Table S1. Model parameters describing the gene drive construct, mosquito bionomics and malaria epidemiology for simulations resembling releases on São Tomé, São Tomé and Príncipe.

Symbol:	Parameter:	Value:	Reference:	
Gene drive construct:				
fнн	Homozygous fitness (relative to wildtype) on	0.9	[1]	
	female mosquitoes			
fн	Hemizygous fitness (relative to wildtype) on	0.9	[1]	
	female mosquitoes			
тнн	Homozygous male mating competitiveness	1.05	[1]	
m_H	Hemizygous male mating competitiveness	1.78	[1]	
p^{M}_{W}	Probability of wildtype allele staying intact	0.0212	[1]	
	across one generation in male mosquitoes			
$p^{M}{}_{H}$	Probability of wildtype allele converting to H	0.979	[1]	
	allele across one generation in male			
	mosquitoes			
p^{F}_{W}	Probability of wildtype allele staying intact	0.0015	[1]	
E	across one generation in female mosquitoes			
$p^{r}{}_{H}$	Probability of wildtype allele converting to H	0.985	[1]	
	allele across one generation in female			
ШЦ	mosquitoes	0.000		
$p^{m}w$	Probability of wildtype allele staying intact	0.938	[1]	
	across one generation in gravid, nomozygous			
<i>HH</i>	Temale mosquitoes	0.0100	[4]	
p^{m_R}	Probability of wildtype allele converting to R	0.0122	[1]	
	bemazuracus female mesquitees			
nHH_	Probability of wildtype allele converting to R	0.0427	[1]	
P B	allele across one generation in gravid	0.0437	[1]	
	homozygous female mosquitoes			
n ^H w	Probability of wildtype allele staving intact	0 997	[1]	
P w	across one generation in gravid hemizygous	0.001		
	female mosquitoes			
$p^{H_{P}}$	Probability of wildtype allele converting to R	0.0007	[1]	
r K	allele across one generation in gravid.		1.1	
	hemizygous female mosquitoes			
$p^{H_{R}}$	Probability of wildtype allele converting to B	0.0017	[1]	
1 5	allele across one generation in gravid,			
	hemizygous female mosquitoes			
b_{WW}	Wildtype mosquito-to-human transmission	0.55	[1]	
	probability			
b_H	TP13 drive mosquito-to-human transmission	0	[1]	
	probability			
С	Human-to-mosquito transmission probability	0.15	[1]	
Vector biology:				
β	Egg production per adult female (per day)	21	[2]	
T_E	Mean duration of egg stage (days)	3	[2]	
T_L	Mean duration of larval stage (days)	7	[2]	
T_P	Mean duration of pupal stage (days)	1	[2]	

$\mathrm{CV}(T_E)$	Coefficient of variation, egg stage	0.2	[3]	
$CV(T_L)$	Coefficient of variation, larval stage	0.3	[3]	
$\mathrm{CV}(T_P)$	Coefficient of variation, pupal stage	0.2	[3]	
Κ	Larval carrying capacity	Time-varying	[4]	
μ	Adult mosquito mortality rate	Time-varying	[4]	
f	Blood feeding rate	1/3	[5]	
Q	Human blood index	0.9	[5]	
Vector control:				
θ_B	Proportion of bites on a person in bed	0.89	[6]	
θ_I	Proportion of bites on a person outdoors	0.97	[6]	
r _{LLIN}	Probability of repeating a feeding attempt in the presence of long-lasting insecticide-treated	0.56	[6]	
	nets			
r _{IRS}	Probability of repeating a feeding attempt in the presence of indoor residual spraying	0.60	[6]	
S _{LLIN}	Probability of feeding and surviving in the presence of long-lasting insecticide-treated nets	0.03	[6]	
S _{IRS}	Probability of feeding and surviving in the presence of indoor residual spraying	0	[6]	
Intervention setting and demography:				
N_H	Human population size	223,000	[7]	
PfPr	All-ages P. falciparum prevalence	0.02	[8]	
χllin	Proportion of population using long-lasting insecticide-treated nets	0.62	[7]	
XIRS	Proportion of population using indoor residual spraying	0.665	[7]	
f _T	Proportion of population using artemisinin- based combination therapy	0.02	[7]	

References:

- Carballar-Lejarazú R, Dong Y, Pham TB, Tushar T, Corder RM, Mondal A, Sánchez C. HM, Lee HF, Marshall JM, Dimopoulos G, James AA (2023) Dual effector population modification gene-drive strains of the African malaria mosquitoes, *Anopheles gambiae* and *Anopheles coluzzii*. Proc Natl Acad Sci USA 120:e2221118120.
- White MT, Griffin JT, Churcher TS, Ferguson NM, Basáñez MG, Ghani AC (2011) Modelling the impact of vector control interventions on *Anopheles gambiae* population dynamics. Parasites & Vectors 4(1):153.
- Bayoh MN, Lindsay SW (2003) Effect of temperature on the development of the aquatic stages of *Anopheles gambiae* sensu stricto (Diptera: Culicidae). Bull Entomol Res 93(5):375–81.
- 4. Winskill P (2022) umbrella: Rainfall & seasonality. R package version 0.2.0.
- 5. Smith DL, Ellis McKenzie F (2004) Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3(1):13.
- Le Menach A, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, Smith DL (2007) An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J 6(1):10.
- 7. World Bank. São Tomé and Príncipe (<u>https://data.worldbank.org/country/sao-tome-and-principe</u>).
- 8. World Health Organization Global Health Observatory (<u>https://www.who.int/data/gho</u>).