iScience, Volume 26

Supplemental information

Reproduction of a fossil rhinoceros from 18 mya

and origin of litter size in perissodactyls

Xiao-Kang Lu, Tao Deng, Paul Rummy, Xiao-Ting Zheng, and Yuan-Tao Zhang

3 Supplementary figures

Figure S1. Pregnant skeleton of *Plesiaceratherium gracile* from the Early Miocene 18 mya. a, b,
foetus fossil and drawing; c, adult skeleton, with third molar at moderately worn stage. Related to

- 8 Figure 1.

13 Figure S2. Skulls of *Plesiaceratherium gracile* with tooth eruption sequence, A, STM 44-116; B,

- 14 STM 44-113; C; GSP 126; D, STM 44-77. All samples are sealed in glass box, not to scale.
- 15 Related to Figure 1.

Figure S3. Skulls of *Plesiaceratherium gracile* with tooth eruption sequence, A, S700016; B, STM

19 44-64; C, S700017; D, STM 44-67. Related to Figure 1.

Figure S4. Skeleton of *Plesiaceratherium gracile*, STM 44-64. Related to Figure 1.

26

Figure S6. Cementum around the root below the crown-root joint of DP1 (GSP 127) of *Plesiaceratherium gracile*, the annual growth lines are badly stratified. Related to Figure 2.

- 29
- 30
- 31

33 Figure S7. Cross-section of limb bones of skeleton (STM 44-167) Plesiaceratherium gracile. A,

34 rib; B, radius; C, Mt IV; D, tibia; E, Mc II; F, Mc III. The red box of radius and tibia marked the

35 position of exaggerated pictures in text figure 3. Related to Figure 3.

Supplementary tables

.

										5		0	,	()		0		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
measures	421	364	348	98	157	193	210	187	53	138	41	159	341	74	153	94	64	140
ratio	0.66	0.57	0.54	0.41	0.56	0.62	0.62	0.68	0.7	0.42	0.34	0.62	0.62	0.54	0.64	0.61	0.67	0.57
measures	510	490	432	161	148	178	204	234	46	198	80	190	457	118	188	124		
ratio	0.8	0.76	0.66	0.67	0.53	0.57	0.6	0.85	0.61	0.6	0.66	0.74	0.83	0.86	0.79	0.8	0	0
measures	572	587	593	236	245	276	308	239	56	294	72	216	480	132	218	124	78	203
ratio	0.9	0.92	0.91	0.99	0.87	0.88	0.9	0.87	0.74	0.89	0.59	0.84	0.88	0.96	0.91	0.8	0.81	0.83

Table S1. Measures and ratio of skull and mandible of *Plesiaceratherium gracile* from the Early Miocene Shanwang Basin, China (mm). Related to Figure 1 and 4.

1. Occipital condyle-Premaxillae; 2. Occipital condyle-Premaxillae; 3. Occipital crest-Nasal bone; 4. Nasal length; 5. Occipital condyle-Postorbital process; 6. Occipital condyle-Supraorbital process; 7. Occipital condyle-Anteriorbital process; 8. Occipital condyle-M3; 9. Nasal notch-Orbit; 10. Nasal tip-Orbit; 11. Maxillary diastema; 12. Upper cheek teeth row; 13. Mandible length; 14. Mandible symphysis; 15. Mandible condyle height; 16. Ramus width; 17. Mandible diastema; 18. Lower cheek teeth row. Ratio is to mean adult lengths that are from Lu et al. (2020).

Specimens		Scapula	Humerus	Radius	Mc II	Mc III	Mc IV	Femur	Tibia	Mt II	Mt III	Mt IV
		Length	Length	Length	Length	Length	Length	Length	Length	Length	Length	Length
44-64	measures	226	275	268		158		310	260	130	145	126
	ratio to mean	0.5622	0.7143	0.7614		0.8272	0.9359	0.654	0.7386	0.828	0.8146	0.8235
	adult length											
S700017	measures	355	355	317	158	178	146	422	325	165	174	145
	ratio to mean	0.8831	0.9221	0.9006	0.9576	0.9319		0.8903	0.9233	1.051	0.9775	0.9477
	adult length											
Mean adult length	measures	402	385	352	165	191	156	474	352	157	178	153

Table S2. Measures and ratio of postcranial bones of *Plesiaceratherium gracile* from the Early Miocene Shanwang Basin, China (mm). Related to Figure 1 and 4.

Ratio is to mean adult lengths that are from Lu et al. (2020).

development stage	basal length		ratio	mendible length		ratio
	Mean	Range		Mean	Range	
1	221	213-229	0.4011	192		0.4174
2			0	248		0.5391
3	317		0.5753	274	266-280	0.5957
4	380		0.6897	316	307-323	0.687
5	435		0.7895	354	336-378	0.7696
6	465		0.8439	380	350-406	0.8261
7	477	428-525	0.8657	403	359-430	0.8761
8	511		0.9274	433	409-453	0.9413
9	503	476-530	0.9129	436	404-464	0.9478
10	516	493-534	0.9365	441	418-485	0.9587
11 (adult)	529	520-544	0.9601	450	425-478	0.9783
12	532	510-552	1	450	409-476	0.9783
13	536	517-560	0.971	461	425-484	1.0066
14	549	504-580	0.9946	454	423-484	0.9913
15	550	522-581	0.9964	458	427-487	1
16	548	504-585	0.9928	458	426-516	
17	550	517-582	0.9964	463	442-482	
18	557	536-598	1.0091	464	434-490	
19	575	545-618	1.0417	469	448-502	
20	567	546-592	1.0272	464	444-496	

Table S3. Measure and ratio of skull of living black rhinoceros (mm). Related to Figure 1 and 4.

Ratio is to mean adult length. All data are from Goddard, 1970.

	greatest				condyle-		upper tooth		lower tooth	
	length	ratio	basal length	ratio	nasal	ratio	row	ratio	row	ratio
1										
2										
3	304		326	0.47	302	0.47	125	0.46	125	0.47
4		0.41		0		0	160	0.59		0
5	480	0	530	0.76	498	0.77	202	0.75	205	0.76
6	565	0.64	590	0.85	533	0.82	203	0.75	199	0.74
7	637	0.75	630	0.91	593	0.92	197	0.73	202	0.75
8	674	0.85	670	0.96	588	0.91	230	0.85	231	0.86
9	657	0.9		0	593	0.92	228	0.84		0
10	695	0.88	663	0.95	611	0.94	245	0.91	250	0.93
11 adult	733	0.93	689	0.99	618	0.96	244	0.9	263	0.98
12	740	0.98	695	1	621	0.96	274	1.01	272	1.01
13	740	0.99	679	0.98	623	0.96	247	0.91	275	1.03
14	756	0.99	716	1.03	647	1	270	1	268	1
15	767	1.01								

Table S4. Measure and ratio of skull of living white rhinoceros (mm). Related to Figure 1 and 4.

Ratio is to mean adult length. All data are from Hillman-Smith, 1986.

Items	C. simum	R. unicornis	D. bicornis	R. sondaicus	D. sumatrensis
gestation	481-550 days	459-494 days	419-476 days	?	473-480 days
birth weight	48-60 kg	40-60 kg	23-48 kg	?	23-33 kg
weaning	1-2 years	1-2 years	1-2 years	1-2 years	1-2 years
sex mature (female)	3 years	3 years	4 years	3-4 years	4 years
first birth (female)	4-5 years	4-5 years	4-5 years	?	5 years
birth interval					
(minimum)	2-3 years	2-3 years	2-3 years	?	3-4 years
skeleton mature	10-12 years	6-10 years	8-10 years	?	10 years
body weight	1800-3600kg	1600kg-2400kg	886-1400 kg	900-1500 kg	600-800kg,
life span	35-50 years	40 years	20-34 years	30-40 years in wild	25-40 years
max span	57 years	47 years	57 years	?	47 years

Table S5. Biological traits of living rhinoceroses. Related to Figure 5.

Data of *Ceratotherium simum* (Groves, 1972; Hillman-Smith, 1986); *Rhinoceros unicornis* (Laurie et al., 1983); *Diceros bicornis* (Hillman-Smith and Groves, 1994); *Rhinoceros sondaicus* (Groves and Leslie, 2011); *Dicerorhinus sumatrensis* (Plair et al., 2012).

equations for life						
span estimation	C. simum	D. bicornis	R. unicornis	R. sondaicus	D. sumatrensis	P. gracile
Weight	2286	996	1844	1750	1046	1198
y=630W0.17						
(Blueweiss, 1978)	21	18	20	20	18	19
y=4.11W0.162						
(Magalhães et al.,						
2007)	45	40	44	43	40	41
y=3.34W0.193						
(maximum,						
Magalhães et al.,						
2007)	56	48	54	54	48	50
y=2.66W0.22						
(Western, 1979)	67	56	64	63	56	58

Table S6. Life span (year) estimation of living rhinoceroses and Plesiaceratherium based on body weight (kg). Related to Figure 5.

Body weight data of *Ceratotherium simum* (Groves, 1972; Hillman-Smith, 1986); *Rhinoceros unicornis* (Laurie et al., 1983); *Diceros bicornis* (Hillman-Smith and Groves, 1994); *Rhinoceros sondaicus* (Groves and Leslie, 2011); *Dicerorhinus sumatrensis* (Plair et al., 2012); *Plesiaceratherium gracile* (Lu et al. 2021).

Table S7. Sex maturity (year) estimation of living rhinoceroses and Plesiaceratherium based on body weight (kg). Related to Figure 5.

	C. simum	D. bicornis	R. unicornis	R. sondaicus	D. sumatrensis	P. gracile
y=0.214W0.263						
(Magalhães et al.,						
2007)	6	5	6	6	5	5

Body weight data of *Ceratotherium simum* (Groves, 1972; Hillman-Smith, 1986); *Rhinoceros unicornis* (Laurie et al., 1983); *Diceros bicornis* (Hillman-Smith and Groves, 1994); *Rhinoceros sondaicus* (Groves and Leslie, 2011); *Dicerorhinus sumatrensis* (Plair et al., 2012); *Plesiaceratherium gracile* (Lu et al. 2021).

Dental development stage	Diceros bicornis	Ceratotherium simum	Chilotherium simum	Plesiaceratherium gracile
1	221			
2				
3	317	304		
4	380			407
5	435	480	363	
6	465	565		485
7	477	637	436	
8	511	674	474	572
9	503	657		
10	516	695		
11	529	733		
12	532	740	500	636.5
13	536	740	528	624.25
14	549	756	483	625.25
15	550	767		644
16	548			666
17	550			
18	557			
19	575			
20	567			

Table S8. Skull measure of two living African rhinoceroses and two fossil rhinoceroses. Related to Figure 5.

Data of *Ceratotherium simum* from Hillman-Smith, 1986; *Diceros bicornis* from Goddard, 1970; *Chilotherium simum* from Deng, 2001; *Plesiaceratherium gracile* from Lu et al., 2021.

- 1
- 2 Table S9. Skull length of ungulates in this study through the Paleogene to the Quaternary. Related
- 3 to Figure 5.

species	references	age	geography	skull-length
Tetraclaenodon	Kondrashov et			
puercensis	al., 2012	Early Paleocene	North American	114
Diacodexis				
metsiacus	Rose, 1982	Early Eocene	Asia-Eurpe	59
Cambaytherium				
thewissi	Rose, 2019	Early Eocene	Asia	163
Radinsky				
yupingae	Holbrook, 2014	Late Paleocene	Asia	89
Pliolophus				
vulpiceps	Owen, 1858	Early Eocene	Europe	127
			North	
Hyracotherium			American-	
vasacciense	Kitts, 1956	Early Eocene	Europe	135
	Franzen and			
Eurohippus	Habersetzer,			
messelensis	2017	Middle Eocene	Europe	143
Orohippus				
osbornianus	Granger, 1908	Middle Eocene	North American	140
Eohippus				
venticolus	Granger, 1908	Middle Eocene	North American	138
	Bennett and			
Equus caballus	Hoffmann, 1999	Holocene	Asia	527
Lambdotherium	Lucas and			
popoagicum	Holbrook, 2004	Early Eocene	North American	186
Embolotherium	Mihlbachler,	Middle Eocene		
andrewsi	2008	(Duchesnean)	North American	728
Litolophus				
gobiensis	Bai et al., 2010	Early Eocene	Asia	182
Lophiaspis	Vautrin et al.,			
maurettei	2021	Early Eocene	Europe	230
			North	
Moropus		Late Oligo-Early	American-	
petersoni	Peterson, 1907	Mio	Europe	355
Ancylotherium	Geraads et al.,			
pentelicum	2007	Miocene	Europe	668
Homogalax	Holbrook et al.,			
protapirinus	2004	Early Eocene	North American	165
Isectolophus	Holbrook et al.,			
latidens	2004	Early Eocene	North American	170
Heptodon	Radinsky, 1965	Early Eocene		>195

posticus				
	Lucas et al.,			
Eoletes gracilis	1997	Early Eocene	Kazakhstan	126
Irenolophus qii	Bai et al., 2019	Early Eocene		241
Colodon				
occidentalis	Colbert, 2004	Early Oligo	North American	230
	Padilla and			
Tapirus terrestris	Dowler, 1994	Holocene	South American	335
Hyrachyus				
modestus	Bai et al., 2017	Middle Eocene	North American	228
Rostriamynodon	William and		North	
grangeri	Manning, 1986	Late Eocene	American-Asia	560
Amynodon				
advenus	Wall, 1982	Late Eocene	North American	487
Triplopus				
obliquidense	Peterson, 1919	Late Eocene	North American	165
Hyracodon				
nebraskensis	Scott, 1941	Early Oligocene	North America	291
Juxia	Qiu and Wang,			
sharamurense	2007	Middle Eocene	Asia	595
Paraceratherium	Qiu and Wang,			
lepidum	2007	Late Oligocene	Asia	1325
Teletaceras				
radinskyi	Hanson, 1989	Middle Eocene	North American	343
Trigonias osborni	Prothero, 2005	Late Eocene	North American	515
Aprotodon		Late Oligocene-		
lanzhouensis	Deng, 2006	Early Miocene	Asia	625
Diaceratherium		Late Oligocene-		
shanwangensis	Lu et al., 2021	Early Miocene	Europe-Asia	526
Plesiaceratherium	Lu et al., 2020	Early Miocene	Europe-Asia	648
Coelodonta				
antiquitatis	Deng et al., 2011	Pleistocene	Europe-Asia	780
Rhinoceros				(75
unicornis	IVPP OV 1383	Holocene	Asia	675
Ceratotherium				707
simum	IVPP OV 2629	Holocene	Africa	/9/