
Supporting text - Diffusion on a closed interval
Let us consider the diffusion problem

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
, (1)

where a ≤ x ≤ b and x0 ∈ [a, b], p(x, t) stands for the probability of finding a particle in position
x at time t, and D is the diffusion constant of the medium. In other words, we are considering a
diffusion problem in the closed interval [a, b] with initial condition p(x, 0) = δ(x − x0), with δ(·)
denoting the Dirac-delta. Furthermore, we assume the boundary conditions

∂p(x, t)

∂x

∣∣∣∣
x=a

=
∂p(x, t)

∂x

∣∣∣∣
x=b

= 0, (2)

accounting for the “rigid” reflection at the boundaries of the interval. These are generally known
as Neumann boundary conditions.

To simplify the computations, we translate the previous setting into a diffusion problem defined
on the closed interval [−ℓ/2, ℓ/2]. This is done by defining y = αx+ β with α = b−a

ℓ and β = a+b
2 .

Denoting by p̄ the re-scaled probability function, we now have the diffusion problem

∂p̄(y, t)

∂t
= D̄

∂2p̄(y, t)

∂y2
, p̄(y, 0) = δ(y − y0),

∂p̄(y, t)

∂y

∣∣∣∣
y=± ℓ

2

= 0. (3)

To find the solution to the diffusion equation (10) we propose the ansatz

p̄(y, t) = ϕ̄(y)e−γt. (4)

Substituting (11) in (10) we get
∂2ϕ̄

∂y2
(y) + ω2ϕ̄(y) = 0, (5)

where ω2 = γ
D .

The eigenvalue problem given by (12) is that of an harmonic oscillator. This tells us that 
its solution is given by a linear combination of the eigenfunctions

ϕ̄e
n = An cos(ω

e
ny)

ϕ̄o
n = Bn sin(ω

o
ny),

(6)

corresponding to the even and odd harmonics, respectively. The boundary conditions are translated
into:

∂ϕ̄e
n

∂y
(±ℓ/2) = −ωe

nAn sin

(
±ωe

n

ℓ

2

)
= 0

∂ϕ̄o
n

∂y
(±ℓ/2) = ωo

nBn cos

(
±ωo

n

ℓ

2

)
= 0,

(7)
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which imply:

ωe
n =

2nπ

ℓ
,

ωo
n =

(2n+ 1)π

ℓ
,

(8)

respectively. Therefore, we have that

ϕ̄(y) =
∞∑

n=0

An cos

(
2nπ

ℓ
y

)
+Bn sin

(
(2n+ 1)π

ℓ
y

)
(9)

On the other hand, the ansatz () must also satisfy

∫ ℓ/2

−ℓ/2

ϕ̄(y)dy = 1, therefore:

1 =

∫ ℓ/2

−ℓ/2

( ∞∑
n=0

An cos

(
2nπ

ℓ
y

)
+Bn sin

(
(2n+ 1)π

ℓ
y

))
dy

=

( ∞∑
n=0

Anℓ

2nπ
sin

(
2nπ

ℓ
y

)
− Bnℓ

(2n+ 1)π
cos

(
(2n+ 1)π

ℓ
y

))∣∣∣∣∣
ℓ/2

−ℓ/2

=

∞∑
n=0

Anℓ

nπ
sin(nπ) = A0ℓ,

(10)

which implies A0 = 1
ℓ . The rest of the coefficients of (16) are obtained from the initial conditions as

follows.

The Fourier series of δ(ξ), for ξ ∈ [−π, π] is

δ(ξ) =
1

2π
+

1

π

∞∑
n=1

cos(nξ). (11)

By shifting and re-scaling as previously, we can write the Fourier series of δ(y − y0), with
y0 ∈ [−ℓ/2, ℓ/2], as

δ(y − y0) =
1

ℓ
+

2

ℓ

∞∑
n=1

cos

(
2πn

ℓ
(y − y0)

)
. (12)

So, since (16) is independent of time we immediately get

ϕ̄(y) =
1

ℓ
+

2

ℓ

∞∑
n=1

cos

(
2πn

ℓ
(y − y0)

)
. (13)

This leads to

p̄(y, t) =

(
1

ℓ
+

2

ℓ

∞∑
n=1

cos

(
2πn

ℓ
(y − y0)

))
e−γt, (14)
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where, by definition, ω2 = 4π2n2

ℓ2 and therefore γ = 4π2n2

ℓ2 D̄. Returning to the original coordinate
x, we finally obtain:

p(x, t) =
1

b− a
+

2

b− a

∞∑
n=1

cos

(
2πn

b− a
(x− x0)

)
exp

(
−4π2n2D

(b− a)2
t

)
. (15)
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