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9 A.1. Comparison of k-fold cross-validation with RMSE

10 This section compares root mean square error (RMSE) values across different values of k 

11 to determine the optimal k for a k-fold cross-validation when training the model. K-fold 

12 cross-validation is a widely used technique for model selection and performance 

13 evaluation in ML algorithms. It involves dividing the dataset into k subsets of equal size, 

14 with k-1 subsets used for training the model and one subset for testing it. This process is 

15 repeated k times, with each subset used once for testing, while the final performance 

16 metric is calculated as the average of the RMSE values obtained from the k-testing sets. 

17 The "repeatedcv" function with k=3, 5, 10, 15, and 20, and 3 repeats, as implemented in 

18 the R caret package, was utilized in this study1. This specific cross-validation method 

19 aims to provide a robust estimation of model performance by repeating the k-fold cross-

20 validation process multiple times. It helps to reduce the impact of randomness in the 

21 partitioning of data into folds and ensures the validity and generalizability of the results.

22 Figure S1 shows that increasing k leads to lower RMSE. This signifies that the dataset 

23 will have better model performance with increased k values. Larger k values allow each 

24 fold to contain a smaller portion of the dataset, resulting in more data used for training. 

25 However, the reduction in RMSE decreases at higher k values, indicating diminishing 

26 value of using higher k values. For predicting COD, the average RMSE decreased by 

27 3.26%, 5.53%, 2.25%, and 1.25% between k=3, 5, 10, 15, and 20, respectively. The 

28 average RMSE in predicting TSS decreased by 0.51%, 11.89%, 7.91%, and 5.74%, while 

29 the average RMSE in predicting E. coli decreased by 17.25%, 11.70%, 6.43%, and 

30 4.39%, respectively. Considering the cost of increased computational time, which 
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31 increases by 1.5 times between 15 to 20-fold, and the slowdown in the downward trend 

32 of RMSE with k, a 15-fold cross-validation was chosen for this study.

33
34 Figure S1: Comparison of k-fold cross-validation with RMSE was performed for three 
35 output variables (COD, TSS, and E. coli) using four ML algorithms (PLS, SVR, CUB, and 
36 QRNN) trained using the training dataset.
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37 A.2. Z-score analysis

38 This section utilizes the z-score analysis to identify the non-steady state performance of 

39 the system and eliminate outliers from the dataset. Three significant restart events 

40 occurred during the field trial, resulting in abnormal spikes in various water quality 

41 parameters. These events include the December 2018 summer vacation shutdown, the 

42 August 2019 nutrient capture system (NCS) maintenance, and the December 2019 

43 shutdown with NCS maintenance in January 2020. The daily z-score was calculated by 

44 averaging the z-score values of individual water quality parameters, including COD, TSS, 

45 E. coli, turbidity, color, pH, , , and electrical conductivity (EC). A daily z-𝑁𝐻 +
4 𝑁𝑂 ―

3

46 score value greater than two times the standard deviation was considered non-steady state 

47 performance. The results of the z-score analysis, presented in Figure S2, indicate that the 

48 NCS maintenance events significantly impacted the water quality parameters. 

49 Additionally, Figure S2 shows that the abnormal spikes in the z-score caused by the NCS 

50 maintenance events returned to steady state operations after two weeks. As a result, two 

51 weeks of data following system disruptions and maintenance events were eliminated 

52 from the training set to reduce noise.
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53
54 Figure S2: Z-score analysis for the water quality. The dots represent the daily mean z-
55 score of the water quality parameters, while the red dots indicate the data points 
56 occurring after restart or maintenance events. The red dashed line represents the two 
57 standard deviations from the mean.  
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58 A.3. Characteristics of Sampled Wastewater

59 Table S1: Physical/chemical characteristics of sampled wastewater during the field for five sampling points in NG (n =56).
Sampling point Parameters Mean Standard deviation Min Max Range

COD (mg/L) 2,420 967.25 1,051 5,820 4,769
SCOD (mg/L) 1,310 530.75 460.00 2,885 2,425
TSS (mg/L) 653 391.85 38 1,975 1,937
E. coli (𝑀𝑃𝑁/100𝑚𝐿) 9.96×106 2.49×107 2.41×103 1.54×108 1.53×108

Color (Pt/Co) 1,908 1,104.95 45 4,955 4,910
Turbidity (NTU) 967 611.95 402 4,480 4,078
Conductivity (µs/cm) 2,404 847.65 502 3,880 3,378
pH 6.75 0.52 5.57 8.90 3.34

 (mg/L)𝑁𝐻 +
4 218 100.60 11 480 469

 (mg/L)𝑁𝑂 ―
3 2 1.14 0.5 5.7 5.2

Influent

Temperature (◦C) 23.28 2.49 18.94 28.24 9.30
COD (mg/L) 3,244 1,897.96 533 7,855 7,322
SCOD (mg/L) 1,949.57 1,528 322.50 7,015 6,693
TSS (mg/L) 873 729.94 325 3,525 3,225
E. coli (𝑀𝑃𝑁/100𝑚𝐿) 4.94×106 9.24×106 1.84×107 4.84×107 3×107

Color (Pt/Co) 3,944 6,970.78 98 49,600 49,502
Turbidity (NTU) 1,731 1,130.37 315 4,385 4,069
Conductivity (µs/cm) 2,793 863.75 1,273 4,735 3,462
pH 6.98 0.53 6.09 9.68 3.58

 (mg/L)𝑁𝐻 +
4 225 93.18 10.00 480 470

 (mg/L)𝑁𝑂 ―
3 4 2.61 0.5 10.5 10

AnMBR

Temperature (◦C) 23.59 2.44 18.90 28.94 10.05
COD (mg/L) 37.61 224.90 205 1,600 1,395
SCOD (mg/L) 312.54 125.99 58 924 866
TSS (mg/L) 9.68 23.32 1 147 146
E. coli (𝑀𝑃𝑁/100𝑚𝐿) 452 1,840.83 <2.2 12,098 12,098
Color (Pt/Co) 778.88 764.56 10 3,580 3,570
Turbidity (NTU) 188.04 105.14 6.89 579 572.11
Conductivity (µs/cm) 2,769.57 866.50 1,170 4,810 3,640

Permeate

pH 7.07 0.66 6.09 11.07 4.99
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 (mg/L)𝑁𝐻 +
4 249.52 112.89 10 518 508

 (mg/L)𝑁𝑂 ―
3 1.57 0.93 0.5 4.5 4

COD (mg/L) 127.48 87.34 0.5 352.50 352
SCOD (mg/L) 119.83 85.87 0.5 352.50 352
TSS (mg/L) 12.08 19.12 0.5 120.50 120
E. coli (𝑀𝑃𝑁/100𝑚𝐿) 0.15 0.57 <2.2 3 3
Color (Pt/Co) 246.12 381.42 0 2,500 2,500
Turbidity (NTU) 50.49 101.95 0.41 708 707.59
Conductivity (µs/cm) 2,476 1,053.17 689 5,065 4,376
pH 7.49 0.90 6.11 11.36 5.25

 (mg/L)𝑁𝐻 +
4 68.42 86.31 0.5 272.50 272

Post-NCS

 (mg/L)𝑁𝑂 ―
3 0.96 0.81 0.5 3.7 3.2

COD (mg/L) 117.74 90.80 0.5 366.50 366
SCOD (mg/L) 110.34 90.13 0.5 366.50 366
TSS (mg/L) 10.25 10.17 0.5 56.67 56.17
E. coli (𝑀𝑃𝑁/100𝑚𝐿) <2.2 0 <2.2 <2.2 0
Color (Pt/Co) 155.62 266.58 0 1,750 1,750
Turbidity (NTU) 35.77 92.44 0.50 686 685.50
Conductivity (µs/cm) 2,531.83 1,115.74 457 5,330 4,873
pH 7.54 0.78 6.20 11.45 5.25

 (mg/L)𝑁𝐻 +
4 66.21 86.65 0.5 274 273.5

Effluent

 (mg/L)𝑁𝑂 ―
3 1.03 0.89 0.5 3.15 2.65
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61 A.4. Result of Recursive Feature Elimination Analysis

62 To avoid bias when selecting the model input variables, the k-fold cross-validation was used in recursive feature elimination analysis 

63 (RFE). In RFE, the training dataset is divided into k = 15 subsets to reduce model overfitting when training. Figure S3 shows the 

64 RMSE and deviation results of the RFE analysis. The group with the lowest average RMSE was selected to represent the best 

65 selection of the variables for each model. 

66
67 Figure S3: Recursive feature elimination analysis results on COD, TSS, and E. coli. (A-D) PLS, SVR, CUB, and QRNN for COD; (E-
68 H) PLS, SVR, CUB, and QRNN for TSS; (I-L) PLS, SVR, CUB, and QRNN for E. coli. The blue point represents the lowest RMSE for 
69 the output variables in each model. 
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70 A.5. Additional Model Description

71 Table S2: RMSE, R2, and MAPE computed on training and testing datasets for each 
72 machine learning model.

Training TestingVariable 
(Unit)

Model
structure RMSE 𝑅2 RMSE 𝑅2 MAPE (%)

Final 
hyperparameters

PLS 331 0.93 358 0.93 31.3 ncomp = 5

SVR 199 0.98 270 0.96 14.5 sigma = 0.01;
cost = 5.5

CUB 132 0.99 285 0.96 20.4 committees =4; 
neighbors = 3

COD (mg/L)

QRNN 332 0.93 284 0.96 24.3 n.hidden = 2;
penalty = 31.6

PLS 168 0.86 289 0.67 56.7 ncomp = 3

SVR 79 0.97 107 0.95 24.1 sigma = 0.05; 
cost = 17.5

CUB 31 0.99 54 0.98 24.8 committees =9; 
neighbors = 3

TSS (mg/L)

QRNN 156 0.88 321 0.61 46.9 n.hidden = 2; 
penalty = 57.2

PLS 1.44×107 0.12 1.44×107 0.20 88.2 ncomp = 1

SVR 7.38×106 0.91 7.38×107 0.83 83.5 sigma = 0.1;
cost = 1.5

CUB 7.96×106 0.60 7.96×107 0.22 71.4 committees =10; 
neighbors = 9

E. coli
(𝑀𝑃𝑁/100𝑚𝐿)

QRNN 1.48×107 0.10 1.48×107 0.12 87.7 n.hidden = 4; 
penalty = 98.7

73
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74
75 Figure S4: Model predictions for COD in each sampling point. The circle and triangle data points represent the testing and training 
76 datasets, respectively. The black dashed lines represent the line of equality (y = x). The comparative evaluation among these models 
77 showed that SVR had the best prediction performance for COD in the lower concentration sampling points (Permeate, Post-NCS, and 
78 Effluent), while CUB had better prediction performance in the higher COD concentration range sampling points (Influent and 
79 AnMBR).
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80
81 Figure S5: Model predictions for TSS in each sampling point. The circle and triangle data points represent the testing and training 
82 datasets, respectively. The black dashed lines represent the line of equality (y = x). The comparative evaluation among these models 
83 showed that CUB had the best prediction performance for TSS in the higher concentration range sampling points (Influent and 
84 AnMBR), while after the membrane process, CUB and SVR both showed well prediction accuracy.
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85
86 Figure S6: Model predictions for E. coli in each sampling point. The circle and triangle data points represent the testing and training 
87 datasets, respectively. The black dashed lines represent the line of equality (y = x).
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88 A.6. E. coli Prediction Using Classification ML Algorithms

89 Given the poor results of the ML regression models in predicting E. coli concentrations, a 

90 classification method that was better suited to the E. coli data was investigated. The E. 

91 coli concentration data was broken down into four ranges: a high (H) concentration range 

92 for concentrations  ; a medium (M) concentration range for > 107 𝑀𝑃𝑁/100𝑚𝐿

93 concentrations and ; a low (L) concentration range for ≤ 107 > 102 𝑀𝑃𝑁/100𝑚𝐿

94 concentrations and ; and a final concentration range for ≤ 102 > 2.2 𝑀𝑃𝑁/100𝑚𝐿

95 concentrations lower than the detection limit (LDL). 

96 Except for SVR, which is suitable for classification data using the support vector machine 

97 (SVM), the other models used for regression prediction were not well suited to 

98 classification prediction. In this section, SVM was used to predict the concentration range 

99 of E. coli, while the prediction accuracy of SVM was compared with two other popular 

100 classification algorithms, k-nearest neighbor (KNN) and random forest (RF). KNN 

101 (package: ‘knn’) is a non-parametric classification method that uses observed data points 

102 and their weights to simulate the final predicted result. To prevent the model from 

103 overfitting noisy data, this study optimized the hyperparameter k from 3. RF (package: 

104 ‘rf’) is a nonlinear, supervised learning method that comprises multiple independent 

105 decision tree classifiers where the final predicted result is based on aggregating all 

106 decision trees’ results. The hyperparameters for RF include the number of candidates 

107 considered at each decision tree (mtry) and the number of trees to grow in the set (ntree). 

108 To avoid overfitting the model to the training dataset, the same methodology of 15-fold 

109 cross-validation, and the dataset was split into 70:30 for training and testing. 
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110 To evaluate the performance of the predictive models, a range of metrics including 

111 balanced accuracy, precision, recall, and F1 score were evaluated. Precision indicated 

112 how many predicted positive cases are positive, while recall showed how the model 

113 correctly identified actual positives. The F1 score is the combined means of precision and 

114 recall, providing a single number that balances both metrics. Balanced accuracy considers 

115 the imbalance in the classes of the dataset and is calculated by averaging sensitivity and 

116 specificity, where sensitivity measures the proportion of actual positive cases that were 

117 correctly identified as positive by the model, while specificity measures the proportion of 

118 actual negative cases that were correctly identified as negative by the model.

119
120 Figure S7: Comparison of performance metrics for three ML models. The bar chart 
121 shows the balanced accuracy, precision, recall, and F1 score for the RF, KNN, and SVM 
122 models.
123 The results demonstrate that RF had the highest predicted accuracy of 74.36%, followed 

124 by KNN and SVM with 69.23% each for the classification of E. coli concentration 
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125 ranges. Figure S7 illustrates that for the LDL range, all three models achieved a balanced 

126 accuracy of nearly 100%, while the L range had the lowest balanced accuracy of only 

127 around 50%, with SVM having the lowest accuracy of 49.24%. In the H and M range 

128 prediction, the balanced accuracy ranged from 65% to 80%, with KNN and SVM 

129 demonstrating slightly better predictions in the H range, while RF had slightly better 

130 predictions in the L range. Compared to the regression model, the classification model 

131 appeared to predict the presence of E. coli more effectively. Although it cannot provide 

132 exact values like the regression model, the classification model significantly improved 

133 the accuracy of predicting E. coli, thus making it feasible to use the constructed soft 

134 sensor to detect the concentration range of E. coli.
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