-1) and lower 

(2,500 L h-1) wastewater pollution in our manuscript represented the 95th and 36th percentiles of the 2019 

distribution, respectively.  

 

 

Geospatial Analyses 

 

Unless otherwise specified, all geospatial analyses were conducted in ArcGIS Desktop 10.6 and 

all tools named below are geoprocessing tools in ArcGIS Desktop.  

 

Raster ocean and land mask – A 100 m resolution data mask differentiating land pixels versus 

ocean pixels was derived from high resolution shoreline data for Hawaiʻi Island22 in coordinate 

system UTM 4N, NAD1983. Pixels containing any amount of ocean area were given priority 

during rasterization and designated ocean pixels (i.e., land pixels must contain 100% land area). 

The ocean portion of the mask extends 5 km offshore – a distance that generously encompasses 

all shallow coral reef habitat. This data layer was used as the snap raster environment setting to 

ensure common extent and grid alignment during processing and creation of all final raster 

layers, as well as to remove land area from intermediate raster datasets when needed. Unless 

specified otherwise, when vector data (point, line, polygon) was converted to raster it was done 

at a 100 m resolution and snapped to this grid. 

 

Extracting driver data values to reef survey sites – For all raster format data sets, the ‘Extract 

Multi Values to Points’ tool was used to assign raster cell values based on the pixel that each reef 

survey fell inside. For all other data sets, each reef survey was assigned values based on the 
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centroid of the closest land-sea human impact or environmental factor data point using the 

‘Spatial Join’ tool. See below for specific details on each local land-sea human impact and 

environmental factor dataset.  

 

Local land-sea human impacts and environmental factors 

 

Human Population Density – NASA Gridded Population of the World v4 (GPWv4) data is 

available at 30 arc-second resolution (~1 km) and represents the number of people living in each 

pixel. This is a global dataset and the quality of census information varies by country. For the 

United States, the input data to the gridding process for our region was census-block level 

population, which represents the finest resolution available from the US Census Bureau. The 

dataset is based on 2010 census population data and used county level growth rates calculated 

from 2000–2010 to produce gridded population data at 5-year intervals from 2000–2020.  

 

The Island of Hawai‘i was extracted from the global GPW v4 dataset and projected to UTM at 

907.5 m resolution (Fig. S12). The ‘Focal Statistics’ tool was used to calculate the total 

population within 15 km of each oceanic pixel in our study region. Output rasters were clipped to 

cover nearshore waters from the shoreline to 5 km offshore. Linear interpolation by pixel was 

used to generate rasters for missing years and to produce annual time steps of human population 

density for years 2000–2019. 

 

 

https://doi.org/10.7927/H4JW8BX5
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Fig. S12. Human population density on land from NASA GPW v4 and calculated data layer showing the total 

population within 15 km of each nearshore oceanic pixel for years 2000 (left), 2019 (middle), and increase from 

2000 to 2019 (right).  

 

Wastewater Pollution - Onsite sewage disposal systems (OSDS) (e.g., cesspools, septic tanks, 

aerobic treatment units) and injection wells are prevalent in Hawai‘i, where municipal sewer 

infrastructure does not exist for a majority of residences. We mapped wastewater effluent and 

nutrient input from OSDS and injection wells into coastal waters at 100 m resolution in annual 

time steps from 2000–2017 across the study region (Fig. S13–S15). We produced two sets of 

driver layers: total effluent (L ha-1 yr-1) and nitrogen input (kg ha-1 yr-1). Values from 2017 were 

used for 2018 and 2019.  

 

OSDS and injection well data were obtained from the Hawai‘i Department of Health. OSDS 

locations are based on centroids of Hawai‘i County Tax Map Key parcel data. OSDS and 

injection wells have estimated effluent and nutrient fluxes based on the number of bedrooms and 

bathrooms that they service and the type of system in use23. Injection well locations, effluent 

rates and nutrient concentrations were based on data extracted from the Hawai‘i Department of 

Health Underground Injection Control Permit records24. OSDS and injection wells were assigned 

a date that they went into service based on available County and State records, and were updated 

by extracting more recent data from the Hawai‘i Department of Health Individual Wastewater 

System Permit Database25. Nutrient loading and discharge rates were updated based on a more 

recent assessment for West Hawai‘i26. We limited OSDS and injection wells to those within a 1-

year ground water travel time of the coast, based on 3D ground water modelling with 

MODFLOW and MODPATH23. Within the 1-year travel time zone in West Hawai‘i, there were 

5,156 OSDS records (3,574 in operation in the year 2000 increasing to 4,933 in 2017). Of these, 

1,049 OSDS records (20%) could not be constrained to a start date of service. Since relevant 

records started to be maintained in digital databases in the mid 1990’s we assumed that all of 

these OSDS with missing dates went into service before the year 2000 (i.e., the starting time 

period of our study). On Hawaiʻi Island there are 32 injection wells, 5 of which fall inside the 1-

year travel time zone in our study region. Wastewater effluent and nutrient loading from each 

OSDS and injection well were assumed to flow to the nearest point on the shoreline and then 

plume outward from there using a Gaussian decay function with distance from shore 

approaching zero at 2 km offshore (sensu3). 
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Fig. S13. Map of onsite sewage disposal 

systems (OSDS) and injection wells across 

our study region in West Hawai‘i. The purple 

line delineates the 1-year travel time in the 

groundwater to reach the coast and was used 

as a cut-off for inclusion of onsite sewage 

disposal systems (OSDS) and injection wells 

in this analysis.  
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Fig. S14. These maps zoomed in to Kailua-Kona illustrate the sequential process of deriving wastewater pollution 
from OSDS and injection well location data. A) OSDS and injection well locations (circles) symbolised by effluent 
input into the environment: small, light green circles represent lower effluent and larger, dark green circles represent 
higher effluent. The purple line represents the 1-year travel time of groundwater to the coast. B) Total effluent from 
OSDS and injection wells summed within 100 m pixels, with increasing values represented by light to dark green 
shading. Zones connecting OSDS and injection wells to the nearest pixel on the shoreline are outlined in black. C) 
Zones coloured by increasing total effluent (the sum of effluent pixels shown in panel B by zone; light to dark 
green), overlaid with OSDS and injection well locations (small grey crosses), and the terminal point of each zone 
along the shoreline symbolised by increasing total effluent (light to dark grey circles of increasing size). Terminal 
points have identical effluent values to their corresponding zones and are used as the source features for offshore 
dispersal with a Gaussian decay function (light blue to dark orange shading represents low to high effluent input). 

  

Fig. S15. Total effluent from 

OSDS and injection wells to 

coastal waters for years (A) 2000, 

(B) 2017, and (C) the change 

from 2000 – 2017. Note that the 

units are 1000 L ha-1. 
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Nitrogen Input – We calculated nutrient input as the combination of total nitrogen from 

wastewater pollution (i.e., onsite sewage disposal systems and injection wells; Fig. S15) and golf 

courses (Fig. S16 – S18). See Wastewater Pollution section above with respect to quantifying 

nutrient input from wastewater.  

 

For golf courses, we developed a series of maps representing nitrogen input from golf course 

runoff and leeching to groundwater at 100 m resolution for the years 2001 – 2017. The maps are 

based on the total area of golf course within drainage basins upslope of nearshore waters. Golf 

course area was derived from NOAA Coastal Change Analysis Program (CCAP) land-use/land-

cover data and Landsat 7 and 8 cloud-free composite images created with Google Earth Engine. 

Golf course area was multiplied by a nitrogen application rate of 585 kg ha-1 yr-1 27,28 and then by 

a leaching rate of 32%29-31 to estimate flux of nitrogen that runs off or reaches the groundwater. 

We also imposed a decrease in the amount of nutrients reaching the coast with increasing 

distance inland according to the following logic: golf courses < 5 km from the coastline, we 

assume 100% of leached nutrients reach the ocean; from 5–10 km the proportion of nutrients 

reaching the coast decreases linearly from 100–0%; no golf courses are located beyond 10 km 

from the coast. We used sub-watershed catchment polygon data from USGS Stream Stats32 to 

estimate nutrient transport from golf courses to the coastline. We then evenly distributed 

nutrients along the coastal line segments of drainage polygons and used those as the source 

features to plume nutrients offshore using a Gaussian decay function with distance from shore 

(Kernel Density tool), approaching zero at 2 km offshore (sensu3).  

 

 
Fig. S16. Maps zoomed in to Kailua-Kona illustrate the sequential process of deriving the wastewater nitrogen input 

from point source OSDS and injection well location data. A) OSDS and injection well locations (circles) symbolised 

by nitrogen input into the environment: small, light green circles represent lower nitrogen input and larger, dark 

green circles represent higher nitrogen input. The purple line represents the 1-year travel time of groundwater to the 

coast. B) Total nitrogen input from OSDS and injection wells summed within 100 m pixels, with increasing values 

represented by light to dark green shading. Zones connecting OSDS and injection wells to the nearest pixel on the 

shoreline are outlined in black. C) Zones coloured by increasing total nitrogen input (the sum of N flux pixels shown 

in panel B by zone; light to dark green), overlaid with OSDS and injection well locations (small grey crosses), and 

the terminal point of each zone along the shoreline symbolised by increasing total nitrogen input (light to dark grey 

circles of increasing size). Terminal points have identical nitrogen flux values to their corresponding zones and are 

used as the source features for offshore dispersal with a Gaussian decay function (light blue to dark orange shading 

represents low to high nitrogen input). 

 

http://www.coast.noaa.gov/htdata/raster1/landcover/bulkdownload/hires
https://earthengine.google.com/
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Fig. S17. Maps zoomed in to Keāhole Point vicinity illustrate the sequential process of deriving golf course nitrogen 

runoff from golf courses. A) Golf course footprints extracted from satellite imagery, coloured by the first year in 

which they appear in our time series of Landsat cloud free composite images (yellow to red to blue colouring), 

overlaid with USGS sub-watershed catchments (grey lines). B) Catchment polygons aggregated into larger drainage 

polygons that reach the coastline, coloured by the area of golf course contained in each (increasing from light to 

dark green). Golf course footprints are shown in dark grey. C) Drainages coloured by estimated nitrogen from golf 

courses reaching the coast (light to dark green) based on nitrogen application rate, leaching rate, and distance inland 

from coast. Coastline segments of each drainage are symbolised by the nitrogen load of the corresponding drainage 

(increasing from light to dark purple) and used as the input source features for offshore dispersal by a Gaussian 

decay function (light blue to dark orange shading represents low to high nitrogen input). Golf course footprints are 

coloured by distance inland from coast (increasing from light beige to red). 

 

  

Fig. S18. Combined nitrogen 

input from OSDS, injection 

wells, and golf courses into 

coastal waters for years (A) 

2001, (B) 2017, and (C) the 

increase in nitrogen input from 

2001 – 2017.  
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Urban Runoff – We used the total area of impervious surfaces (e.g., paved roads, car parks, 

pavements, and roofs) as a proxy for urban runoff into the ocean that includes household 

chemicals, oils, trash, sediments, and other pollutants. We derived proxy layers for the impact on 

nearshore reefs based on the total area of developed impervious surface within 10 km of the 

coastline by watershed at 100 m resolution (Fig. S19–S20). We extracted impervious surface 

cover from NOAA CCAP land use land cover data from 1992, 2001, 2005, and 2010. We also 

digitised 2017 impervious surface cover from a single cloud-free Landsat 8 image (30 m 

resolution, 15 m pan-sharpened). We used sub-watershed catchment polygon data from USGS 

Stream Stats32 to aggregate the impervious surface area by drainage to coastal source pixels and 

plumed the values offshore from there using a Gaussian decay function with distance from shore 

(Kernel Density tool), approaching zero at 2 km offshore (sensu3). CCAP data is available as 

follows: CCAP 30 m resolution is available from 1992–2005 and CCAP 2.4 m resolution from 

2005 and 2010 We aggregated 2005 and 2010 high resolution impervious surface to 28.8 m 

resolution, the closest approximation to 30 m without resampling (2.4 x 12 = 28.8), before 

processing. Aggregated 2010 impervious surface was used as the starting reference point for 

digitizing 2017 land cover, which was subsequently converted to raster at 28.8 m resolution. For 

2005, there are both high resolution (2.4 m) and regional (30 m) CCAP products available. We 

took advantage of this by running the offshore dispersal of impervious surface area from both 

2005 products and created a spatial calibration factor raster based on the ratio of the two layers. 

We multiplied the 2010 and 2017 data by this calibration factor so that impervious surface 

change is consistent and comparable across time steps. We filled missing years by linear 

interpolation across years to produce annual maps. Values from 2017 were used for years 2018 

and 2019. 

 
Fig. S19. These maps zoomed in to Kawaihae Bay area illustrate the process of deriving our proxy layer for urban 

runoff from impervious surface land cover data. A) Impervious surface land cover footprint (black) for an example 

year overlaid with sub-watershed drainage polygons clipped to 10 km inland. B) Drainage polygons coloured by 

area of impervious surface (light to dark green), and dispersal offshore by Gaussian kernel decay function (light blue 

to dark orange shading represents low to high urban runoff).  

 

https://earthexplorer.usgs.gov/
http://www.coast.noaa.gov/htdata/raster1/landcover/bulkdownload/30m_lc
http://www.coast.noaa.gov/htdata/raster1/landcover/bulkdownload/hires
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Rainfall – We quantified annual time steps for two metrics of rainfall – annual rainfall and peak 

rainfall – from 1990–2019. Data for daily rainfall in mm by rain station was compiled, gap-filled, 

and updated with support of Ryan Longman (University of Hawaiʻi)33,34. We filtered rain stations 

and only included those that had at least 80% of daily observations for each year (Fig. S21). The 

annual rainfall and peak rainfall (i.e., maximum 3-day rainfall total) at each station was 

calculated and used to derive interpolated surfaces of each metric by year with Empirical 

Bayesian Kriging in ArcGIS (See Fig. S24A for example). USGS ArcHydro-derived 

subwatersheds32 clipped to 0–10 km from the coast were used to calculate total annual and peak 

rainfall per drainage area. The resulting values were dispersed offshore from coastal line 

segments of watersheds using a Gaussian decay function with distance from shore, approaching 

zero at 2 km offshore (Fig. S22). The final rainfall driver layers are 100 m resolution.  
 

  

Fig. S20. Maps showing the 

impervious surface land use 

footprint on land (black) 

within 10 km inland of the 

shoreline (green line), and 

derived proxy for urban 

runoff into coastal waters for 

years (A) 1992, (B) 2017, 

and (C) the increase from 

1992–2017. 
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Fig. S21. Locations of rain stations used in this 

project symbolised by number of years with 

sufficient data to be included, and watershed 

boundaries (a hybrid of USGS WBD HU10 and 

HU12 data).  
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Sediment Input – Here we quantified sediment input to nearshore waters at annual time steps 

from 1990 – 2019 at 100 m resolution (Fig. S23 – S24). We used the Integrated Valuation of 

Ecosystem Services and Tradeoffs (InVEST) sediment delivery model to derive long-term 

annual average sediment input reaching the coast35-37. We then dispersed coastal sediment values 

offshore (sensu3). This long term annual average sediment input dataset was modulated over time 

by watershed based on storm discharge calculated from daily rainfall data updated through 2019 

and fully gap-filled33,34 (see Rainfall above). We calculated the annual maximum 3-day rainfall 

total for each rain station location (‘peak rainfall’), then produced interpolated surfaces for each 

year and summarized them by a hybrid of HUC10/HUC12 scale watersheds from the USGS 

National Hydrography Dataset. The USDA Natural Resources Conservation Service (NRCS) 

methodology for calculating direct runoff of rainfall based on storm rainfall38 was used to 

calculate discharge from the peak rainfall event for each watershed in each year. The curve 

number (CN) raster used to calculate discharge was derived from 2010 CCAP data, gSSURGO 

soil hydro group data, and the NRCS handbook39. Sediment load was assumed to scale with 

Fig. S22. Map showing the annual 

total (A) and peak 3-day total (B) 

rainfall for example year 2001. 

Totals from interpolated rainfall 

by watersheds clipped to 10 km 

inland are shown on land, and 

dispersed offshore. Layers are 

symbolised relative to the range in 

values over the full 30-year time 

series (1990–2019). In 2001, the 

highest peak rainfall occurred in 

Kaʻū (far southern coastline) as 

well as south Kohala, while total 

rainfall was moderate to low for 

most of the study area. In many 

years there are more similar 

spatial patterns between the two 

metrics with the same areas 

experiencing both high total and 

peak rainfall.  
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discharge according to approximate ratings curve as follows40: sediment = a x Q2. Where Q is 

storm water discharge volume, and a is a calibration factor. A weighting factor was calculated 

for each watershed-year based on squared discharge and then multiplied by the annual average 

sediment layer. This works out such that taking the average of all annual sediment time steps will 

reproduce the original InVEST-based average annual sediment layer, and the sum of all annual 

sediment time steps will produce the average annual sediment layer multiplied by n years.  

 

 
 

Fig. S23. Maps showing the static data 

input components used to produce the 

annual time series of sediment input. A) 

Average annual sediment load in tons by 

subwatershed (light yellow to brown; from 

0-10 km inland), and average annual 

sediment load dispersed offshore with 

Gaussian kernel decay function (light pink 

to dark red). All values were derived from 

InVEST sediment delivery modelling. B) 

Curve number (CN) raster used in 

calculation of surface runoff (discharge) 

from rainfall data. CN values represent the 

runoff potential of hydrologic soil-cover 

complexes. Low values of CN represent 

low runoff potential and occur in highly 

permeable areas where the ground can 

absorb large amounts of rainfall before 

surface runoff occurs. High values of CN 

reflect areas where very little rainfall is 

required before surface runoff occurs (i.e., 

high runoff potential). The CN raster was 

derived by combining high resolution 

NOAA CCAP data (2010) and USGS soil 

hydro-group data (gSSURGO). CN values 

were assigned following the NRCS 

hydrology handbook26. Note that CN 

values of zero are displayed as no-colour 

and therefore the satellite image 

background shows through in these areas. 
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Fig. S24. Maps showing intermediate steps and final output of sediment pollution for example year 2019. A) Rain 

station locations (circles) coloured by 2019 observed peak rainfall and interpolated 2019 peak rainfall surface with 

comparable symbology to rain station points (light beige to yellow to green), watershed boundaries (grey lines), 

and 2019 means of peak rainfall by watershed shown by offshore watershed zones (light to dark blue shading). 

Watershed-scale peak rainfall means are then combined with watershed-scale average CN values to calculate 

storm water runoff by watershed. B) Annual scaling factor by watershed (light to dark pink shading; the 2019 

proportion of the 30-year total peak 3-day storm discharge squared, for each watershed), and the final sediment 

export driver layer for year 2019 (light green to dark red shading nearshore along the coast). Watersheds with a 

value of zero (no colour) did not receive a large enough peak rainfall event to generate sediment runoff in the 

given year. 



 31 

Fishing Gear Restrictions – Fishing regulation information and marine managed area (MMA) 

boundary designations were obtained from3. All MMA regulations were evaluated for whether 

the following gear categories or types of fishing were allowed that target reef fin fish: line 

fishing, lay nets, spear fishing, and aquarium collection. Areas that are explicitly full no-take 

with regard to reef fin fish were also recorded as such. We summarised the existing regulations 

into six categories for our study region (Table S1). 
 

Table S1. Categories of fishing gear restrictions based on whether different gears or types of fishing that target reef 

fin fish only are allowed in each area across our study region. 

Gear Category Rank 

Full No-Take 1 

No Lay Net, No Spear, No Aquarium 2 

No Lay Net, No Aquarium 3 

No Lay Net 4 

No Aquarium Collection 5 

Open to all gears 6 

 

We tracked changes to fishing gear regulations over time from 2000–2019. We consulted 

Hawai‘i Division of Aquatic Resources (DAR) staff, news articles about regulation changes and 

MMA establishment, and historical versions of relevant Hawai‘i Administrative Rules accessed 

via the Internet Archive Wayback Machine.  

 

Below is a brief summary timeline of changes through time in fishery gear regulations across 

West Hawaiʻi: 

 

1. December 31, 1999: West Hawai‘i Regional Fisheries Management Area established 

consisting of 9 Fish Replenishment Areas (FRAs), that ban aquarium collection. 

2. August 1, 2005: Four new Netting Restricted Areas (NRA; no lay nets) established plus 

lay net ban rules extended to 2 of the FRAs. In addition, lay netting was restricted in 

waters deeper than 24.4 m (80 ft) for all of West Hawai‘i.  

3. December 26, 2013: A new FRA was established at Ka‘ohe (‘Pebbles Beach’) and 

aquarium ban rules were officially extended to most existing MMAs and FMAs. There 

were also several new region-wide rules that went into effect including: No SCUBA 

Spear; No take of sharks and rays; No aquarium take except for an established list of 

species by DAR (i.e., ‘White List’ species).  

4. July 29, 2016: Ka‘ūpūlehu Marine Reserve established a no-take MMA within the existing 

boundaries for areas that are shallower than 36.5 m depth (~120 ft). 

 

We derived multiple GIS layers of fishing gear regulations corresponding to dates of rule 

changes by location. To assign fishing gear rank to each reef survey site, we subset the survey 

data by date and used the Spatial Join tool with the fishing gear layer corresponding to the dates 

in the subset. We used the exact position coordinates of each reef survey site to determine 

whether a site was inside of an MMA. We then used a 25 m search distance to assign values for 

the most restrictive fishery regulations for each site, as in some cases reef surveys fell within 

overlapping MMAs. The search radius was included following the logic that reef surveys 

represent 25 m transects with positional accuracy of +/-10 m. Therefore, a survey point that fell 

https://archive.org/web
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just outside a given MMA boundary may represent a survey that was actually inside or at least 

partially inside the MMA boundaries. See Fig. S25 for the spatial distribution in fishing 

restrictions along West Hawaiʻi.  

 
Fig. S25. Map showing fishing gear restrictions and corresponding rank from highly restrictive to open to all gear 

types (1 to 6, respectively), for each gear restriction category in West Hawaiʻi.  
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Sea Surface Temperature – We used daily 5-km resolution sea surface temperature data obtained 

from NOAA’s Coral Reef Watch from 2000–2019. The summertime mean (SST mean) and 

summertime variability (SST variability) SST metrics were obtained by calculating the mean and 

standard deviation over a 90-day window centred on the maximum value of the 7-day moving 

window average for each SST pixel. The regional temperature data (Fig. 3a) was calculated by 

taking the mean of all coastal pixels across our study region for each time step. All pixels that 

directly overlapped with land were removed prior to assigning values to reef survey sites. Note 

that 2019 was excluded in the OLR analysis owing to the marine heatwave that impacted 

Hawaiʻi17, but occurred after our 2019 fish and benthic surveys. All data were NOAA’s Coral 

Reef Watch 5 km Coral Temp v3.1 data set (https://coralreefwatch.noaa.gov/product/5km)41. See 

Fig. S26 for the long-term mean in SST metrics across the study region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heat Stress – We explored numerous metrics to quantify the heat stress endured by reefs across 

our study region during the 2015 marine heatwave. All values were calculated over the July – 

November 2015 period. All data were NOAA’s Coral Reef Watch 5 km Coral Temp version 3.1 

data set41. Note that the bleaching threshold is a pixel specific value calculated as 1C above the 

climatological maximum monthly mean.  

 

Fig. S26. Map showing the mean (A) and 

standard deviation (B) in summertime SST 

across the study region. Maps show the 

long-term mean from 2000–2018. 

https://coralreefwatch.noaa.gov/product/5km
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• Degree Heating Week (DHW): represents the accumulation of heat stress above the 

bleaching threshold over a 12-week period. DHW is the dominant metric in coral reef 

research to quantify heat stress on corals.  

• Maximum HotSpot: represents the maximum daily temperature above the bleaching 

threshold during the marine heatwave.  

• Maximum SST Anomaly: represents the maximum daily temperature above the 

climatological maximum during the marine heatwave. 

• Maximum SST: represents the maximum daily temperature during the marine heatwave. 

 

Ultimately, we found that all of the above heat stress metrics were highly correlated (r > 0.8). 

We therefore used DHW as the preferred heat stress metric given that it is widely understood and 

used by coral reef scientists across the world. 

 

Ocean Colour – Satellite derived chlorophyll-a (mg m-3) – a proxy for phytoplankton biomass – 

was obtained from two sources (Fig. S27). We used the maximum climatological mean from 

2002–2013  of 8-day, 4 km data obtained from3. These data were used to quantify differences in 

phytoplankton biomass between reefs with positive versus negative trajectories pre-disturbance 

(Fig. 2d, Extended Data Fig. 3).  

 

For all subsequent figures and analyses presented in the paper, we used VIIRS (Visible Infrared 

Imaging Radiometer Suite) provided by NOAA’s Coral Reef Watch 

(https://coralreefwatch.noaa.gov/product/oc/index.php). This satellite, which provided ocean 

colour data starting in 2014, offered much higher spatial (750 m) and temporal (daily) resolution 

ocean colour information for assessing values of chlorophyll-a and irradiance for coral reefs 

(Fig. S27b). As part of the GAMM analysis in which we assessed the factors that modified coral 

response to the marine heatwave, we took the mean for each pixel for all of 2015 and for only the 

months spanning the marine heatwave (July–November 2015). For the ordinal logistic regression 

analysis in which we assessed the factors that best explained variation in reef-builder cover 4 

years following the marine heatwave, we took the mean of each pixel from 2016–2019. 

However, owing to the high cloud cover, numerous days along various areas across our study 

region contained no data during these time periods. 

 

To account for the unequal data availability owing to clouds, poor data quality, or other factors, 

we first set a threshold of data exclusion: all pixels that contained less than 1 retrieval per week 

on average were removed. We then calculated bootstrapped means (resampled with replacement 

10,000 times) of chlorophyll-a/irradiance for each pixel for each time period. The maximum 

sample number used as input for each of the 10,000 bootstrapped means represented 90% of the 

threshold of 1 retrieval week-1, or ~12% of data available for each pixel. Limiting data inclusion 

for each bootstrapped mean ensured that all means for each pixel were based on the same sample 

number. All ocean colour data were masked to account for optically shallow waters (sensu42). 

 

https://coralreefwatch.noaa.gov/product/oc/index.php
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Wave Exposure – The main Hawaiian Islands have a complex wave climate including persistent 

trade wind seas, year around south swells, and seasonal north swells as well as waves from 

tropical and subtropical cyclones passing nearby43. Due to its southeastern location within the 

Hawaiian archipelago, West Hawaiʻi is generally protected from northerly swells and therefore 

does not experience the annual peak in wave forcing similar to that of Kauaʻi, Oʻahu and Maui43. 

Nevertheless, we include wave exposure as a predictor in our analyses given that spatial and 

temporal gradients in wave forcing were present within the study period (Fig 1c, Fig. S28).   

 

The multi-modal sea states varying with time and space are characterised by wave height, period, 

and spectrum. Wave power determined by these three factors provides a good representation of 

the wave exposure at reef sites. Due to the lack of direct buoy measurements, we obtain wave 

power for the west of Hawai‘i Island from a hindcast dataset generated by the numerical wave 

model system assembled by44. The system comprises the third generational spectral wave models 

WAVEWATCH III45 and SWAN (Simulating Waves Nearshore)46 on a suite of nested grids 

from globe to nearshore as shown in Fig. S28. The regional WAVEWATCH III model covers 

Fig. S27. Map showing the 

phytoplankton biomass (i.e., 

chlorophyll-a) from A)3. (B) 

VIIRS. The VIIRS data provide 

much higher spatial resolution 

(750 m versus 4 km) but are only 

available from 2014 onwards. 

Example year of 2015 shown. 
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the major Hawaiian Islands with 3 arcminute resolution (~5.5 km). It is nested within the global 

WAVEWATCH III model from 77.5° S to 77.5° N with 0.5 arc-degree resolution and in turn 

provides the directional wave spectra as boundary conditions for the SWAN grids for O‘ahu, 

Kaua‘i, Maui, and Hawai‘i Island with 18-arcsecond resolution (~550 m). The island-scale 

SWAN model can resolve the wave transformation over the insular shelf and further defines the 

boundary conditions for the nested SWAN model covering west of Hawai‘i Island at 9-arcsecond 

resolution (~250 m). This provides a transition for the nearshore SWAN grids and allows for a 

detailed description of the nearshore waves with 1.8-arcsecond resolution (~50 m). 

 

Accurate wave modelling around the Hawaiian Islands requires high-quality global and regional 

wind datasets. The NOAA NCEP Climate Forecast System Reanalysis (CFSR) produces 

assimilated surface winds at 0.5° resolution around the globe from 1979–201147 and 0.205° 

afterward48 that provides the boundary conditions for downscaling of Hawai‘i regional winds by 

the Weather Research and Forecasting (WRF) model49,50 CFSR and its regional WRF 

downscaling provide good descriptions of synoptic and mesoscale weather patterns for 

modelling of waves from local and distant sources44. The surface winds from both datasets are 

concatenated to provide input for the numerical wave model system. The model output includes 

significant wave height, peak period, and peak direction as well as wave power at each grid point 

in hourly intervals for 1979–2019. The hindcast dataset was thoroughly validated with available 

measurements from offshore and nearshore buoys and satellite altimeters. The validated hindcast 

allows characterization of interannual and long-term wave climate as well as spatial variation of 

the wave conditions across the Hawaiian Islands.  

 

We computed wave power at annual time steps from 2000–2019 at 50 m resolution (Fig. S28). 

Wave power (kW m-1) combines wave height and period and provides a more representative 

metric of wave exposure than wave height alone51. Annual data were generated for each 50 m 

grid cell by taking the mean of the top 97.5% in daily maximum wave power data obtained 

from44 and updated for this study. 
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Fig. S28. Map of West Hawaiʻi showing the high resolution (50 

m) wave model used in our data analysis (right). Wave power 

(kW m-1) data are available annually from 2000–2019; 2010 is 

shown as an example. Computational grids of WAVEWATCH 

III and SWAN models in Hawaiʻi region (above). The 

approximate grid resolution is listed in parenthesis for each 

model. 
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Coastal Sectors – Approximately 100 m width sector polygons were derived along the entire 

coast of West Hawaiʻi that span from the shoreline to encompass all nearshore reef area (Fig. 

S29). These sectors were used to extract all local land-sea human impact and environmental 

factor data from the 10 m depth contour (Fig. 1c). Sector Polygons were created using ArcGIS 

ArcPy adapted from a script by Andrew Davies, University of Rhode Island 

(https://github.com/marecotec/dsmtools).  

 

 
  

Fig. S29. The 100-m width coastal sectors along 

our study area numbered ascending from north to 

south (labelled every 100 sectors, or 

approximately every 10 km), with inset map 

showing detailed view of sectors. 

https://github.com/marecotec/dsmtools
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