Supporting Information

Plasmon-Sensitized Silica-Titanium Aerogels as Potential Photocatalysts for

Organic Pollutants and Bacterial Strains

Ecem Tiryaki^{1,2,*}, Sevil Yücel², Miguel A. Correa-Duarte³

¹Nanomaterials for Biomedical Applications, Italian Institute of Technology (IIT), 16163,

Genova, Italy

²Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220, Esenler, Istanbul, Turkey

³CINBIO, Universidade Vigo, 36310 Vigo, Spain, Southern Galicia Institute of Health Research (IISGS), and CIBERSAM, 36310, Vigo, Spain

Table S1. The specific surface area and pore volume/size values of SiO_2 aerogels and
SiO_2/TiO_2 composite aerogels with different titanium concentrations

	BET surface area	BJH	BJH	
	(m^2g^{-1})	Desorption	Desorption	
		Pore volume	Pore size	
		(cm^3g^{-1})	(nm)	
SiO ₂	447.9	0.7	8.1	
SiO ₂ -TiO ₂	379.8	0.6	8.5	
(0.04M)				
SiO ₂ -TiO ₂	282.8	0.4	8.3	
(0.09M)				
SiO ₂ -TiO ₂	178.8	0.3	7.9	
(0.17M)				

Table S2. Surface atomic percentages of main elements in SiO₂ and SiO₂/TiO₂ aerogels (XPS analysis)

Material	Atomic Percentage (at. %)				
	Si2p	<i>Ti2p (Ti4+/Ti3+)</i>	0 1s	C1s	
SiO ₂	32.5	-	64.9	2.4	
SiO ₂ /TiO ₂	29.6	2.0	63.6	3.9	

 Table S3. ICP-OES analysis of composite aerogel structures

Elements	SiO ₂	SiO ₂ /TiO ₂	SiO2/TiO2/Ag SiO2/TiO2/Ag		SiO2/TiO2/Ag@Au
(mg L ⁻¹)			(Ti:Ag 10)	(Ti:Ag 30)	
Si	1309.0	689.0	557.0	470.0	309.0
Ti	<0.5	101.0	88.0	102.3	50.9
Ag	<0.5	<0.5	7.9	3.2	1.8
Au	<0.5	<0.5	<0.5	<0.5	48.6

Figure S1. XPS survey spectra of SiO₂ and SiO₂/TiO₂ composite aerogels.

Figure S2. Schematic representation of the synthesis of Ag NPs via chemical reduction method (a) and Ag@Au NSs via galvanic replacement method by using pre-synthesized Ag NPs as nucleation centers (b).

Figure S3. The color change of growth solution during the seed-mediated synthesis of Ag@Au NSs onto SiO₂/TiO₂/Ag NPs aerogel matrix (a), size distribution graphs of Ag NPs (b) and Ag@Au NSs (tip to tip) (c) grown on SiO₂/TiO₂ aerogel matrix. The corresponding size distributions of particles were assigned using image analysis software ImageJ and fitting to a log-normal function, expressing in terms of the geometric mean and standard deviation as x^*/σ^2 (i.e., for an interval of confidence of 95.5%).

Figure S4. RhB adsorption percentages of different particles, (inset: the photograph of SiO₂/TiO₂ aerogels before (a) and after (b) RhB adsorption)

Figure S5. Zeta potential values of composite aerogels

Figure S6. UV-vis spectra of RhB dye with the absorbance changes over time as a result of its

photodegradation in the presence of SiO₂ aerogels (a), TiO₂ NPs (b), and SiO₂/TiO₂ aerogel (c) under solar-light irradiation (>350 nm), and SiO₂/TiO₂ aerogel (d), SiO₂/TiO₂/Ag NPs (Ti:Ag 30) (e), and SiO₂/TiO₂/Ag@Au NSs under visible-light irradiation (>400 nm) (f).

Figure S7. The conversion of TA to fluorescent 2-HTA molecules through the reaction with 'OH radicals (a), Fluorescence spectra of 2-HTA generated by the reactions between TA and 'OH radicals during photoirradiation of composite aerogels under solar and visible light irradiations. The spectra obtained from SiO_2/TiO_2 composite aerogels under solar (>350 nm)-and visible (>400 nm)-light irradiations (b), and from plasmonic NPs-enriched SiO_2/TiO_2 aerogels under visible (>400 nm)-light irradiation (c).

1225			20 0				
x10 ⁶ 2 1	а	443 0 min	1106 2	b	41:	443 5	0 min
Intens. x106 1.5 1.0 0.5 0.0	415	443 30 min	Intens x10 ⁶ 2		387 191 387	5 443	30 min
0.5 0.0	415 16 58 16 58	443 60 min	1/tens. 1 x10 ⁶ 2- 1- 0		387 191 387	5 443	60 min
0.50 0.25 0.00	415 586 80	443 90 min	1106 2- 1-	359	387 191 387	5 443	90 min
0.5 0.0	586 415	120 min	1106 2- 1-	359	41 165 186	5 443	120 min
0.5 0.0	491	150 min	1106 2- 1-	359	785 164 186	5 443	150 min
0.5 0.0	491	180 min	1106 2- 1- 0	359	387 191 387	15	180 min
0.5	491	210 min	11ters. x106 2 1	359	L8E 167 282	5	210 min
x106 0.50 0.25 0.00	491	300 min	x106 2 1	359 331	387 - 491 387		300 min
0.	0 2.5 5.0 7.5 10.0 12.5	15.0 17.5 20.0 22.5 25.0 Time [min]	0	5	10	15	20 25 Time (min

Figure S8. Mass spectroscopy analysis of RhB products after photodegradation studies under solar (a) and visible light (b) irradiations in the presence of SiO₂/TiO₂ aerogels