
Supplementary material

S1 Supplementary methods

S1.1 Processing of genotype and tissue-specific gene expression data

All STARNET genotype and gene expression data obtained for this project had undergone both

Quality Control (QC) and normalisation as described previously1. The Human OmniExpressExome-

8v1 bead chip was used with GRCh37 and contains 951,117 genomic markers and imputed to

12,450,918 autosomal SNPs. Genotypes were contained in matrices within the -012 format and

a filtering step was included to remove any SNPs which had missing values for any samples and

to exclude any SNPs which had a Minor Allele Frequency (MAF) < 5% (6245505 SNPs).

Gene expression for STARNET tissue samples was measured using RNA-seq. RNA samples

with less than 1M uniquely mapped reads were excluded, which removed 12 samples with ex-

tremely low read counts. The read counts of the samples used in the final analysis were between

15-30 million reads (Figure S1).

The numbers of samples and genes retained can be seen in Table S13. Having obtained gene

expression matrices from Franzen et al, we conducted Principal Component Analysis (PCA) to

confirm that there were no outliers within the samples (Figure S2). Ensembl Biomart (GRCh37)

was used to label transcripts (provided as Ensembl IDs) with gene name, chromosome location,

gene start, gene end and the Transcription Start Site (TSS).

METSIM gene expression data were obtained as Transcripts Per Million (TPM) and showed

an inflation of higher correlated genes from the normal distribution (Figure S3). To account

for this, the METSIM gene expression values were log2 transformed (TPM+1) followed by a re-

running of the PCA. The log2 transformed expression values were then fitted to a linear model

in R, while adjusting on the 1st principal component. The residuals of this model replaced the

count values that were used in all subsequent analyses and no longer showed inflated correlation

values (Figure S3).
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S1.2 Causal gene network reconstruction

Cis-eQTL discovery was carried out to identify genetic instruments to be used for causal infer-

ence analysis with Findr2 (Figure S4). An automated pipeline was established to use the sec-

ondary linkage test (P2) to calculate SNP-gene associations when supplied with a list of genes.

SNP-gene associations were obtained between all SNPs within 1 Mb of the trans-gene and all

other transcripts using the same tissue dataset as the trans-gene.

Associations between all SNPs and the trans-gene were extracted from the output. A primary

cis-eQTL was selected for each gene, defined as the SNP-gene association with the highest Findr

P2 score for the trans-gene. An alternate, independent, cis-eQTL was selected as the second

strongest cis-association not in LD with the primary cis-eQTL. LD between SNPs was calculated

as the Pearson correlation coefficient between the primary cis-eQTL genotype and all other SNP

genotypes. The alternate cis-eQTL was defined as the top cis-association, which was not in LD

with the primary cis-eQTL (R2 < 0.5).

To test for pleiotropy between the selected instrument and other cis-genes, cis associations

between all cis genes (± 1 Mb of the trans-gene) and the primary instrument were obtained, as

detailed in supplementary results (section S2.2)

All genes with a valid cis-eQTL (P2 > 0.75) were taken forward for causal analysis with Findr.

Causal relationships were inferred between these cis-eQTL genes (A-genes) and all other tran-

scripts expressed in the same tissue (B-genes). The input was as follows: (dg) array of eQTL

genotypes A-gene in 012 format, (d) array of normalised A-gene expression levels, (dt) array of

expression levels for all B-genes in the relevant tissue sorted with d appearing on top.

The output of all tests in Findr was calculated using the pijs_gassist function from the Findr

Python package. The posterior probability of a causal interaction (P(A →B)) was calculated from

the product of the alternative hypotheses from the secondary linkage test (P2) and the controlled

test (P5). The controlled test (P5) is a likelihood ratio test, which can be used as a composite test

with secondary linkage (P2*P5) to infer a causal A →B relationship while using a cis-eQTL, E, as

an instrumental variable. P5 examines whether A and B are not associated independently with E

(i.e. whether they are still coexpressed after adjusting for E), while P2 tests for a direct association

between E →B. Previous work has demonstrated that most cis-eQTLs are only associated with a

single gene3, therefore selecting cis-eQTLs specifically as an instrument allows E →B to be used

as a proxy for estimating causal effects between A →B. When combined with P2, P5 can then be

used to account for the comparatively few instances where E is a cis-eQTL for more than one
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gene, although in such cases a false positive may still occur when A and B are confounded by a

common regulator2,4. Therefore, we also examined manually all cis-associations for selected E

of interest, to account for any sources of pleiotropy that may have been missed by P5 (section

S2.2).

This approach was undertaken for each A-gene in a given tissue in a iterative fashion. Follow-

ing completion of analysis for all A-genes in a tissue, the output was converted from the default

matrix format to a Pandas DataFrame. Each tissue-specific gene set of A →B pairwise interac-

tions was filtered according to a local precision FDR threshold (Findr score) for each interaction,

to correspond to a global FDR for all interactions in the tissue set.

Networks were assembled, using the network visualisation tool, Cytoscape (version 3.8.0),

from FDR thresholded pairwise gene interactions previously described. These were assembled

as directed networks where the A-gene acts as the parent node and the B-gene as the child node,

with the posterior probability of an A →B interaction forming the network edge.

The Findr score for a given A →B pairwise interaction, or E →B in the case of P2 testing (Table

S3), is calculated as 1 minus the probability of that interaction being a false positive. To obtain

the probability of a false positive across all interactions in a gene set, this was calculated as 1

minus the mean of all local precision FDR scores for a given tissue. A Findr score cut off was then

set to obtain interaction sets at 10%, 15% and 20% global FDR thresholds5.

S1.3 Functional annotation and clustering for GO enrichment

Gene sets were functionally annotated using the Database for Annotation, Visualization and In-

tegrated Discovery (DAVID)6. This web-based application allows for the generation of gene clus-

ters that have been grouped in relation to an enrichment of functional terms, including but not

limited to Gene Ontology (GO) terms. The strength of the gene-term interactions are measured

by EASE scores, a modified Fisher’s exact test. An enrichment score for a given cluster is gen-

erated as the geometric mean of all the EASE scores within a cluster that has undergone -log

transformation. For all analyses Ensembl Gene IDs were used as the input format for DAVID as

opposed to universal gene symbols.

For the analyses conducted, all of the default annotation options were selected in addition to:

GAD DISEASE, GO TERM BP FAT, GO TERM CC FAT, GO TERM MF FAT, PUBMED ID, REACTOME

PATHWAY, BIOGRID INTERACTIONS and UP TISSUE. Gene sets were then run using DAVID
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and functionally enriched clusters generated using high classification stringency. Tissue-specific

gene sets from STARNET RNA-seq datasets were used as background for enrichment (Table S13).

S2 Supplementary results

S2.1 Detailed networks description

S2.1.1 Liver

A trans-association was identified between cortisol-associated SNP rs4905194 and CPEB2 in STARNET-

liver (Figure 2A). Following cis-eQTL discovery for CPEB2, a SNP peak was identified upstream

of the CPEB2 TSS represented by the instrument rs62410848, which was used as an instrumental

variable for network reconstruction (Figure S5).

48 causal interactions were obtained at a global 10% FDR threshold (Posterior probability >

0.855) (Table S9). When filtering to a minimum of 4 targets, the only GR-regulated trans-gene

that remained was CPEB2 (Figure 2E). Notably, this was also the trans-gene that appeared in the

most GR target datasets, forming a network with 44 target genes. Functional enrichment was

performed using DAVID for all CPEB2 target genes (Table S8). The strongest cluster was related

to fatty acid beta oxidation and lipid metabolism, including 5 genes related to GO:0006635 -

fatty acid beta-oxidation (adj p-value = 0.002). Other enrichments stem from 8 genes related to

acquired immunodeficiency syndrome and disease progression (adj p-value = 0.003).

The strongest causal relationship within this network was between CPEB2 and the gene HADHA

(Posterior Probability = 0.99), responsible for encoding the alpha subunit of the mitochondrial

trifunctional protein7. Mutations affecting this protein have been linked to long-chain 3-hydroxyacyl-

CoA dehydrogenase (LCHAD) deficiency, which affects the ability to metabolise fatty acids in the

liver8. These mutations have also been linked to maternal acute fatty liver during pregnancy9.

S2.1.2 Subcutaneous fat

In STARNET subcutaneous fat, 486 causal relationships were detected at a 10% FDR threshold

(Posterior probability = 0.87), which is the most out of all tissues examined (Table S10). When fil-

tering to exclude trans-genes with less than 4 targets at this threshold, 2 major sub-networks are
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represented under the regulation of the genes RNF13 and IRF2. This includes a total of 343 causal

relationships across both sub-networks, including two genes shared by both sub-networks.

RNF13 was found to be trans-associated with the cortisol-linked SNP rs11622665 (Figure 2E).

A cis-eQTL peak of SNPs associated with RNF13 in STARNET subcutaneous fat was identified

upstream of the RNF13 TSS, represented by the lead SNP rs9853321 which was used as a causal

instrument in the reconstruction of the causal network driven by RNF13 (Figure S5).

RNF13 represents the largest subcutaneous fat sub-network with 215 gene targets at a 10%

FDR threshold (Figure 2F). The strongest functional enrichment term for RNF13 targets is re-

lated to Poly(A) RNA binding, where 33 targets are included for this term, GO:0044822 poly(A)

RNA binding (adj p-value = 0.01), and 39 targets are included for RNA binding, GO:0003723 RNA

binding (adj p-value = 0.04). Other notable terms include 23 genes related to Zinc finger motifs

(adj p-value = 0.05).

IRF2 was found to be associated with the cortisol-linked SNP rs8022616 (Figure 2C). Cis-

eQTL discovery revealed associations between rs34985265 and IRF2 expression in subcutaneous

fat to obtain an instrument that could be used for causal network reconstruction (Figure S5).

The IRF2 sub-network contains 128 targets at a 10% FDR threshold (Figure 2D). Following

functional enrichment of IRF2 targets, the strongest enrichment term included 19 genes related

to Poly(A) RNA binding (p-value = 0.009), however this association was not retained following

multiple testing correction. Some notable targets of IRF2 include LDB2 (Posterior probability =

0.94) and LIPA (Posterior probability = 0.91). GWAS suggests functions for LIPA related to CAD

and ischaemic cardiomyopathy and LDB2 has been demonstrated to be involved in the develop-

ment of atherosclerosis10. Additionally, cortisol has been shown to induce a 5-fold reduction in

LDB2 expression in adipocytes11.

An additional subcutaneous fat gene network was identified for the transcription factor PBX2

containing 138 targets at a 10% FDR threshold. However, the cis-eQTL instrument that was used

to reconstruct this network was found to be associated with many other genes at the PBX2 locus,

which include causal targets within the PBX2 network. This indicates that PBX2 is not indepen-

dently linked to this instrument and the PBX2 causal network could be driven by a cis-gene other

than PBX2.
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S2.1.3 Visceral abdominal fat

In STARNET visceral abdominal fat, trans-associations were identified for the genes CD163 and

LUC7L3 with the same cortisol associated SNP rs2005945 (Figure S6A-B). Although STARNET-

visceral abdominal fat contained the largest number of trans-associations with cortisol SNPs, the

fewest causal relationships were detected in this tissue at 10% FDR (Table S11). Two small sub-

networks were detected, regulated by the genes LUC7L3 and CD163 composed of eleven and four

targets (Figure S6C). Interestingly, when the FDR threshold is reduced to 15% the sub-network

for CD163 is expanded to include 378 targets, a much more dramatic expansion compared to

reducing the threshold to 15% FDR with other regulators. The networks for CD163 and LUC7L3

were identified using the cis-eQTLs rs73059776 and rs6504682, respectively (Figure S6D). Due to

the small size of the 10% FDR networks, functional enrichment and clustering was not carried

out for either of the networks identified in visceral abdominal fat.

S2.2 Application of independent genetic instruments for gene network reconstruc-

tion

To study the impact of instrument selection on the reconstruction of causal networks we exam-

ined the distribution of local cis-eQTLs for each of the GR-regulated trans-genes that was found

to regulate a network. Primary instruments were selected as the strongest cis-eQTL within a 1

Mb window of the associated gene, as determined by secondary linkage test posterior probabil-

ity. However, the landscape of gene expression-linked genetic variation can involve several loci

associated with the expression of the same gene to differing degrees. In addition to selecting

a primary cis-eQTL as an instrument, alternate independent instruments were also identified.

These were defined as the second strongest cis SNP-gene association which was not in LD with

the primary instrument (R2 < 0.5) (Figure S5).

Causal relationships in STARNET liver were defined by a GR-regulated network under the reg-

ulation of CPEB2 (FDR = 10%). The genetic instrument used to construct this network, rs62410848

(posterior probability = 0.90), is the strongest cis-eQTL for CPEB2, located less than 100 Kb up-

stream of the CPEB2 locus. An independent peak was identified 400 Kb upstream of CPEB2,

represented by rs6847363 as the top cis-association in this region (posterior probability = 0.48).

As this independent instrument fell below the required threshold (posterior probability > 0.75),

causal analysis was not carried out using rs6847363 as an instrument.
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To determine the robustness of the primary instrument, we examined cis-associations with

other genes within this locus (± 1 Mb). While CPEB2 was the strongest cis-eQTL association in

this region, rs62410848 was also seen to be associated with CD38 (posterior probability = 0.85), a

gene ∼800 Kb downstream of CPEB2. Although CD38 is not associated with any cortisol variants

at the SERPINA6/SERPINA1 locus, it has been identified as being regulated by glucocorticoids

in smooth muscle cells12 and has been identified as a GR target in ENCODE. However, CD38

does not appear as a target of CPEB2, which suggests a low P5 score. This suggests that CPEB2

and CD38 are independently associated with rs62410848 and that CPEB2 is the true network

regulator in this cis region.

In STARNET subcutaneous fat, the IRF2 sub-network was generated using the SNP rs34985265

(posterior probability = 0.94) located ∼500 Kb upstream of IRF2. The strongest independent cis-

eQTL for IRF2, rs2171838 (posterior probability = 0.72), is located closer to IRF2, ∼300 Kb of

the IRF2 TSS. This association did not reach the association threshold for use as a causal in-

strument (posterior probability = 0.72). Examining cis-associations between rs34985265 and all

genes within 1 Mb of IRF2, IRF2 is the only gene to show an association with this SNP.

For RNF13 the primary instrument, rs9853321 (posterior probability = 0.81), was located in

a peak 400 Kb upstream of the RNF13 transcription start site. The strongest independent cis-

eQTL, rs62282739, is located nearly 1 Mb downstream of RNF13 and was too weak to be taken

froward for causal analysis (posterior probability = 0.70). Cis-associations for rs9853321 in this

region, include an association with the gene TM4SF1 (posterior probability = 0.93) at a higher

level than the association with RNF13. There is some indication of a causal relationship between

RNF13 and TM4S1 (posterior probability = 0.73), however TM4S1 is not a target of RNF13 at either

a 10% or 15% global FDR threshold, suggesting that TM4S1 is independently associated with

rs9853321.

The third subcutaneous fat sub-network was predicted using the SNP rs35571244 as a cis-

eQTL for PBX2 (posterior probability = 0.93). This SNP is located ∼800 Kb downstream of the

PBX2 transcription start site and is the strongest cis-eQTL for a peak of SNPs in this region. An

alternate cis-eQTL, rs3128947 (posterior probability = 0.73), is located 500 Kb upstream of the

PBX2 transcription start site. Again, this cis-eQTL was too weak to be taken forward for causal

analysis. There are 31 cis-associations between rs35571244 and genes within a 1 Mb window of

PBX2 at a 15% FDR threshold (posterior probability > 0.8), of which PBX2 is the 7th strongest

association. Of these cis associations, 10 are causal targets of PBX2 when using rs35571244 as

a genetic instrument at a 15% FDR threshold and 4 are targets at a 10% FDR threshold. This
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suggests that these genes are not independently linked to rs35571244, which raises the possibility

that these targets would be predicted from other cis-genes and not just PBX2 specifically.

The primary instrument used to reconstruct the CD163 sub-network in visceral abdominal

fat, rs7954905 (posterior probability = 0.86), is located less than 100 Kb downstream of CD163.

The strongest independent cis-eQTL, rs2377237 (posterior probability = 0.72), is located ∼500

Kb upstream of the CD163 transcription start site, however this SNP was below the threshold

for use as a causal instrument. There were 6 cis-associations at a 15% FDR threshold (posterior

probability > 0.78). One of these cis-genes is a target of CD163 (posterior probability = 0.86)

at a 15% FDR threshold, but no genes are targets at a 10% FDR threshold. This target gene is

CD163L1, which is a paralog of CD163 located downstream of of CD163. The peak represented

by rs7954905 is located in the CD163L1 gene body. CD163L1 arose as a gene duplication of CD163

and colocalises with CD16313.

The primary instrument used to reconstruct the LUC7L3 sub-network, rs6504682 (posterior

probability = 0.8), is located within the LUC7L3 gene body. An independent cis-eQTL, rs2412130

(posterior probability = 0.7) is located in a peak ∼1000 Kb upstream of LUC7L3. Again, this al-

ternate cis-eQTL did not meet the threshold for use as an instrument. There is only one other

cis-gene associated with rs6504682, ANKRD40 (Findr score = 0.81), however this gene is not a

target of LUC7L3 in either the 15% or 10% FDR causal networks in visceral adipose.
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S3 Supplementary figures

Figure S1: Distribution of RNA-seq read counts across all STARNET tissues.
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Figure S2: Principal component analysis of gene expression samples across all STARNET tissues.
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Figure S3: Correlations between randomly sampled genes from discovery and replication datasets both pre and post correction.
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Figure S4: Instrument selection for causal analysis with Findr. Flowchart depicts identification of cis-eQTLs for use as genetic
instruments for causal analysis with Findr.
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Figure S5: Cis-eQTL discovery for network regulators. SNP-gene associations within a 1 Mb window of the associated gene
calculated using the Findr secondary linkage test (P2) and presented as 1-findr score (-log10) with LocusZoom. Lead cis-eQTL is
primary instrument used for causal analysis. Red circle indicates independent (R2 < 0.5) alternate instrument.
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Figure S6: 10% FDR gene network in STARNET visceral abdominal fat driven by LUC7L3 and CD163. (A) Gene expression boxplot
in STARNET visceral abdominal fat showing trans-association with cortisol-linked SNP rs20005945 and CD163 (B) and LUC7L3
(p-value obtained from Kruskal Wallis test statistic). (C) Causal gene network reconstructed from pairwise interactions from
GR-regulated trans-genes against all other STARNET visceral abdominal fat genes. Edges represent Bayesian posterior probabilities
of pairwise interaction between genes (nodes) exceeding 10% global FDR. Arrow indicates direction of regulation and interactions
were only retained where parent node had at least 4 targets. (D) LocusZoom plot showing cis-eQTLs for CD163 and LUC7L3, with
lead SNP used as instrumental variable indicated in purple. Significance of association is indicated on the y axis as -log10(1-fdr),
where fdr represents the local false discovery rate as estimated by Findr. (E) Correlations between network targets in discovery vs
replication datasets for LUC7L3 and (F) CD163. Kruskal Wallis test calculated for distribution of correlations between network
targets compared to correlations within random gene set of same size.
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S4 Supplementary tables

Table S1: Datasets used for identifying genes regulated by glucocorticoids.

Table S2: All genes associated with variation for plasma cortisol across all STARNET tissues (FDR = 15%). Only unique associations
are included with the top SNP-gene pair. Number of associations refers to the total number of cortisol associated SNPs associated
with a given gene.

Table S3: Tissue specific local precision FDR (Findr P2 scores) used to establish FDR thresholds for trans-gene sets.
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Table S4: Cortisol associated trans-genes from STARNET-liver (FDR = 15%) with evidence of GR regulation. Transcription factor db
includes ENCODE, TRANSFAC and CHEA transcription factor datasets.

Table S5: Cortisol associated trans-genes from STARNET-visceral adipose fat (FDR = 15%) with evidence of GR regulation.
Transcription factor db includes ENCODE, TRANSFAC and CHEA transcription factor datasets. ChIP-seq and Microarray fields are
from Yu et al experiments in adipocytes14. * Indicates genes that have been identified as GR targets from both global TF binding
and perturbation experiments. Direction of effect is estimated from the Pearson correlation coefficient of the gene expression level
and cortisol associated genotype.

Table S6: Cortisol associated trans-genes from STARNET-subcutaneous fat (FDR = 15%) with evidence of GR regulation.
Transcription factor db includes ENCODE, TRANSFAC and CHEA transcription factor datasets. ChIP-seq and Microarray fields are
from Yu et al experiments in adipocytes14. Murine dex is from dexamethasone treated adrenalectomised mice15. Indicates genes
that have been identified as GR targets from both global TF binding and perturbation experiments. Direction of effect is estimated
from the Pearson correlation coefficient of the gene expression level and cortisol associated genotype.

Table S7: GR regulated cortisol linked trans-genes (FDR = 15%) with a valid cis-eQTL for causal analysis (posterior probability >
0.75).

Table S8: Functional enrichment of causal network targets using DAVID. Filtered to enrichment score > 1.

Table S9: All pairwise interactions from Findr (P2*P5) in liver at a 10% FDR threshold.

Table S10: All pairwise interactions from Findr (P2*P5) in subcutaneous fat at a 10% FDR threshold.

Table S11: All pairwise interactions from Findr (P2*P5) in visceral abdominal fat at a 10% FDR threshold.

Table S12: Transcription factor enrichment within gene network targets. Fisher’s exact test for IRF2 targets from TRANSFAC
predicted targets and GR targets from ENCODE. STARNET subcutaneous fat genes used as background for enrichment.

Table S13: Summary of tissue specific gene expression data from STARNET.
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