

Figure S1: Strategy and verification of $\Delta fmkmt1$ deletion mutants by diagnostic PCR. (A) Deletion and verification strategy of $\Delta fmkmt1$ mutants. Primer pairs for diagnostic PCRs are depicted in blue. (B) Verification of deletion *via* homologous recombination with the hygR cassette. Homologous integration was verified by the presence of the upstream region (5' flank) with the primers Dia_FmKMT1_F//pCSN44_hph-trpC-T and the downstream region (3' flank) by Dia_FmKMT1_R//pCSN44_trpC_P2. Absence of wild-type gene was checked with Dia_WTKMT1_F//R for three independent transformants $\Delta fmkmt1$ T13, T19 and T20. For 5' and 3' $\Delta fmkmt1$ gDNA prior single spore isolation was used as positive control (+), while FmWT gDNA served as + control for wild-type (WT) gene diagnostic PCR. As size marker 1 kb Plus DNA ladder (NEB) was used.

Figure S2: Complementation strategy and verification of $\Delta fmkmt1/FmKMT1^{Ces}$ by diagnostic PCR. (A) Strategy for complementation of $\Delta fmkmt1_T19$. Enzymes used for restriction are shown. (B) Verification of gained transformants. Complementation was achieved by *ex-situ* integration of the native *FmKMT1* wild-type gene of *F. mangiferae* MRC7560 (FmWT) into $\Delta fmkmt1$ T19. Genomic DNA was isolated from overall seven geneticin-resistant transformants and correct re-integration of the native *FmKMT1* was verified by diagnostic PCR. For this, the amplification of the genR cassette (GeniTglucR/GeniF) together with the wild-type *FmKMT1* gene was performed using the primer pair Dia_WTKMT1F//R. As negative control gDNA of the recipient $\Delta fmkmt1$ T19 strain was used, while as positive control (+) for geneticin resistance the p $\Delta fmkmt1/FmKMT1^{Ces}$ was used. For wild-type gene amplification FmWT gDNA served as + control. As size marker 1 kb Plus DNA ladder (NEB) was used. (C) *FmKMT1* transcript levels in complemented strains. To evaluate suitability of the gained complementation strains, *FmKMT1* transcript levels were assessed by RT-qPCR after 3 days of growth on solid CM. Data represent mean values (n = x).

Figure S3: Lack of *FmKMT1* **results in reduced overall H3K9me3 in** *Fusarium mangiferae*. (A) Cropped images of the relevant H3 histone signals as determined by western blotting. For analysis, the *F. mangiferae* wild-type strain (FmWT), the $\Delta fmkmt1$ and complemented $\Delta fmkmt1/FmKMT1^{Ces}$ strains were grown in liquid ICI medium supplemented with 120 mM NaNO₃ for 4 days. Whole proteins were extracted, and 30 µg were separated on a SDS acrylamide gel. Overall H3K9me3 levels were determined using two different anti-H3K9me3 (AB, Abcam; AM, Active Motif), and an anti-H3 C-term-specific antibody was used for referencing. As positive (+) control histones from calf thymus were used. (B) Uncropped western blot membranes.

H3 control AM39766

Domain structure of SET domain containing proteins in F. mangiferae

Figure S4: Domain structures of SET domain containing proteins in *F. mangiferae* (FmWT). pBLAST search of FmKmt1 SET-domain against FmWT genome. The pBLAST search revealed seven additional SET-domain containing proteins with similarity to FmKmt1 SET-domain. Protein sequences were retrieved from NCBI and subsequently the domain organization was analyzed using InterPro (Blum et al., 2021). The InterPro accession numbers are shown in the figure legend.

Figure S5: Strategy, plasmid map and verification of H3K9R mutants by diagnostic PCR and sequencing. (A) Verification strategy of lysine 9 (K9) to arginine 9 (R9) point mutation. Primer pairs for diagnostic PCRs as well as sequencing are designated in blue. (B) FmH3K9R plasmid map. Enzyme used for restriction prior to transformation are shown. (C)Verification of successful integration *via* homologous recombination. Homologous integration was verified by the presence of the upstream region (5' flank) with the primer pair FmH3_dia_F//BcGluc-T-seq and the downstream region (3' flank) with FmH3_dia_R//pCSN44_trpC_P2. Successful amino acid exchange was verified by sequencing with the primer pair H3_Mut_Seq3//BcGluc-T-seq for template generation and H3_Mut_Seq4 for sequencing analysis. As size marker 1 kb Plus DNA ladder (NEB) was used. As negative (–) control sterile water was used.

Figure S6: Conidia production of *F. mangiferae* (FmWT), $\Delta fmkmt1$ and $\Delta fmkmt1/FmKMT1^{Ces}$ associated mutant strains under light and dark (L/D) and dark (D) conditions. FmWT, $\Delta fmkmt1$ and $\Delta fmkmt1/FmKMT1^{Ces}$ were incubated for 7 days on V8 vegetable juice media with (A) 16 h light and 8 h dark cycle (L/D), or (B) in complete darkness (D). Conidia were observed under light microscope with 40x magnitude. Black bars indicate 10 µm.

Figure S7: Involvement of FmKmt1 in osmotic stress response. Radial hyphal growth of *F.* mangiferae wild-type strain (FmWT), $\Delta fmkmt1$ and $\Delta fmkmt1/FmKMT1^{Ces}$ on complete medium supplemented with either 1 M NaCl or 1 M sorbitol as compared to unsupplemented CM. Strains were grown for 7 days at 30 °C in the dark. The experiments were performed in technical triplicates and biological duplicates. Hyphal growth of FmWT on the respective media was arbitrarily set to 100%. Growth on media supplemented with stressors was adjusted to normal growth on CM plates of the respective strain. Mean values and standard deviations are given in the diagram. For statistical analysis a student's *t* test was performed. Asterisks above the bars denote significant differences in the radial hyphal growth production of the indicated strains compared to the respective wild-type, * p<0.05; ** p<0.001.

Supplementary Material

Figure S8: Quantification of known SMs produced by F. mangiferae under standard

laboratory conditions. SM production of the *F. mangiferae* wild-type strain (FmWT) and three independent $\Delta fmkmt1$ mutant strains was quantified using HPLC-HRMS. For this, FmWT and *fmkmt1* deletion strains were cultivated in liquid ICI supplemented with either 60 mM or 6 mM glutamine (gln) and 6 mM NaNO₃ for 7 days at 30 °C in constant darkness. Experiments were performed in biological and technical triplicates. Mean values and standard deviations are shown in the diagram. For comparison reasons the wild type was set to 1. n.d., not detected in the supernatant.

Figure S9: Quantification of fusapyrone (FPY) and deoxyfusapyrone (dFPY) in *F. mangiferae*. FPY and dFPY production of the *F. mangiferae* wild-type strain (FmWT), the $\Delta fmkmt1$ and the $\Delta fmkmt1/FmKMT1^{Ces}$ strains quantified with HPLC-HRMS. For this, indicated fungal strains were grown in liquid ICI supplemented 6 mM NaNO₃ for 7 days at 30 °C in constant darkness. The supernatant was directly applied for quantitative analysis. Experiments were performed in in technical triplicates and biological duplicates. Mean values and standard deviations are shown in diagram. n.d., not detected in the supernatant.

Figure S10: HPLC-HRMS chromatograms of FPY and dFPY production in the $\Delta fmkmt1$ deletion and FmH3K9R point mutation strain compared to the wild-type strain (FmWT). The *F. mangiferae* wild-type strain (FmWT), $\Delta fmkmt1$ T13 and FmH3K9R T24 were cultivated in FPYinducing media for 7 days at 30°C. Experiments were performed in technical triplicates. Peaks for FPY and dFPY (boxed) are present in FmWT but absent from $\Delta fmkmt1$ and FmH3K9R cultures. The asterisk (*) indicates that the observed signal in the $\Delta fmkmt1$ and FmH3K9R chromatogram with a similar retention time as dFPY is distinct from dFPY, because the signal has a different mass. TIC chromatograms (positive ESI-mode) range from m/z 100-1,000.

Figure S11: Strategy and verification of $\Delta fmppt1$ **deletion.** (A) Deletion and verification strategy of $\Delta fmppt1$ mutants. Primer pairs for diagnostic PCRs are shown in blue. (B) Verification of *in situ* deletion of *FmPPT1 via* homologous recombination with the hygR cassette. Homologous integration was verified by the presence of the upstream region (5' flank) with the primers Dia_FmPPT1_F//pCSN44_hph-trpCT and the downstream region (3' flank) by Dia_FmPPT1_R//pCSN44_trpC_P2. Absence of the wild-type gene was verified using the primer pair Dia_WTPPT1_F//R in the case of four independent transformants i.e., $\Delta fmppt1$ T6, T10, T25 and T27. FmWT gDNA was used as positive control for the wild-type gene, while it served as negative control for correct integration of the resistance cassette. As size marker 1 kb Plus DNA ladder (NEB) was used. (C) Lysine auxotrophy test of $\Delta fmppt1$. To further verify presence of positive $\Delta fmppt1$ strains, growth of FmWT and the respective $\Delta fmppt1$ strains was assessed on synthetic solid media with (+ lysine) and without (- lysine). As expected, $\Delta fmppt1$ strains did not grow on media without lysine.

Figure S12: Quantification of fusapyrone (FPY) and deoxyfusapyrone (dFPY) production in *Fusarium mangiferae* 3 and 7 days post inoculation (dpi). The *F. mangiferae* wild-type strain (FmWT), and three independent $\Delta fmkmt1$ mutants were cultivated for 7 days in liquid ICI supplemented with 6 mM NaNO₃ at 30 °C. 1 mL aliquots were taken 3 as well as 7 days post inoculation and analyzed *via* HPLC-HRMS. Experiments were performed in technical triplicates and biological duplicates. Mean values and standard deviations are shown in the diagram. n.d., not detected in the supernatant.

Supplementary Material

Figure S13: Strategy and verification of $\Delta PKS8$ disruption by diagnostic PCR. (A) Disruption and verification strategy of $\Delta fmPKS8$ mutants. Primer pairs for diagnostic PCRs are shown in blue. (B) Disruption of $\Delta fmPKS8$ via homologous recombination of the hygR cassette. Homologous integration was verified by the presence of the upstream region (5' flank) with the primers Dia_FmPKS8_F//pCSN44_hph-trpCT and the downstream region (3' flank) with Dia_FmPKS8_R//pCSN44_trpC_P2. Absence of the wild-type gene was checked by Dia_WTPKS8_F//R for three independent transformants i.e., $\Delta fmPKS8$ T9, T21 and T49. FmWT gDNA was used as positive control for the wild-type gene, while it served as negative control for correct integration of the resistance cassette. As size marker 1 kb Plus DNA ladder (NEB) was used.

Figure S14: Strategy and verification of $\Delta PKS40$ disruption by diagnostic PCR. (A) Disruption strategy and in situ verification of $\Delta fmPKS40$ mutants. Primer pairs for diagnostic PCRs are depicted in blue. (B) Homologous recombination with the hygR cassette was applied for the disruption and generation of $\Delta fmPKS40$ strains. Homologous integration events were verified by the presence of the upstream region (5' flank) with the primers Dia_PKS40_F//pCSN44_hph-trpCT and the downstream region (3' flank) using Dia_FmPKS40_R//pCSN44_trpC_P2. Absence of the wild-type gene was checked by Dia_WTFmPKS40_F//R for two independent transformants i.e., $\Delta fmPKS40$ T26 and T27. For 5' and 3' as positive control (+) $\Delta fmPKS40$ gDNA prior single spore isolation was used, while for wild-type gene diagnostic PCR FmWT gDNA served as positive + control. As size marker 1 kb Plus DNA ladder (NEB) was used.

Figure S15: Loss of FmKmt1 and H3K9R point mutation results in overall reduced H3K9me3 in *Fusarium mangiferae*. For western blot analysis, the *F. mangiferae* wild-type strain (FmWT), the $\Delta fmkmt1$, complemented $\Delta fmkmt1/FmKMT1^{Ces}$ and H3K9R strains were grown in liquid ICI medium supplemented with 120 mM NaNO₃ for 4 days. Roughly 50 µg of total proteins were separated on a SDS gel. For determination of overall H3K9me3 levels, two different anti-H3K9me3-specific antibodies (AB, Abcam; AM, Active Motif) were applied. For the quantification of H3K9ac levels an anti-H3K9ac-specific antibody was used, while anti-H3 C-term-specific antibody was used for referencing. As positive (+) control histones from calf thymus were used. **Table S1: List of primers used in this work.** Introduced overhangs required for yeast recombinational cloning are written in lowercase letters. Primers are designed with * also bind in *F. mangiferae* genome. Primer designed with ^{α} bind also in *F. proliferatum* ET1, *F. proliferatum* NRRL62905 and *F. verticillioides* M3125 genomes.

Gene ID	Primer ID	Primer sequence				
	Primer used for plasmid generation					
	FmKMT1_5F	gccagggttttcccagtcacgacgGGTGATCAAGTTTGAATCTCGG				
FMAN 07768	FmKMT1_5R	ttaacgttactgaaatctccaacCCTCTCTAGTAACACTGCACA				
	FmKMT1_3F					
	FmKMT1_3R	ataacaatttcacacaggaaacagcCCATGGTCATGAAGCTCTTTGC				
/	FmCIL_tgluc	ATACATCTTATCTACATACGTCACCACAAGAACTTCCT GC				
/	Geni-Tgluc_R	ACCCCTTCCCCCCAACAAGATATCATCATGCAACATGC ATGTACTG				
/	GeniF	GTCGGAGACAGAAGATGATATTGAAGGAGCCAACAA AACACAGTTCCGACCAC				
/	Tgluc-nat1R	ATCTTGTTGGGGGGGAAGGGGT				
/	Tgluc_F2	CGTATGTAGATAAGATGTATG				
	FmPPT1_5F	gccagggttttcccagtcacgacgAGTACAGTAGCAATGCCTCAGC G				
FMAN_09280	FmPPT1_5R	ttaacgttactgaaatctccaacTGCAACTATTGCCTTGGAATGCC				
	FmPPT1_3F					
	FmPPT1_3R	aacaatttcacacaggaaacagcACTTGCTACCTGCAGAACAAGCC				
FMAN 15223	FmPKS8_5F	aacgccagggttttcccagtcacgGGCAAGAACTCAGGTATTGACG G				
1 1/11 11 1 1 1 2 2 2 3	FmPKS8_5R	tccacttaacgttactgaaatctccCTGGGGTTCCACCACATCTTTAC C				

	FmPKS8_3F	ccttcaatatcatcttctgtctccgTCTTAGCCCTTTGTCTATGTATCG	
	FmPKS8_3R	cggataacaatttcacacaggaaacaCCACCAAGTAAGCTCGGTTCT CC	
	FmPKS8GD_3F	tcaatatcatcttctgtctccgacTCTCATTGAAGAACTCCGTGCTCC	
	FmPKS8GD_3R	aacaatttcacacaggaaacagcACGAAGGACTTGTTTCCAGTGAA CC	
	FmPKS40_5F	gccagggttttcccagtcacgacgGGTCCAGGCTAAATACACAACT GG	
FMAN 00008	FmPKS40_5R	cttaacgttactgaaatctccaacCCGATGAAAACACCAGTGTTTGT TCC	
1100000	FmPKS40GD_3F	ttcaatatcatcttctgtctccgacCGAGGCTGGAACCAATATATCAC C	
	FmPKS40GD_3R	ataacaatttcacacaggaaacagcCTCATAGAGCTGTCGAAATGAG GTC	
	Histone3_Mut_1F	ccagggttttcccagtcacgacgCACTGGTAGTGTATGGTGATGTG C	
	Histone3_Mut_2R	catacatcttatctacatacgTTAGTTGCGCTCGCCTCGGAGGC	
FMAN 12510	Histone3_Mut_4F	tcaatAtcatcttctgtcTCCGACGCGATATCACGTATGGGTATT CAGG	
11111(_12510	Histone3_Mut_4R	actggccgtcgttttacaaGTGAAGAAGACGGTGATCCAGG	
	Histone3_Mut_K9R_1 R	CGGTGGACcTGCGGGCGGTCTGC	
	Histone3_Mut_K9R_2 F	GCAGACCGCCCGCAgGTCCACCG	
/	Splitmarker_hph_F	CGTTGCAAGACCTGCCTGAA	
/	Splitmarker_hph_R	GGATGCCTCCGCTCGAAGTA	
	Primers for diagnostic P	CR	
FMAN_07768	Dia_FmKMT1_F	TGAATGGTTATAGACGGGAGCC	

	Dia_FmKMT1_R	GCAAAGAGCTTCATGACCATGG		
	Dia_WTKMT1_F	AACGCCATTTCTACTTCCACGG		
	Dia_WTKMT1_R	TGGGCAGTCTATACTACAGG		
	Gen_seq1	GAGCCTGAATGTTGAGTGG		
genR	Gen_seq3	CAGCCGATTGTCTGTTGTGC		
	genR_split_F	GGGAAGGGACTGGCTGCTATTG		
	Dia_FmPPT1_F	GACGAAAAGAAAGACGGAGAGG		
FMAN 09280	Dia_FmPPT1_R	TACCTTGCCCTACATAGTACG		
1 WAI_07200	Dia_WTPPT1_F	CAAGACCAAAGACCTCACATCC		
	Dia_WTPPT1_R	GGCAAACTTGTGCATCTCTAGG		
	Dia_FmPKS8_F	GGCTGGTGAGCATGTTACAATAGG		
FMAN_15223	Dia_FmPKS8_R	CATCGCCCTTAGCATACGAGC		
	Dia_WTPKS8_F	GGTGTCTTCACAGGTCAAGG		
	Dia_WTPKS8_R	CCGCAAAGAGGATCTCAGTTCC		
	Dia_FmPKS40_F	AGCCTCACTCTTGGCAAATCC		
FMAN_00008	Dia_WTPKS40_F	CAGACTCTGGTGGTATCTTTGCC		
	Dia_WTPKS40_R	ACCATGACTTGGTCAATCTCGC		
/	pCSN44-trpC_P2	GTGATCCGCCTGGACGACTAAACC		
/	pCSN44-hph-trpC-T	GGAATAGAGTAGATGCCGACCGG		
FMAN 12510	FmH3_dia_R	GCTAGCTGCAGTTTCACACTG		
	FmH3_dia_F	CACAACGCGTCGAATATGATCC		
	Primer used for sequenci	ng		

FMAN 07768	Dia_WTFmKMT1_F	AACGCCATTTCTACTTCCACGG
111111_07700	Dia_WTFmKMT1_R	TGGGCAGTCTATACTACAGG
/	pRS426_seq	GCCATTCAGGCTGCGCAACTG
/	Bcgluc_seq	GGGTCCATGCTAATACTTATGTAC
/	Gen_seq1	GAGCCTGAATGTTGAGTGG
/	Gen_seq2	CTCGTGCTTTACGGTATCGC
/	Gen_seq3	CAGCCGATTGTCTGTTGTGC
/	URA3_F	GCTGACATTGGTAATACAGTC
/	Tgluc-HiF	CATACGTACATCTGATTTGACAACC
/	Hph-F	GTCGGAGACAGAAGATGATATTGAAGGAGC
/	Hph-R	GTTGGAGATTTCAGTAACGTTAAGTGGAT
/	trpC-P	CCTCCACTAGCTCCAGCCAAGCCC
	H3_Mut_Seq1	GGAGAGCTTAAGTACGAGTG
	H3_Mut_Seq2	CTGTGTCATTGAATGAGCC
	H3_Mut_Seq3	GACAGCAAATTCGCCATTGG
FMAN_12510	H3_Mut_Seq4	CAACAACAACTATCATCAACC
	H3_Mut_Seq5	TGCTCTCCAGGAGTCCGTCG
	H3_Mut_Seq6	TCAGTCACGCTCTCTAATCC
	H3_Mut_Seq7	GTCATGTGGTCTCCGATCAGG
	Primers for semi-quantit	ative and RT-qPCR
		cDNA verification

FEUL 02611	cDNA_check_Actin_F	GTATGTGCAAGGCCGGTTTCG		
FF0 J_ 02011	cDNA_check_Actin_R	GAGACCAGGGTACATGGTGG		
		Housekeeping genes*		
FEUL 02611	Actin_F	CCACCATGTACCCTGGTCTCTCC		
1105_02011	Actin_R	AATGGAACCACCGATCCAGACGG		
FELL 07385	ß-TUB_F	GAGGCAGTACGATGGCATGCG		
FF0 J_ 07385	ß-TUB_R	GGTAATCTGCGTCTTCAGCAGCTTCG		
EEUL 13400	GPD_F	GCCTCTGAGGGTGACCTCAAGG		
FF0 J _15490	GPD_R	CGTTGTCGTACCAGGAGACCAGC		
		FmKMT1		
FMAN_07768	FmKmt1_F	TGCTAAAGGCCACAGAACGCC		
	FmKmt1_R	CTGGGAGTGTTGAGTGAGTCGGA		
		PKS genes		
EMAN 01074	FmPKS2_F	GCTGATGGCGGTTGAGTTGAGG		
1 10111 _01774	FmPKS2_R	CGAGCTTCGCATCTCAGCGAC		
FMAN 08330	FmPKS5_F	GATCCGGGTTTCACCATGCCG		
1 100 100 550	FmPKS5_R	TCTGCTGCTCTATCCAGAGCCG		
FMAN 15223	FmPKS8_F	CTCCAGTCCGAGGACGACAGC		
1 WAN_15225	FmPKS8_R	ACATTGGTGTCAAGCTCCTCTGGC		
FMAN 13212	FmPKS12_F	CACTTACTGCGATTGAGTTGCGGC		
FMAN_13212	FmPKS12_R	CAACGTCTCTCAACGACGGTGC		
FMAN_15195	FmPKS17_F	ATGGTGTCGACTCACTGGTTGC		

	FmPKS17_R	AATCTCGCTAGCCAACGCTCG	
FMAN 00008	FmPKS40_F	TTGATTCCCTCGTCGCAGTCG	
	FmPKS40_R	AGCCAGTTCAGCCAACTCTTCC	
FMAN 09800	FmPKS43_F	TGCTTAAGCCTGTGGAGGACCTTG	
1 MAN_07000	FmPKS43_R	CCAAGGACGTCCAGCGTCC	
FFB14_11413 ^α	FfPKS40_F	CCTTGTTGCGGTCGAGTTGC	

Gene	Gene ID	Product	Reference
	Non-riboso	mal peptide synthetases	
FmNRPS1	FMAN_06841	malonichrom	(Oide et al., 2014)
FmNRPS2	FMAN_02774	ferricrocin (intracellular sideophores)	(Tobiasen et al., 2007; Oide et al., 2014)
FmNRPS3	FMAN_07066		,
FmNRPS4	FMAN_10843		<i></i>
FmNRPS6	FMAN_13615	fusarinine (extracellular sideophores)	(Varga et al., 2005)
FmNRPS10	FMAN_05062		,
FmNRPS11	FMAN_13817		
FmNRPS12	FMAN_06437		
FmNRPS13	FMAN_04011		
FmNRPS20	FMAN 06958		
FmNRPS21	FMAN 00090		
FmNRPS22	FMAN_12971	beauvericin	(Xu et al., 2008; Zhang et al., 2013; Niehaus et al., 2016)
FmNRPS23	FMAN_15153		. ,
FmNRPS24	FMAN 08295		
FmNRPS25	FMAN 08343		
FmNRPS26	FMAN 08290		
FmNRPS34	- FMAN_03675	fusaric acid	(Brown et al., 2012; Niehaus et al., 2014; Studt et al., 2016)
	Poly	ketide synthases	
FmPKS1/NRPS	FMAN_03782	trichosetin	(Hansen et al., 2015)
FmPKS2	FMAN_01974		,
FmPKS3	FMAN_03378	fusarubins	(Studt et al., 2012)
FmPKS4	FMAN_06935	bikaverin	(Linnemannstöns et al., 2002b)
FmPKS5	FMAN 08330		
FmPKS6	- FMAN_03664	fusaric acid	(Brown et al., 2012; Niehaus et al., 2014; Studt et al., 2016)
FmPKS7	FMAN_09265		
FmPKS8	FMAN_15223		
FmPKS9/NRPS	FMAN_06335		
FmPKS10/NRPS	FMAN_12219	fusarin C (pseudogene and abrogated SMGC)	(Brown et al., 2012)

Fable S2: Presence of SM	genes and linked	products in <i>F. mangiferae</i>
---------------------------------	------------------	----------------------------------

FmPKS12	FMAN_13212		
FmPKS13	FMAN_15141	gibepyrones	(Janevska et al., 2016)
FmPKS14	FMAN_13912		2010)
FmPKS17	FMAN_15195		
FmPKS18	FMAN_15205		
FmPKS20/NRPS	FMAN_11871		
FmPKS38	FMAN_02337		
FmPKS40	FMAN_00008	fusapyrone / deoxyfusapyrone	This study
FmPKS43	FMAN_09800		
	Dimethylally	ytryptophane synthases	
FmDMATS1	FMAN_13061	r-N-DMAT	(Arndt et al., 2017)
FmDMATS2	FMAN_06887		
FmDMATS3	FMAN_06328		
FmDMATS4	FMAN_06531		
	Tei	rpene cyclases	
FmDTC1-1	FMAN_08250	gibberellins	(Tudzynski and Hölter, 1998)
FmTrTC1	FMAN_05579		
FmTeTC1	FMAN_14945	phytoene	(Linnemannstöns et al., 2002a)
FmSTC1	FMAN_02036		
FmSTC2	FMAN_01129		
FmSTC3	FMAN_03293	(+)-eremophilene	(Burkhardt et al., 2016)
FmSTC4	FMAN_13218	(+)-koraiol	(Brock et al., 2013)
FmSTC5	FMAN_14887	(-)-guaia-6,10(14)-diene	(Burkhardt et al., 2016)
FmSTC6	FMAN_11750	(–)-α-acorenol	(Brock et al., 2013)
FmSTC7	FMAN_16004		
FmSTC8	FMAN_12837		
FmSTC9	FMAN_06479		

	Gene ID	60 mM g	glutamine	6 mM gl	utamine	120 mM	NaNO ₃	6 mM 1	NaNO ₃
Housekee	ping genes								
Actin	FMAN_04166	/	21.34	21.52	21.88	20.41	20.40	18.02	18.03
Tubulin	FMAN_05925	26.50	26.12	26.54	26.59	24.38	24.53	23.12	23.14
GPD	FMAN_07563	19.60	19.90	20.53	20.72	18.94	19.07	17.37	17.41
Investigat	ed genes/ Putative c	luster gen	es			1		I	
	FMAN_00001	22.43	22.33	23.08	22.90	22.17	22.15	20.17	20.14
	FMAN_00002	35.20	36.36	24.52	24.63	33.08	34.31	17.52	17.46
	FMAN_00003	36.99	36.96	26.22	26.55	36.25	36.31	19.31	19.44
	FMAN_00004	28.14	28.34	25.07	25.08	28.06	28.11	18.15	18.13
	FMAN_00005	/	/	27.60	27.77	39.50	/	20.81	20.70
	FMAN_00006	36.55	38.33	24.29	24.49	37.30	/	18.32	17.64
	FMAN_00007	39.81	/	27.03	27.38	/	34.84	18.32	18.52
	FMAN_00008	36.98	38.26	25.40	25.26	37.60	36.34	17.60	17.50
	FMAN_00009	36.82	33.73	35.19	33.37	36.53	34.44	31.27	31.23
	FMAN_000010	31.21	31.39	31.18	31.09	32.55	32.32	29.19	/
	FMAN_000011	27.30	27.24	32.81	32.61	28.27	28.58	29.31	29.60
	FMAN_000012	33.75	32.42	33.37	32.93	32.76	32.55	32.03	32.52
	FMAN_000013	29.51	29.51	34.34	33.65	30.20	30.51	32.05	32.70

Table 3: RT-qPCR raw data from FPY SMGC co-expression studies

Gene ID	Length (bp)	Number of amino acids	InterPro annotation	Family type (F), Domains (D) and motifs (M)	Predicted function
<i>FmFPY1</i> (FMAN_00002)	1666	519	IPR001128 IPR002402 IPR002974	Cytochrome P450 (F) Cytochrome P450, E-class, group II (F) Cytochrome P450, E-class, CYP52 (F)	Related to cytochrome P450 alkane hydroxylase
<i>FmFPY2</i> (FMAN_00003)	1190	349	IPR000683 IPR004104	Oxidoreductase, N-terminal (D) Gfo/Idh/MocA-like oxidoreductase, C-terminal (D)	Related to dehydrogenases and related proteins
<i>FmFPY3</i> (FMAN_00004)	2157	597	IPR011701 IPR020846	Major facilitator superfamily (F) Major facilitator superfamily domain (D)	Related to multidrug transporter
<i>FmFPY4</i> (FMAN_00005)	1110	369			FAD dependent oxidoreductase
<i>FmFPY5</i> (FMAN_00006)	834	218	IPR005645	Serine hydrolase FSH (D)	FSH1 domain- containing protein
<i>FmFPY6</i> (FMAN_00007)	1696	546	IPR002213	UDP-glucuronosyl/UDP- glucosyltransferase (F)	Related to UDP- glucosyl transferase family protein
<i>FmFPY7</i> (FMAN_00008)	7580	2474	IPR009081 IPR013149 IPR013217 IPR013968 IPR014030 IPR014031 IPR014043 IPR020806	Phosphopantetheine binding ACP domain (D) Alcohol dehydrogenase, C- terminal (D) Methyltransferase type 12 Polyketide synthase, ketoreductase domain (D) Beta-ketoacyl synthase, N- terminal (D) Beta-ketoacyl synthase, C- terminal (D) Acyl transferase Polyketide synthase, phosphopantetheine-binding	FmPKS40

Table 4: Detailed analysis of putative fmfpy SMGC

I	IPR020807	domain (D)
	111020007	Polyketide synthase.
	IPR020841	dehydratase domain
		Polyketide synthase, beta-
	IPR020843	ketoacyl synthase domain (D)
		Polyketide synthase,
	IPR032821	enoylreductase domain (D)
		Polyketide synthase, C-
		terminal extension (D)

Predicted gene function	F. mangiferae MRC7560	F. fujikuroi B14	F. proliferatum ET1	F. proliferatum NRRL62905	F. verticillioides M3125
Unknown	FMAN_00001	FFB14_11405	/	FPRN_00001	/
Cytochrome P450 alkane hydroxylase	FMAN_00002	FFB14_11407	FPRO_00007	/	/
Dehydrogenase	FMAN_00003	FFB14_11408	FPRO_00008	/	/
Multidrug transporter	FMAN_00004	FFB14_11409	FPRO_00009	/	FVEG_09964
FAD dependent oxidoreductase	FMAN_00005	FFB14_11410	FPRO_00010	/	FVEG_09963
FSH1 domain- containing protein	FMAN_00006	FFB14_11411	FPRO_00011	/	/
UDP-glucosyl transferase family protein	FMAN_00007	FFB14_11412	FPRO_00012	/	/
PKS40	FMAN_00008	FFB14_11413	FPRO_00013	FPRN_00002	FVEG_16698T0
Cellulose binding protein	FMAN_00009	/	/	/	/
Mfs-multidrug- resistance transporter	FMAN_00010	FFB14_11414	FPRO_00014	FPRN_00003	FVEG_09958
Unknown	FMAN_00011	FFB14_11415	FPRO_00015	FPRN_00004	/
Transporter	FMAN_00012	FFB14_11416	FPRO_00016	FPRN_00005	/
Zn(2)-C6 fungal-type domain-containing protein	FMAN_00013	FFB14_11417	FPRO_00017	FPRN_00006	/

Table 5: Comparison of FPY SMBGC with other members of the FFC

References

- Arndt, B., Janevska, S., Schmid, R., Hübner, F., Tudzynski, B., and Humpf, H.-U. (2017). A Fungal N-Dimethylallyltryptophan Metabolite from Fusarium fujikuroi. *ChemBioChem* 18, 899–904. doi:10.1002/cbic.201600691.
- Blum, M., Chang, H. Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., et al. (2021). The InterPro protein families and domains database: 20 years on. *Nucleic acids research* 49, D344–D354. doi:10.1093/nar/gkaa977.
- Brock, N. L., Huss, K., Tudzynski, B., and Dickschat, J. S. (2013). Genetic Dissection of Sesquiterpene Biosynthesis by Fusarium fujikuroi . *ChemBioChem* 14, 311–315. doi:10.1002/cbic.201200695.
- Brown, D. W., Butchko, R. A. E., Busman, M., and Proctor, R. H. (2012). Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. *Fungal Genetics and Biology* 49, 521–532. doi:10.1016/j.fgb.2012.05.010.
- Burkhardt, I., Siemon, T., Henrot, M., Studt, L., Rösler, S., Tudzynski, B., et al. (2016). Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus Fusarium fujikuroi. *Angewandte Chemie* 128, 8890–8893. doi:10.1002/ange.201603782.
- Hansen, F. T., Gardiner, D. M., Lysøe, E., Fuertes, P. R., Tudzynski, B., Wiemann, P., et al. (2015). An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. *Fungal Genetics and Biology* 75, 20–29. doi:10.1016/j.fgb.2014.12.004.
- Janevska, S., Arndt, B., Niehaus, E. M., Burkhardt, I., Rösler, S. M., Brock, N. L., et al. (2016). Gibepyrone biosynthesis in the rice pathogen Fusarium fujikuroi is facilitated by a small polyketide synthase gene cluster. *Journal of Biological Chemistry* 291, 27403–27420. doi:10.1074/jbc.M116.753053.
- Linnemannstöns, P., Prado, M. M., Fernández-Martín, R., Tudzynski, B., and Avalos, J. (2002a). A carotenoid biosynthesis gene cluster in Fusarium fujikuroi: The genes carB and carRA. *Molecular Genetics and Genomics* 267, 593–602. doi:10.1007/s00438-002-0690-5.
- Linnemannstöns, P., Schulte, J., del Mar Prado, M., Proctor, R. H., Avalos, J., and Tudzynski, B. (2002b). The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. *Fungal Genetics and Biology* 37, 134–148. Available at: www.academicpress.com.
- Niehaus, E. M., von Bargen, K. W., Espino, J. J., Pfannmüller, A., Humpf, H. U., and Tudzynski, B. (2014). Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. *Applied Microbiology and Biotechnology* 98, 1749–1762. doi:10.1007/s00253-013-5453-1.
- Niehaus, E.-M., Studt, L., von Bargen, K. W., Kummer, W., Humpf, H.-U., Reuter, G., et al. (2016). Sound of silence: The beauvericin cluster in Fusarium fujikuroi is controlled by cluster-specific and global regulators mediated by H3K27 modification. *Environmental Microbiology* 18, 4282– 4302. doi:10.1111/1462-2920.13576.

- Oide, S., Berthiller, F., Wiesenberger, G., Adam, G., and Turgeon, B. G. (2014). Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. *Frontiers in Microbiology* 5. doi:10.3389/fmicb.2014.00759.
- Studt, L., Janevska, S., Niehaus, E. M., Burkhardt, I., Arndt, B., Sieber, C. M. K., et al. (2016). Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi. *Environmental Microbiology* 18, 936–956. doi:10.1111/1462-2920.13150.
- Studt, L., Wiemann, P., Kleigrewe, K., Humpf, H., and Tudzynski, B. (2012). Biosynthesis of Fusarubins Accounts for Pigmentation of Fusarium fujikuroi Perithecia. *Applied and Environmental Microbiology* 78, 4468–4480. doi:10.1128/AEM.00823-12.
- Tobiasen, C., Aahman, J., Ravnholt, K. S., Bjerrum, M. J., Grell, M. N., and Giese, H. (2007). Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. *Current Genetics* 51, 43–58. doi:10.1007/s00294-006-0103-0.
- Tudzynski, B., and Hölter, K. (1998). Gibberellin Biosynthetic Pathway in Gibberella fujikuroi: Evidence for a Gene Cluster. *Fungal Genetics and Biology* 25, 157–170.
- Varga, J., Kocsube, S., Toth, B., and Mesterhazy, A. (2005). NONRIBOSOMAL PEPTIDE SYNTHETASE GENES IN THE GENOME OF FUSARIUM GRAMINEARUM, CAUSATIVE AGENT OF WHEAT HEAD BLIGHT. *Acta Biologica Hungarica* 56, 375–388.
- Xu, Y., Orozco, R., Wijeratne, E. M. K., Gunatilaka, A. A. L., Stock, S. P., and Molnár, I. (2008). Biosynthesis of the Cyclooligomer Depsipeptide Beauvericin, a Virulence Factor of the Entomopathogenic Fungus Beauveria bassiana. *Chemistry and Biology* 15, 898–907. doi:10.1016/j.chembiol.2008.07.011.
- Zhang, T., Zhuo, Y., Jia, X. P., Liu, J. T., Gao, H., Song, F. H., et al. (2013). Cloning and characterization of the gene cluster required for beauvericin biosynthesis in Fusarium proliferatum. *Science China Life Sciences* 56, 628–637. doi:10.1007/s11427-013-4505-1.