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Lipidome Insights Across more than 1000 Biosamples

Supplementary Figure 1
The human plasma lipidome in health and disease
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Supplementary Figure 2
Numbers of visits per subject in this study

2



Supplementary Figure 3
Numbers of healthy baseline visits per subject
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Supplementary Figure 4
WGCNA module visualization (Main Figure 2)
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Supplementary Figure 5

The correlation between gut microbial genera and 846 lipid species are plotted. The pairs that are
significantly correlated (p.adj. < 0.05) are color coded by its correlation coefficient. To adjust for multiple
comparisons, a Benjamini & Hochberg (BH) correction was applied. Bacterial genera are color-annotated
on the family level on column annotation, and lipid species are color-annotated as lipid class on row
annotation. A two-sided Pearson correlation was used to determine the relationship between the mean
value of microbial genera (proportion of reads belonging to this genera in relation to the log10 estimated
nmol/ml abundance of lipids).
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Supplementary Figure 6
Outlier analysis, depicting percent of significant lipid species outlier (calculated across 846 lipids species)
per class and participant. Blue indicates upregulation, red depicts downregulation, gray shows mixed
direction.
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Effects of Insulin resstance on the lipidome

Supplementary Figure 7
Heatmap for the SSPG-associated lipids.
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Supplementary Figure 8
Correlations between clinical measures with various categories and lipid profiles within IR and IS
samples. In addition, the overall correlations between lipids and clinical measures across IR and IS, are
depicted.
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Lipid Changes During Infection and Immunization

Supplementary Figure 9
Days from onset for infection and immunization adn associated visits.
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Supplementary Figure 10
Differential profile of lipids significantly changed during infection (left) and vaccination (right) comparing IR
and IS. For each lipid feature, the shade blocks demonstrate the time intervals when the corresponding
lipid is significantly different between IR and IS. The orange shade blocks representing the lipid profiles at
this time interval are dominant (with higher lipid levels) in IR, and the blue shade blocks representing the
lipid profiles at this time interval are dominant in IS.
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Aging Associated Lipid Changes

Supplementary Figure 11
Absolute aging models controlling (in contrast to delta age models used in Figure 5) for A) sex (fixed
effect), ethnicity (fixed effect), and subject (random effect) as well as, B) in addition BMI (fixed effect). Age
effect is estimated based on 736 lipid species aggregated (median) to their respective subclass for
‘healthy’ timepoints. A linear mixed effects model is used (lme4, REML = F) on scaled and centered data
(scale) and p-values are estimated (jtools) before applying a Benjamini & Hochberg FDR correction. Red
border indicates FDR < 5%, error bars denote 95% confidence intervals. Some lipids class coefficients
change (e.g., TAGs) when BMI is controlled in the model.
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Supplementary Figure 12
Fisher’s Exact test enrichment analysis comparing
physicochemical properties associated with higher age
(positive log2 Odds, red, determined for all positive
delta age model coefficients at lipid species) to lower
age (log2 Odds, blue, determined for all negative delta
age model coefficients at lipid species). Annotations
are based on physicochemical properties of individual
lipid species. Enrichments are calculated for all lipids
with negative and positive coefficients, respectively
and independently within lipid subclasses, as well as
across all (‘all’ column). Log2 Odds are depicted when
respective annotation was significantly associated with
lower or higher age (B.H. FDR < 5%). Infinite log2
Odds are imputed with the ½ * mean for positive /
negative log2 Odds determined across all data.
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Lipid - Cytokine and Chemokine Associations
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Supplementary Figure 13
Network of significant lipid species to cytokine associations indicating positive (red) and negative (blue)
associations. Network was pruned based on the B.H. FDR of 5% for coefficients determined in linear
mixed effects models (lme4, REML = F, on scaled and centered data (scale) and p-values are estimated
(jtools)) for 736 lipids. Color indicates lipid class, edge width represents, absolute size of coefficient, and
node size represents node connectivity (popularity). Network was assembled based on graph, layout =
graphopt.
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Mass Spectrometry Data Generation and Processing

Supplementary Figure 14
Mass spectrometry acquisition and calibration workflow, detailing cleaning (1), tuning (2), and
compensation voltage (COV) (3) calibration.
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Supplementary Note 1: Lipid-Microbiome Associations
A growing body of evidence suggests that microbiome composition and activity play a central
role in maintaining host metabolic-homeostasis. Altered composition of microbial populations
(dysbiosis) is associated with conditions like inflammatory bowel disease and T2D, which affect
host physiology at multiple levels including the immune system, energy metabolism, and gut
permeability 1,2. The association of distinct microbes with metabolites has been investigated
extensively 3–5, but associations with different classes of lipids has not been investigated in
detail.

We found that genera belonging to the class of Clostridia are mostly negatively
correlated with lipids species. The preventive role of class Clostridia in absorption of intestinal
lipids was previously reported in mice 6, and our data implies this relationship may also be true
in humans. We previously reported a significantly lower level of total TAG among subjects with
lower class Clostridia 7. Here, the detailed quantitative profilings of lipid species enabled us to
pinpoint the interactions to several specific TAG species and the bacterial family
Oscillospiraceae. Furthermore, family Clostridiaceae showed negative correlation with (L)PE,
PC, and CE, including CE(20:4) containing arachidonic acid, a fatty acid known to promote and
modulate inflammation 8,9. This indicates that specific microbes may modulate inflammation
through preventing proinflammatory-lipid absorption.
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Supplementary Note 2: Lipid Outlier Analysis
To further examine the utility of lipids to evaluate individuals' health states we performed an
outlier analysis in which we identified participants that showed significant differences in their
average lipid species and lipid class profiles compared to the population average
(Supplementary Figure 6). For all participants, outliers within a particular lipid class were
consistently either elevated or reduced, except for participant ZI2HHJI that has mixed outliers
within DAGs. Some of the individuals in this study were diagnosed with chronic diseases or
were taking medications known to impact lipids, such as statins. Although not all outlier lipids
can be mapped to specific underlying chronic morbidities, we identified some known and
potentially new disease associations which are of potential clinical applicability. For example,
participant ZTJ7L7Z was diagnosed with hypertension, elevated cholesterol (>300 mg/dL),
elevated blood triglycerides, elevated LDL, and was intolerant of statins. We also detected
elevated outliers for CE, TAG, and DAG as well as elevated lipids in the CER and SM families,
two lipid classes that accumulate in hepatitis steatosis 10. This subject was later diagnosed with
a mild hepatic steatosis (fatty liver) at a time point after sample collection had concluded,
indicating that not only could lipid profiling reveal this condition at an early time point, but that
many classes of lipids were dysregulated in this patient.

The participant ZTXY83G had the highest number of TAG and DAG outliers, consistent
with a clinically diagnosed hyperlipidemia. Surprisingly, for the same subject, one circulating SM
(SM 26:1) was significantly reduced, a pattern which has been reported to be associated with a
lower risk of atherosclerosis 11,12. The decrease in circulating SMs could be due to the
participant’s cholesterol-lowering statins (Lipitor) medication, which may lower SM 13; however
the elevated TAGs and DAGs in this individual was unexpected, suggesting potential
subject-specific statin activity in lipid regulation. Participants ZWLGEWL was diagnosed with
asthma, glaucoma, hypertension, and prediabetes and displayed reduced LPE and LPC levels.
The negative correlation of LPC with CRP (Figure 2D) is consistent with elevated inflammation
and CRP levels (average of 9.9 mg/L across 6 visits) in this individual. Finally, participant
ZJOSZHK presented with an autoimmune vascular phenotype and was hospitalized for cerebral
vascular spasm and multiple myocardial infarctions. Their lipid profile showed increased FFAs
and lowered CEs, HCERs, and SMs suggesting novel lipid alterations associated with these
pathophysiologies, although additional similar patients would need to be profiled to determine
whether the lipid patterns observed stem from the autoimmune vascular phenotype. Overall,
these outlier results suggest links between distinct lipid alterations with different clinical
pathologies which ultimately may be valuable for subtyping these conditions and utility in early
disease detection.
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