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eMethods 1. Description of Each Data Set Used 

 
STAGES (First Episode Psychosis; FEP) 

We recruited 62 people aged 15-25 years (46% female) who were experiencing FEP. All patients had minimal 

previous exposure to antipsychotic medication (<7 days of use or lifetime 1750 mg chlorpromazine equivalent 

exposure) and a duration of untreated psychosis of less than 6 months. At baseline, patients were randomised to 

one of two groups: one given antipsychotic medication (risperidone or paliperidone) plus intensive psychosocial 

therapy and the other given placebo plus intensive psychosocial therapy. For both groups, the treatment period 

spanned 6-months. MRI was conducted at baseline, 3 months, and 12 months post-intake. The randomisation 

phase of the study terminated at 6 months, so patients in either the antipsychotic or placebo group could have 

received antipsychotic medication and ongoing psychosocial interventions after 6 months. In practice, four 

patients in the placebo group commenced antipsychotic medication in this intervening period, in addition to the 

four patients who had commenced at the 3-month timepoint. Thus, between the 3-month and 12-month scan, a 

total of eight patients in the placebo group commenced antipsychotic medication and were removed from the 

analysis. All patients in the antipsychotic continued medication with varying degrees of exposure. To ensure that 

our results were not dependant on inclusion of patients without schizophrenia, we repeated the primary analysis 

after only including individuals diagnosed with schizophrenia or schizophreniform disorder (see Robustness 

analyses & Supplement 1L). 

 

A matched healthy control group comprising 27 individuals with no history of psychiatric or neurological 

diagnosis was also recruited and scanned alongside the patient groups. Demographic details of this sample are 

provided in Table 1. Further sample characteristics and details about research and safety protocols can be found 

elsewhere1,2. Ethical approval for the study was granted by the Melbourne Health Human Research Ethics 

Committee (MHREC:2007.616). 

 

Due to the complexity and practical challenges of conducting a prospective triple-blind randomised control MRI 

study in antipsychotic-naïve patients, the sample size of this longitudinal FEP sample is small (see also3,4 for a 

discussion of the representativeness of this sample). Replication of our longitudinal analyses in larger samples is 

thus warranted. 

 

 

Human Connectome Project Early Psychosis (Early Psychosis; EP) 

This ongoing study is acquiring brain MRI in a cohort of people with a psychosis-spectrum disorder and within 

the first 3 years of the onset of psychotic symptoms. The dataset also includes healthy control participants and the 

data release used here (Release 1.1) comprises 140 patients and 63 controls. All subjects are scanned across three 

sites based in the USA. Detailed inclusion and exclusion criteria for the dataset is described elsewhere5. In the 

current study, we used a subset of 121 patients and 57 controls who passed quality control and had complete and 

useable data. To ensure that our results were not dependant on inclusion of patients without schizophrenia, we 

repeated the primary analysis after only including individuals diagnosed with schizophrenia or schizophreniform 

disorder (see Robustness analyses & Supplement 1L). 

 

BrainGluSchi (Schizophrenia; SCZ-BGS) 

This is a publicly available dataset of brain MRI in a sample of 86 patients diagnosed with schizophrenia and 89 

matched healthy controls. Additionally, all patients who were being treated with antipsychotics had to have been 

clinically stable on the same medications for >4 weeks. All patients were recruited from the University of New 

Mexico (UNM) Hospitals and all subjects were scanned at a single site. Detailed inclusion and exclusion criteria 

for the dataset is described elsewhere 6. In the current study, we used a subset of 70 patients and 62 controls who 

passed quality control and had complete and useable data. 

 

COBRE (Schizophrenia; SCZ-COBRE) 

This is a publicly available dataset of brain MRI in a sample of 99 patients diagnosed with schizophrenia and 99 

matched healthy controls. Additionally, all patients had to demonstrate retrospective and prospective clinical 

stability during three consecutive weekly visits and during each imaging assessment. All patients were scanned at 

a single site. Detailed inclusion and exclusion criteria for the dataset is described elsewhere7. In the current study, 

we used a subset of 66 patients and 72 controls who passed quality control and had complete and useable data. 
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Independent healthy control sample  

We recruited a total of 356 healthy participants as part of a study conducted at Monash University, Australia. The 

participants were selected from a large cohort of 439 people as those with high-quality functional and diffusion 

MRI scans available. For further details, see Sabaroedin, et al. 8. The study was conducted in accordance with the 

Monash University Human Research Ethics Committee (MUHREC: 2012001562).  

 

eMethods 2. MRI Acquisition Parameters 

 

STAGES (First Episode Psychosis; FEP) 

Structural T1-weighted (T1w; MPRAGE) scans were acquired using a 3-T Siemens Trio Tim scanner with a 32-

channel head coil at the Royal Children's Hospital in Melbourne, Australia. Image acquisition parameters at each 

timepoint were as follow: 176 sagittal slices, with a 1mm3 voxel size, bandwidth 236 Hz/pixel, field of view 

(FOV) =256×256, matrix = 256×256×176, repetition time (TR)= 2300ms, echo time (TE) = 2.98ms and a 9° flip 

angle.  

 

Human Nullrewire Project Early Psychosis (Early Psychosis; EP) 

Structural T1w (MPRAGE) scans were acquired using 3-T Siemens MAGNETOM Prisma scanners across three 

sites: Brigham and Women’s Hospital, McLean Hospital, and Indiana University in USA. Brigham and Women’s 

Hospital and Indiana University used a 32-channel head coil. McLean Hospital used a 64-channel head & neck 

coil, with the neck channels turned off. Image acquisition parameters were as follow: 208 sagittal slices, with a 

0.8mm3 voxel size, bandwidth 220 Hz/pixel, FOV =256×256, matrix = 256×256×208, TR = 2400ms, TE=2.22ms 

and flip angle = 8°.  

 

BrainGluSchi (Schizophrenia; SCZ-BGS) & COBRE (Schizophrenia; SCZ-COBRE) 

Structural T1w multi-echo MPRAGE scans were acquired using a 3-T Siemens TrioTim scanner with a 12-

channel heal coil at Our Mind Research Network in New Mexico, USA. Image acquisition parameters were as 

follow: 176 sagittal slices, with a 1mm3 voxel size, bandwidth 650 Hz/pixel, FOV =256×256 , matrix = 

256×256×176, TR = 2530ms, number of echo’s = 5, TE=[1.64, 3.5, 5.36, 7.22, 9.08] ms and flip angle = 7°. The 

final image used for analysis was computed as the root mean square of the 5 images corresponding to each echo.  

 

Independent healthy control sample 

Structural, diffusion and functional MRI data were acquired using a Siemens Skyra 3T scanner with a 32-channel 

head coil at Monash Biomedical Imaging in Melbourne, Australia. T1w structural scans were acquired using: 1 

mm3 isotropic voxels, TR = 2300ms, TE = 2.07ms, TI = 900ms, and a FOV of 256 mm.  

 

Diffusion data were acquired using an interleaved acquisition with the following parameters: 2.5 mm3 voxel size, 

TR = 8800ms, TE = 110ms, FOV 240 mm, 60 directions with b = 3000 s/mm2, and seven b = 0 s/mm2 vol. In 

addition, a single b = 0 s/mm2 was obtained with reversed phase encoding direction for susceptibility field 

estimation.  

 

Multiband T2*-weighted whole-brain echo-planar images were acquired with a total of 620 functional volumes 

with 42 slices each were acquired per participant using an interleaved acquisition with the following parameters: 

TR = 754ms, TE = 21 milliseconds, flip angle of 50°, multiband acceleration factor of 3, FOV = 190mm, slice 

thickness of 3mm, and 3mm isotropic voxels. Participants were instructed to lie still in the scanner with eyes 

closed while maintaining wakefulness. 

 

eMethods 3. DBM Processing 

Prior to processing, raw T1w scans were visually examined for artefacts and then subjected to an 

automated quality control procedure9. In the FEP, EP, SCZ-BGS and SCZ-COBRE datasets, three, 

eight, six and four patient scans did not pass image quality control, respectively, and were excluded due 

to artefacts. The remaining scans were processed using the deformation-based morphometry (DBM) 

pipeline of the Computational Anatomy Toolbox (version r1113)10 for the Statistical Parametric 

Mapping 1211 software running in MATLAB version 2019a. We used DBM to quantify volume changes 

because it does not require tissue segmentation, requires less spatial smoothing12 than voxel-based 

morphometry (VBM) and to be comparable to previous work13,14. However, we replicated our primary 

findings using VBM (see Robustness Analyses & Supplement 1L). 
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For each participant, all scans were put through a spatial adaptive non-local means denoising filter, followed by 

internal resampling, bias correction, affine registration and the standard SPM12 ‘unified segmentation’. After 

these initial pre-processing steps, the T1w images from all available timepoints were rigidly realigned to correct 

for differences in head position within-subject, and a subject-specific mean image was calculated and used as a 

reference in a subsequent realignment of all T1w images across all timepoints. The mean images were then 

normalised using the Diffeomorphic Anatomical Registration using Exponentiated Lie algebra algorithm 

(DARTEL; 15) . The resulting spatial normalisation parameters were then applied to the bias-corrected individual 

images for all available timepoints. These native space images were then again realigned to a DARTEL 

normalised template, resulting in a voxel-wise map of Jacobian determinants, where the intensity of each voxel 

quantifies the amount of expansion or contraction required for registration to the template and a 3-mm FWHM 

smoothing kernel was applied to the Jacobian maps.  

 

eMethods 4. Grey Matter Volume Change Contrasts 

To map spatial patterns of group-level cross-sectional and longitudinal volume change, we used a robust 

marginal model implemented in the Sandwich Estimator Toolbox16, which combines ordinary least 

squares estimates of parameters of interest with estimates of variance/covariance based on a robust 

sandwich estimator, thus accounting for within-subject correlations in longitudinal studies. This method 

is asymptotically robust to misspecification of the covariance model and does not depend on the 

assumptions of common longitudinal variance structure across the whole brain. All contrasts were 

adjusted for age, sex, and handedness, with site additionally included for the EP dataset.  

 

We conducted cross-sectional contrasts in each of the four patient datasets to capture cross-sectional 

GMV differences between patients and controls (Fig1A). The cross-sectional contrast for the FEP 

sample compared healthy controls with patients at baseline, prior to initiation of either placebo or 

antipsychotic treatment. Longitudinal GMV changes were mapped in the FEP dataset (Fig1A) to 

isolate: (1) illness-related change over time, by comparing GMV changes over time in the placebo group 

to matched healthy controls; and (2) antipsychotic-related changes over time, which compared GMV 

changes in the medication group to both the placebo group and matched healthy controls. The inclusion 

of the placebo group in this contrast ensures that the contrast detects changes in medicated patients that 

differ from both antipsychotic-naïve patients and healthy controls, thus isolating the effects of 

antipsychotic treatment most relevant to psychosis (see also Chopra, et al. 3). Longitudinal contrasts 

were assessed from baseline to 3 months and baseline to 12 months, with a linear contrast used for the 

latter. Longitudinal contrasts also included both cross-sectional and longitudinal effects of age as 

covariates16.  

 

Cross-sectional contrasts were specified such that positive values in the resulting voxel-wise t-statistic 

maps indicate lower volume in patients compared to controls. For the illness-related longitudinal 

contrasts, positive values in the resulting voxel-wise t-statistic maps indicate greater longitudinal GMV 

decline in placebo patients compared to controls. For the medication-related longitudinal contrasts, 

positive values in the resulting voxel-wise t-statistic maps indicate greater longitudinal GMV decline 

in medicated patients compared to both the placebo patients and controls. The t-statistics were converted 

to z-scores, and we applied the CDM to unthresholded z-maps encoding regional GMV changes, as we 

are interested in capturing the complete spatial pattern of GMV differences across the entire brain, not 

just the changes which survive a statistical threshold. Renderings of the unthresholded t-maps can be 

found in Fig1A-C and Fig2A-B. FDR-corrected and uncorrected voxel-level t-statistic maps for each 

contrast are provided in the Supplements1G-H. We clarify that our primary goal here is to model the 

processes that can explain spatial patterns of GMV loss in psychosis, not merely to map these changes. 

 

To relate grey-matter alterations to connectome architecture, we parcellated the brain into 300 discrete 

cortical regions of approximately equal size17, in addition to 32 subcortical areas18, using previously 

validated atlases. The volume change for each region was estimated as the mean z-statistic of all voxels 

corresponding to that region. The regions comprise the nodes of a network, which can then be directly 

related to measures of inter-regional SC and FC. 
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eMethods 5. DWI Processing 

 

We first implemented the tractoflow19 pipeline, where the DWI data are denoised using the dwidenoise tool from 

MRtrix3 and then skull-stripped using FSL bet. A N4 bias corrections then applied using ANTs20 and the image 

was cropped using Dipy 21. The dwinormalise tool from MRtrix322 was used to normalise the mean values in each 

image to approximately 1000. Data were then resampled to 1 mm isotropic spatial resolution and the Dipy 

TensorModel was used to estimate the Diffusion Tensor Image23 at every voxel, with a weighted least squares 

method. The csdeconv package from Dipy was used to compute fibre orientation distributions (FOD), which 

represents the estimated orientation distribution of fibre structure at each voxel 24,25. Peaks representing main 

diffusion directions were extracted from local maxima of each FOD’s angular distribution. This FOD field was 

later used for tractography and to estimate the structural connectivity. 

 

The T1w data were processed using the same protocol as DWI data for denoising, N4 bias correction, resampling, 

brain extraction, and cropping. The T1w data were then registered to the b0 image using non-linear ANTs 20. 

Segmentation of grey matter, white matter, subcortex and cerebrospinal fluid was performed using CIVIT 26, and 

the resulting tissue partial volume estimate maps were used to compute the inclusion and exclusion masks as well 

as a grey/white matter interface mask used for seeding19. 

 

Probabilistic tracking was preformed using a particle filtering tractography algorithm27 implemented in Dipy. 

Similar to anatomically constrained tractography28, particle filtering tractography takes advantage of previously 

computed tissue maps to define areas where streamline can traverse. We set the maximum streamline length to 

400mm and generated 10,000,000 streamlines. Default parameters were used for other local tracking options (step 

size = 0.5; maximum angle between 2 steps: 20)29. To create a SC matrix, streamlines were assigned to each of 

the closest regions in the parcellation within a 2-mm radius of the streamline endpoints22, yielding undirected 332 

× 332 connectivity matrices for all subject. 

 

Importantly, most tractography algorithms are prone to false positives and do not directly index the quantitative 

strength of connections between pairs of regions30,31. We therefore implemented a state-of-the-art optimisation 

procedure, Convex Optimization Modelling for Microstructure Informed Tractography (COMMIT2), which has 

shown to be superior to other methods on key benchmarks derived from fibre-tracking phantoms 32. COMMIT2 

uses a forward model to recover the connectome with the minimum number of bundles that best explains the local 

axon density estimated from the DWI signal32. In doing so, COMMIT2 filters and re-weights pair-wise 

connections strengths and provides more biologically accurate quantitative estimates of connectivity. After 

optimised SC matrices were generated for each subject, we created a single group-average matrix by retaining 

connections if they appeared in at least 𝜏 subjects, where 𝜏 is the consensus threshold that results in a binary 

density comparable to that of a typical subject 33, and which was set to 38.6% for this sample. This threshold is 

computed separately for inter-/intra-hemispheric connections. Retained connections are assigned the 

corresponding group-average SC weight, resulting in a weighted group-average SC matrix. Finally, the SC 

weights from the group-average matrix were z-scored.  

 

eMethods 6. fMRI Processing  

 

First, the fMRI data for each subject were processed in FSL FEAT 34 following a standard pipeline, which included 

removal of the first four volumes, rigid-body head motion correction, 3mm spatial smoothing to improve signal-

to-noise ratio, and high-pass temporal filter of 75s to remove slow drifts. Subsequently, spatial independent 

component analysis was performed using FSL MELODIC35. These components were used as inputs for FSL FIX 
36,37 an ICA-based denoising approach that uses an automated classifier to identify noise components and remove 

them from the data. This approach has been shown to successfully correct for motion and physiological noise, in 

addition to artifacts associated with multiband acceleration37. The FSL-FIX classifier was trained using an 

independent cohort of 25 individuals (13 males; mean age = 25.56 years), acquired using identical scanner and 

acquisition protocol, in which each of over 2000 components were manually labelled as signal or noise. The 

accuracy of the classifier in identifying nuisance components was verified in a subset of 15 individuals from our 

sample, yielding an accuracy estimate of 97%.  

 

The time courses of components labelled as noise were used as nuisance regressors, along with 24 head motion 

parameters (6 rigid-body parameters, their backwards derivatives, and squared values of the 12 regressors). Given 

ongoing controversy around the application of global signal regression 38, we evaluated how this step affected our 

findings (see Robustness analyses). Denoised functional data were spatially normalized to the International 
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Consortium for Brain Mapping 152 template in Montreal Neurological Institute (MNI) space using ANTs 20,via a 

three step method: 1) registration of the mean realigned functional scan to the skull-stripped high resolution 

anatomical scan via rigid-body registration; 2) spatial normalization of the anatomical scan to the MNI template 

via a nonlinear registration; and 3) normalization of functional scan to the MNI template using a single 

transformation matrix that concatenates the transforms generated in steps 1 and 2. We then computed whole brain 

FC matrices for each subject using pair-wise Pearson correlations between the timeseries from each of the 332 

regions and took a mean FC matrix across the sample.  

 

 

 

 

eMethods 7. FDR-Corrected and -Uncorrected Voxel-Level DBM t Statistic Maps for Each 

Contrast  

A) STAGES (first episode psychosis)  

 

 

 

B) HCP-EP (Early psychosis)  
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C) BrainGluSchi (schizophrenia)  

 

 

 

D) COBRE (schizophrenia)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eMethods 8. FDR-Corrected and Uncorrected Voxel-Level VBM t Statistic Maps for Each 

Contrast 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© 2023 American Medical Association. All rights reserved. 
 

 

eMethods 8. FDR-Corrected and -Uncorrected Voxel-Level VBM t Statistic Maps for 

Each Contrast 
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D) COBRE (schizophrenia)  
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eMethods 9. Benchmark Null Models for the Coordinated Deformation Model (CDM) 

 

Model performance was evaluated with respect to three null benchmark models. The first (Fig. 1D; Nullsmash) and 

second (Fig. 1D; Nullspin) null models evaluated whether the observed findings were specific to the empirically 

observed pattern of grey matter deformations or were a generic property of the intrinsic spatial structure of the 

deformation maps. The two models differ in the way in which they account for the spatial structure present in the 

data. The first, Nullsmash approach used a parametric model to capture the spatial structure. Specifically, it relies 

on spatial variogram modelling to generate 1000 random spatial maps with a similar spatial autocorrelation to the 

observed deformation map, as implemented in the freely available toolbox BrainSMASH39; and with parameters 

(ns=500; knn=2300; pv=70) which resulted in null maps with variograms as close as possible to the empirical 

variogram across all contrasts. The second null benchmark, termed Nullspin, uses a spin-test to rotate region-level 

cortical t-values 1000 times40. The rotation was applied to one hemisphere and then mirrored for the other 

hemisphere. This benchmark is referred to as the Nullspin null throughout the manuscript.  

 

The primary advantage of the model-based method is that it can be applied to both cortical and subcortical data, 

however, it is not guaranteed to match the precise spatial autocorrelation of the empirical data. The spin test 

exactly preserves the empirical values and their spatial autocorrelation but is only applicable to cortex and also 

relies on certain approximations to account for the medial wall. In both cases, the 1000 surrogate values were used 

for inference on the observed performance metrics, with 𝑝-values quantified as the fraction of null values 

exceeding the observed correlation. 

 

The third null model (Fig. 1D; Nullrewire) involved rewiring the structural connectome while preserving the degree 

sequence and length-weight relationship, and approximately preserving the edge-length distribution41. We used 

10 distance bins and 50,000 edge swaps to generate 1000 rewired networks. These surrogate networks were used 

to test the hypothesis that any apparent network-based prediction of local grey matter change is specific to the 

actual topology of the connectome itself, and cannot be explained by basic network properties, such as regional 

variations in node degree or the spatial dependence of inter-regional connectivity. This benchmark null is referred 

to as the Nullrewire null throughout the manuscript. 

 

eMethods 10. Further Information Network Diffusion Model (NDM) and Benchmark Null 

Models 

 

The CDM model allowed us to determine whether brain connectivity shapes the spatial pattern of GMV 

alterations and whether SC or FC represents a stronger constraint on such patterns. However, it does not directly 

evaluate the mechanisms that link connectivity and GMV change, and it cannot identify whether individual 

regions act as sources or epicentres of volume loss. The NDM more directly tests the spreading hypotheses by 

simulating a passive diffusion process to model the spread of GMV alterations from specific seed regions. Thus, 

the NDM tests both the mechanism of spread, as well as the likely source, or epicentre, from which the spread 

may initiate. We therefore seeded the NDM using each of the 332 individual brain regions as a seed region for 

each seed region and each DBM contrast map (Fig1A), resulting in a total of 2656 simulations (332 regions × 8 

contrasts). For each simulation, the measure of accuracy used to evaluate the NDM was the maximum 

correlation obtained across different time steps of the diffusion process (𝑟𝑚𝑎𝑥; Fig4A) between the log-

transformed simulated and observed GMV loss. Note that, in principle, the NDM could be initialized using any 

combination of seed regions42,43, but this can quickly result in a combinatorial explosion of alternative initial 

conditions for the model so we focused on testing specific hypotheses about individual brain regions as putative 

sources of GMV loss.  

 
Consistent with prior work42,43, model performance was evaluated as the Pearson correlation between the 

predicted diffusion and observed volume abnormalities at each time step and for each seed, with the maximum 

correlation (Fig4A; 𝑟𝑚𝑎𝑥) across all time steps being retained. The observed regional t-statistics were rescaled to 

a more interpretable non-negative quantity via a log-transformation, yielding values in the range [0,1]42-44. The 

seed region was excluded when correlating predicted and observed volume abnormalities to ensure that our 

analysis was not influenced by large volume abnormalities in the seeds. Performance was evaluated separately 

for each hemisphere, but the family-wise error correction described below was evaluated across the whole brain 

and combined for both hemispheres when evaluating statistical significance of each brain region as an epicentre.  
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To evaluate the statistical significance of each region’s 𝑟𝑚𝑎𝑥, we generated a null distribution of 𝑟𝑚𝑎𝑥 values using 

two benchmark models: the Nullsmash and the Nullrewire null (see supplement section 1I for more information). 

The Nullspin benchmark was not used to evaluate the NDM as it does not include subcortical regions. To generate 

null 𝑟𝑚𝑎𝑥 values for each contrast using the Nullsmash, we initiated the NDM from each brain region 1000 times 

and evaluated the correlation between the simulated GMV loss and the spatially constrained null GMV loss 

generated by the Nullsmash.  The 𝑟𝑚𝑎𝑥 from each iteration was retained, resulting in 1000 null  𝑟𝑚𝑎𝑥 values at each 

brain region. For each contrast and each brain region, the p-value was considered as the percentage of nulls 𝑟𝑚𝑎𝑥 

null values greater than the observed 𝑟𝑚𝑎𝑥. To implement family-wise error (FWE) correction, for each contrast, 

the maximum brain-wide null 𝑟𝑚𝑎𝑥 from each of the 1000 iterations was used to construct a FWE-corrected null 

distribution45. The FWE-corrected p-value was considered as the percentage of FWE-corrected null 𝑟𝑚𝑎𝑥 values 

greater than the observed 𝑟𝑚𝑎𝑥. To evaluate significance using the Nullrewire null model, we followed the same 

procedure describe above, but instead of varying the GMV volume loss, we varied the structural connectome at 

each of the 1000 iterations, using null connectomes generated using a rewiring method (Supplement section 1.8). 

 

For most contrasts, the Nullsmash and Nullrewire nulls identified consistent epicentres, although the connectome-

based null benchmarks were more conservative in the analysis of longitudinal GMV change in the FEP sample, 

revealing a more circumscribed set of prefrontal regions compared to the Nullsmash benchmark. To understand the 

reasons for this discrepancy, we re-ran the epicentre analyses using a variant of the Nullrewire null model that did 

not preserve the distance dependence of connectivity (FigS5), but still maintained other topological properties 

such as the node degree and edge-weight distributions46. The results were consistent with those obtained using the 

Nullsmash null (Fig4G-H) and implicated widespread frontal regions as epicentres of longitudinal GMV change. 

Thus, because these additional prefrontal regions emerge only when connection topology, but not the spatial 

dependence of connectivity, is preserved, their role as epicentres of longitudinal GMV change is largely due by 

their spatial proximity to the epicentres identified in the Nullrewire analysis (Fig S4) rather than their profile of 

inter-regional connectivity.  

 

eFigure 1. Sample-Level Associations Between Model Performance and Illness Duration and 

Severity 

 

 
Using multiple samples spanning different stages of psychosis allows us to relate sample-level illness duration 

and severity measures with CDMSCw model performance. To assess the significance of these associations, we 

implemented a permutation procedure where, for each sample, the group labels (patient/control) were resampled 

without replacement and used to generate 1000 null t-statistic maps for each dataset. Then, by applying the 

CDMSCw model to these null maps, we generated a null distribution of sample-level correlations between illness 

duration/severity and CDMSCw model estimates. Model performance was significantly correlated with both 

illness duration (r=.958; p= 0.022) and illness severity (r=.991; p=.041; PANSS not available for FEP sample), 

suggesting that longer duration and higher severity of illness may be associated with a more profound 

manifestation of a spreading process, as captured by our CDMSCw model. However, given the small number of 

samples used in thesis analysis, further replication is warranted.  

 

 

eMethods 11. Data-Driven Epicentre Mapping Methods 

 
As per Shafiei, et al. 13, we also implemented a data driven epicentre approach which defined such epicentres as 

areas showing high deformation that were also connected to regions showing high deformation. To identify such 

regions, for each region and each contrast, we rank-transformed and then took the mean of two values: (1) that 

region’s extent of deformation; and (2) the mean of that region’s neighbours’ deformation, weighted by SC as in 

the CDMSCw model, given the superior performance of this model (see Results). Higher positive values on the 
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resulting epicentre rank represent regions with high volume loss that are also connected to regions with high 

volume less. We then obtained a null ensemble of 1000 regional epicentre scores by repeating the same procedure 

after either rotating the regional deformation maps relative to the structural connectome to generate a distribution 

of null ranks at each region (Nullspin benchmark). These 1000 null values were then used to quantify statistical 

significance of each region’s epicentre score as the fraction of null values exceeding the observed rank score for 

a given regions (FigS2) 45. We also characterised data driven epicentres using Nullsmash and Nullrewire nulls 

(FigS2). 

 

Using this data-driven epicentre mapping approach, Shafiei, et al. 13 identified the anterior cingulate as 

a putative epicentre of cross-sectional volume differences in people with established schizophrenia. Our 

findings only identified the anterior cingulate as an epicentre of longitudinal change in the FEP cohort. 

This discrepancy may be due to our reliance on the CDMSCw model, which was the best predictor of 

GMV differences, whereas Shafiei, et al. 13 did not consider structural connectivity weights. Moreover, 

they did not consider regions outside neocortex, which we found are associated with the strongest and 

most consistent effects. 

 

eFigure 2. Data-Driven Epicentre Region Identification Using Different Null Models  
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eFigure 3. Scatterplots of Observed and Estimated GMV Alterations Using the Best Seed 

Across the Whole Brain 

 

 
 

 

eFigure 4. NDM Epicentres Using Null-Rewire Benchmarks (Top) and Null-Rewire 

Benchmarks Which Do Not Preserve Distance Rules (Bottom). 
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eMethods 12. Robustness Analyses 

The magnitude and pattern of results remained consistent with our original findings after only considering 

individuals diagnosed with schizophrenia or schizophreniform disorder, indicating that diagnostic heterogeneity 

of the FEP and EP samples did not substantially impact our findings (FigS6). 

 

To ensure that the wide-spread changes in white-matter integrity often reported in patients47-50 did not affect model 

estimates of the network-based spread of pathology, we replicated our findings using structural and functional 

connectomes derived from the FEP patient sample rather than the independent healthy control sample (FigS7). 

We also replicated the results using a representative structural connectome derived from the healthy control 

sample in the FEP study (FigS8), and an older subset of our independent healthy control sample (n=31; 

age=36.06±4.9) that was more closely matched in age to the two established schizophrenia samples (FigS11). 

 

We re-ran the CDMFCw model including FC estimates between all pairs of regions to ensure that the limited 

performance of the FC-based model was not driven by our restricting this model to only consider structurally 

connected region pairs. The unrestricted model showed superior performance compared to the original CDMFCw 

model only in predicting medication-related changes at 3-months (𝑟 = .46) and 12-months (𝑟 = .42). However, 

the unrestricted model was not statistically significant in any of the samples or for any of the contrasts (𝑎𝑙𝑙 𝑝 >
.05) and its performance was inferior to the CDMSCw model in all cases. 

 

Finally, our findings were consistent when using VBM instead of DBM (FigS9), and when applying global signal 

regression (GSR) on subject-level FC matrices before computing the group average FC matrix (FigS10). 
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eFigure 5. Replication of Results After Excluding Patients With Nonschizophrenia Diagnosis  

 

  

eFigure 6. Replication of Results Using Representative Structural and Functional 

Connectomes From the First Episode Psychosis (STAGES) Patient Population 

 

 

 

 

 
 

 

 

 
 

 

eFigure 7. Replication of Results Using Alterative Representative Structural and Functional 

Connectomes 
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 eFigure 8. Replication of Results Using Voxel-Based Morphomet
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eFigure 9. Replication of Results Applying Global Signal Regression to FC Data  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

eFigure 10. Replication of Results Using Representative Structural and Functional 

Connectomes From an Older Subset of the Independent Healthy Controls n=31; 

age=36.06±4.9) that is more closely matched in age to the two established schizophrenia 

samples. 
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