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Supporting text – A mathematical solution to confined diffusion 
We previously showed through simulations that the measured diffusion coefficient is underestimated when 

particles move by random motion in a confined environment. The deviation from the real diffusion 

coefficient drastically increases when the diffusion coefficient gets higher, and the analyzed molecules are 

in a region closer to the boundary of the confinement 14 (Supporting Fig. 1A).  

We now developed a mathematical model to solve this limitation. The simplest approach to modeling of 

diffusion is through Ficks laws, which in his second law led to the so-called diffusion equation (Eq. 1) 

𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
= 𝐷∆𝜌(𝑥, 𝑡) (1) 

In the context of random motion, say a random walk of a particle, ρ denotes a probability density (or 

distribution) and 𝑃(𝑅) =  ∫ 𝜌 d𝑥
𝑅

 would be the probability of finding the particle within a region R. 

Here we solve analytically the one-dimensional diffusion equation with reflecting boundaries. For 

simplicity, we interpret ρ(x, t) as the probability density for finding a particle at position x at time t. 

Assuming that at t = 0 the particle is located at x = 0, and that the probability density ρ(x, t) = 0 as x 

approaches infinite for any finite time, a solution to equation 1 is then given by equation 2: 

𝜌(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
exp (−

𝑥2

4𝐷𝑡
) (2) 

In a heuristic way, equation 2 provides a measure of the likelihood of finding a particle at position x after 

time t provided that the medium where it moves is infinite. 

Let us now consider the diffusion of a particle within a bounded domain, for simplicity from – L/2 to + L/2, 

where L is the length of the domain. We assume that the particle is located at x = 0 at t = 0, and that it is 

reflected back to the interior of the interval once it reaches the boundary (Supporting Fig. 1B). The 

analytical solution for this case is given by equation 3 (see Supporting Information – Diffusion on a closed 

interval): 

𝜌𝐿(𝑥, 𝑡) =
1

𝐿
+
2

𝐿
∑ cos (

2𝜋𝑛𝑥

𝐿
) exp (−

4𝜋2𝑛2𝐷𝑡

𝐿2
)

∞

𝑛=1

(3) 

Relying on an analytical solution of the diffusion equation in higher dimensions and for more complicated 

geometries is not convenient. Equation 2 is valid for diffusion in unbounded domains. We can approximate 

the solution of equation 3 using a “folding approach”, by accounting for the bounces a particle makes when 

hitting the boundaries, assuming no loss of energy in the process, and adding them up (Supporting Fig. 1C). 
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In this way, an approximation of equation 3 is given by equation 4: 

𝜌̃(𝑥, 𝑡) = 𝜌(𝑥, 𝑡) + 𝜌(𝐿 − 𝑥, 𝑡) + 𝜌(𝐿 + 𝑥, 𝑡) + 𝜌(2𝐿 − 𝑥, 𝑡) + 𝜌(2𝐿 + 𝑥, 𝑡) + ⋯ (4) 

where the term ρ(kL – x) + ρ(kL + x) corresponds to the density for the particle being at position x at time t 

after k bounces. When substituting equation 2 in equation 4 we get: 

𝜌̃(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
[exp (−

𝑥2

4𝐷𝑡
) +∑(exp(−

(𝑘𝐿 − 𝑥)2

4𝐷𝑡
) + exp (−

(𝑘𝐿 + 𝑥)2

4𝐷𝑡
))

𝑁

𝑘=1

] (5) 

where N denotes the maximum number of bounces (Supporting Fig. 1C). 

One can take a similar approach in higher dimensions. For example, we consider the diffusion in a 

rectangular plate of sides A (horizontal) and B (vertical), and here we assume that the motion of the particle 

on each coordinate (x, y) is independent of each other. The analytical solution for the diffusion equation 

then becomes: 

𝜌(𝑥, 𝑦, 𝑡) =  𝜌𝐴(𝑥, 𝑡)𝜌𝐵(𝑥, 𝑡) (6) 

where ρA and ρB are as in equation 3. 

We can however take another approach, as we did for the interval in one dimension (equation 4, 5). We 

denote by p(t) = (x(t), y(t)) the position of a particle in the rectangular plate at time t. As above, we then 

compute the density ρ(x, y, t) by adding up all the densities corresponding to trajectories in the rectangular 

plate that take the particle from the initial position p0 to some final position pf after a number of bounces 

(Supporting fig. 2A, 2B). What we describe is in fact an example of a mathematical billiard. 

To use these ideas to estimate the diffusion coefficient inside a cell, we approximate the geometry of the 

cell by a planar sphero-cylinder, also known as a Bunimovich stadium (Supporting Fig. 1D). In this setting, 

0-bounce and 1-bounce trajectories can be easily computed. Densities corresponding to trajectories that

bounce on the straight (top and bottom) sides of the sphero-cylinder are computed as aforementioned. Those

corresponding to bounces on the circular sides can be computed by solving the system of equations:

{

𝐴0𝑥𝑐 + 𝐵0𝑦𝑐

√𝐴0
2 + 𝐵0

2
=
𝐴𝑓𝑥𝑐 + 𝐵𝑓𝑦𝑐

√𝐴𝑓
2 + 𝐵𝑓

2

𝑥𝑐
2 + 𝑦𝑐

2 = 𝑅2

(7)
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where A0 = yc – y0, B0 = xc – x0, Af = yc – yf, Bf = xc – xf, and (x0, y0), (xc, yc), (xf, yf) represent the starting 

point, a bouncing point on the circular section of the cell boundary and the end point, respectively 

(Supporting Fig. 1D). 

Since equation 7 cannot be solved analytically, we developed a script (see Supporting Information – 

algorithm 1) to compute the 0-bounce and 1-bounce trajectories of any diffusing particle, provided that the 

start and end positions are known. We then used this algorithm together with SMdM to calculate the 

diffusion coefficient of two-dimensional diffusion simulations in a billiard, generated with Smoldyn 

(Supporting Fig. 1E). SMdM utilizes the equation ρ(x, y, t) = ρ(x, t)ρ(y, t), where ρ(x, t) and ρ(y, t) are as in 

equation 2. The displacement map is obtained by using the spatiotemporal information of a particle 

diffusing from a start to an end position in a fixed period of time, and fitting the information into the SMdM 

equation (see Materials and Methods – SMdM analysis, Eq. 11) using D as fitting parameter. Smoldyn 

allows simulation of the motion of particles using a predefined diffusion coefficient and time resolution, 

within a simulation compartment. With our mathematical model we obtain a set of displacements for every 

diffusing particle. Such a set is composed of the 0-bounce trajectory and of all the possible 1-bounce 

trajectories. By adding up all the trajectories and calculating their combined density as in equation 6, we 

obtain a final diffusion coefficient for every pixel that is a good approximation of the input diffusion 

coefficient used for the simulations. 

Applying the mathematical approach to solve the diffusion equation near the boundaries in confined 

environments has three shortcomings. (i) The approximation (equation 5) is valid for the given boundary 

conditions, but not for e.g. non-continuous, non-convex surfaces. An example of a surface where our model 

would have failed is the Penrose unilluminable room (Supporting Fig. 3A), or the matrix of mitochondria. 

Some regions of these surfaces are inaccessible by rays that start from particular locations, regardless of 

the number of bounces. However, for a particle freely diffusing in any compartment, it would be possible 

to reach any location, leading to the emergence of starting and final points that cannot be connected by 

reflecting rays. (ii) The model cannot be easily extended from the two-dimensional billiard to the three-

dimensional spherocylinder. Given a start and end point in two dimensions, it is always possible to find a 

reflection point on a circle; on the other hand, given a start and an end point in three dimensions, there will 

be an infinite number of reflection points on a sphere. Therefore our model implies that the motion of 

particles only occurs in two dimensions (x,y coordinates of the diffusing particles), while in reality (in cells) 

particles also diffuse along the z-axis. When simulating diffusion in a three-dimensional spherocylinder and 

analyzing it with our mathematical model (equation 5), we observed an underestimation of the diffusion 

coefficient throughout most of the cell, and an overestimation of it close to the boundary (Supporting Fig. 

3C). The underestimation is due to the motion along the z-axis, which is not accounted for in our model, 

leading to a measured step length shorter than the actual one (Supporting Fig. 3B, left). The overestimation 

is likely due to particles bouncing against the boundary at z coordinates where the spherocylinder (x,y) 

section has a smaller perimeter (Supporting Fig. 3B, right). (iii) Finally, when approximating the solution 

in a bounded domain one must compute all trajectories that lead from the initial position p0 to the final 

position pf after 0, 1, 2, . . ., N bounces. Computing all these trajectories analytically is cumbersome, and 

therefore we limited our analysis to the 1-bounce case. This can be limiting in the case of fast diffusion in 

small compartments, i.e. when the square root of the mean squared displacement is much larger than the 

size of the compartment, or when the acquisition time is very long. In these cases a particle could bounce 

against the surface multiple times over the acquisition period. 
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