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= 5 Appendix

772 5.1 Testing for latent genetic interactions

77z To review the regression model from the Results section, suppose Y}, depends on a biallelic locus
77+ With genotype X, an unobserved (or latent) environmental variable )/;, and a latent genotype-by-
75 environment (GxE) interaction X ;M for j = 1,2,...,n unrelated individuals with £ = 1,2,...r mea-
776 surable traits. The regression model is expressed as

777 Y = 81X + o Mj + v X; M + €, (S1)

778 The left side of the equation are the trait values which are observable random variables. The right side
779 contains four components: the observable genotype X; with effect size 3;; an unobservable variable
70 M with effect size ¢;; an unobservable interaction X; M; with effect size +;; and an unobservable
761 random error €, with mean zero and variance a,%. Without loss of generality, we assume that M is
782 mean zero with unit variance. Our inference goal is it to test whether 4, = 0 for k = 1,2, ..., r without
7s having to observe the latent environmental variable M.

784 The following sections are outlined as follows. We first show that a latent genetic interaction induces
785 trait variance and covariance patterns under the above model assumptions. We then review the distri-
786 butional theory behind the individual-level trait central cross moments. Using these results, we briefly
7s7 - show how latent interactive effects can be detected within a regression model framework.

s  5.1.1 Latent interactions induce differential variance and covariance patterns

s We show in the main text that a latent interaction can be detected based on calculating the individual-
790 specific trait variances (ITV) and covariances (ITC). To construct these quantities, let ej;, = Y, —
71 (3 X; denote the trait residuals after removing the additive genetic effect. For simplicity, assume the
792 effect sizes are known. For the jth individual, given the genotype X ;, the r x r individual-specific trait

73 covariance matrix is

E[eﬁ ’ Xj} Elejiejo | X5] -+ Elejiejr | Xj]

E[€'2€‘1‘X'} E[ez )X} E[ege» |X]
794 Y| X = J ] J ]2- J | j ‘7.7‘ j 7

Blejren | X;] Elejrej | Xj] -+ E[e, | X;]

7 Where the ITV are the  diagonal elements and ITC are the s = (3) off-diagonal elements.
796 The presence of a latent interaction shared by multiple traits induces differential ITV and ITC pat-
797 terns as a function of genotype. More specifically, given our model assumptions, the ITC between the
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796 kth and k'th trait is

Cov[Yj, ik

Xl =

le X;]

(DM + 9 X5 Mj + €ji) (9 My + i X My + ) | X;]

(D M5 + (drr + i) Xg M + o ye XM | X

[rMjejn + Ve X; M€ + o M€, + v X;Mjein + ejrpee | X;] (S2)
= E[@row M3 + (i + Oy ) X5 M3 + v X7 M7 | X;]
= (¢rdw + (Do + S ) X + e X;) E[M | X;]

= Ak + b Xj + G X7,

Elejrejr
=E
=FE
E

799

+

soo  Where agp = drdur, by = OV + drvE, and Cpr = VY- Note that the fourth line follows from
st our assumption that the random errors of each trait are independent of each other, the genotype, and
X;] = E[Mjeji | X;] = Elejrejw | X;] = 0. The fifth
sz line follows from the assumption that the environmental variable M; is mean zero with unit variance
s+ and independent of the genotype, and so E[M; | X;| = E[M;] = 0 implying that E[M'2 } =
ss  Var[M; | X;]+E[M; | X;]* = Var[M; | X;] = Var[M;] = 1. Following similar steps as above, the ITV

8oe IS

sz the environmental variable, and so E[Mejj

Var[Vji | X;] = E[e;, | X;]
807 (S3)
= ap + by X; + ckXJZ,

s Where ap, = ¢7 + o2, b, = 2¢vk, and ¢ = 2. Thus, we have shown that a latent GXE interaction
sos  Will create differential trait variance and covariance patterns that depend on genotype. In particular,
st0 a latent GxE interaction in trait £ (v, # 0) will induce a variance pattern that depends on genotype
s11 (Equation [S3), and also induce a covariance pattern between traits k and k' when there is a shared
sz interaction (v, # 0) or a shared interacting variable (¢ # 0; Equation[S2).

813 Even though we limit our discussion to a single latent environmental effect and genotype, our re-
s14 sults hold more generally under the polygenic trait model. Furthermore, while we consider a simple
s1s interaction effect, it is straightforward to show that other complex latent signals involving the genotype
ste induce differential variance and covariance patterns. Although, the exact functional form may be more
s17  complicated than above.

sts  5.1.2 Distribution of the cross products

ste  Following the above discussion, we describe the distribution for the cross product of two random vari-
s20 ables that follow a Normal distribution. We then use this result to describe the sampling variability of

s21  the cross product and squared residual terms within a regression model framework in the next section.
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s22 10 simplify notation, let Y1 = Yj; and Y2 = Y}, denote the first two traits of the jth individual. With-
g3 out loss of generality, suppose these traits are normally distributed with mean zero, unit variance, and
s« correlation coefficient p. The cross product term is denoted by Z = Y1Ys.

825 The relationship between traits can be expressed as

826 Yy = pY1 + /1 — p2U, (S4)
g2z Where U ~ N(0,1). The cross product term is then

Z =Y1(pY1 + V1 - p?U)

828 (85)
= pYZ + /1 - iU,

20 where Y2 ~ x? and Y,U ~ By where By is the modified Bessel distribution of the second kind of order

830 zero. For perfectly correlated variables, Z is distributed as a Chi-squared distribution with one degree of

s31  freedom. Alternatively, for uncorrelated variables, Z follows a modified Bessel distribution of the second

g2 kind of order zero. See ref. [69,70] for the distribution of the product of two normal random variables.

833 The first two moments are
ElZl=p
834 ] (S6)
Var[Z] = 1+ p?,
s3s and, more generally, for mean centered traits with variances (02, 03), the first two moments are
E[Z] = o109p
836 (87)

Var[Z] = oio3(1 + p).

sz We use this result in the next section to describe the heteroskedasticity in a regression model that treats
s the cross products or squared residuals as outcome variables.

ss  5.1.3 Regression model for the cross products and squared residuals

a0 Using the central moments result, we first describe the regression model for the cross product terms.
sa1 Let P ={(1,2),(1,3),...,(2,3),(2,4),...,(r — 1,r)} denote the set of cross product pairs such that
sz |P| = s. The first and second element of the gth cross product is P,; and P2, respectively, and the
a3 Cross product between traits is Z5,” = ¢; p,, ¢ p,,. The regression model is
CP CP
Z; | X; =E[Z5 | Xj] + ¢€jq

844 op T s (S8)
qu ’ X]’ = CLq + quj + Cqu + €jq,

a5 Where E[chqp ‘ XJ} = Covle;j p,, € P, | X;]is expressedin Equation The results in Section|[5.1.2
ss  Can be used to describe the random error in the model: The error term ¢, is independent for j =
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sz 1,2,...,n observations, but in general, is not normally distributed or identically distributed. Under the
sss  null hypothesis of no interactive effects, the errors are identically distributed.

849 We note that the above regression model differs from typical regression models in two ways. First,
sso  the random error does not follow a Normal distribution, although for typical large GWAS sample sizes,
sst  this should not impact inference. Second, under the alternative hypothesis where interactions exists,
sz heteroskedasticity arises in the model. To see why, using the results from the previous section, the

ss3s  variance of the error term can be expressed as
, 1_ 2 2 CcP 12
854 Varlejq | X;] = 0y, x5 vp,1x, + ElZj | X] (S9)

sss  Where U%fql\&' = (¢p, +7PuXj)? + o’%ql and zeg,pq2|Xj = (dpy, + TP Xj)* + Uz%qz' Under the null
sss  hypothesis, if the heteroskedasticity is uncorrelated with the explanatory variables then there is type |
ss7  error rate control. Therefore, controlling for sources of variation such as population structure and nearby
sss  SNPs with strong additive effects is important to avoid an inflated type | error rate. Finally, in addition to
sso  these sources of variation, an incorrect trait scaling will likely induce heteroskedasticity and also impact
seo type | error rate control.

861 We briefly state the regression model using the ITV. For the ITV, we are modeling the change in
sz variance of trait k as a function of Xj:

B 231 X; =B[22 | x;] + e s10)

Z53 | Xj = ap + X + o XP + €y,

s« Where Var [egk ‘ X]} = 20§1Gk‘Xj. The ITVs are a special case of the ITCs when p = 1.

865 Thus far, we assumed that the effect sizes of the additive genetic term is known to simplify the
ses theory. However, in practice, we use the residuals so the above theory does not exactly hold: while the
s studentized residuals are unbiased estimates, they follow a ¢-distribution and so the squared residuals
ses follow an F'-distribution (similar adjustments with the cross products). This nuance did not impact any
seo inferences in our simulation study.

870 There are a few important details with the above regression model approach. First, a test for
e differential ITV patterns is related to the Breusch-Pagan test [21]. In addition, a regression model
sz on the correlation scale has been discussed elsewhere (see, e.g., [71]) and, more recently, is related to
s73 one studied by Lea et al. (2019) [30]. Second, the quadratic relationship between the cross products (or
s74 squared residuals) and genotypes only holds for simple interactions, and the underlying (and unknown)
75 functional form is expected to be more complicated. Regardless, for GWAS data where interactions are
e76  difficult to detect, ¢, (or ¢) is likely much smaller than b, (or b;) and so it is reasonable to assume that
s77  the linear term will dominate the signal compared to higher order terms.
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ss 5.2 Supplementary figures
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Figure S1: General strategy to detect latent genetic interactions when there are two unobserved environ-
ments denoted by ‘A’ and ‘B.’ (a) The additive genetic effect is removed and any heteroskedasticity correlated
with genotype implies a latent genetic interaction. (b) When there are two traits measured, the pairwise prod-
ucts between the residuals (cross products) can be used to test for latent genetic effects.
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Figure S2: Revealing latent interactive effects using multiple traits. The first step is to remove the additive
genetic signal to ensure that the covariance between traits is not caused by the main (additive) effects of
the SNP. The individual-specific covariance matrix can then be estimated by calculating the corresponding
squared residuals (estimate of the diagonal elements) and the cross products (estimate of the off-diagonal
elements). These quantities can be used to infer latent interactive effects.
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Figure S3: False positive rate of the LIT implementations under the null hypothesis of no interaction. Our
simulation study varied the number of traits (rows), baseline trait correlation (0.25 (green), 0.50 (blue), and
0.75 (orange)), and error distribution (columns). For each configuration, there are 50 replicates at a sample
size of 300,000. The empirical false positive rate at a type | error rate of 1 x 10~ (red dashed line).
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Figure S4: Q-Q plot of the LIT implementations under the null hypothesis of no interaction. Similar to
Figure our simulation study varied the number of traits (rows), baseline trait correlation (0.25 (green),
0.50 (blue), and 0.75 (orange)), and error distribution (columns). At each configuration, we simulated 50
datasets of 10,000 SNPs and then combined the p-values for a total of 500,000 p-values per configuration.
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Figure S5: The empirical power of the principal components (rows) for the squared residual and cross
product matrix at various baseline correlations (x-axis). In total, there was 10 traits simulated and the propor-
tion of traits with shared interaction effects (columns) was varied. Each point represents the average power
across 500 simulations at a significance threshold of 5 x 1073.
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Figure S6: A similar simulation setting to Figure with the direction of the effect size for the interaction
term is opposite of the interacting environmental variable under (A) positive pleiotropy and (B) a mixture of

positive and negative pleiotropy.
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Figure S7: A similar simulation setting to Figurewith the direction of the effect size for the interaction term
is opposite of the interacting environmental variable under (A) positive pleiotropy and (B) a mixture of positive

and negative pleiotropy.
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Figure S8: Quantile-Quantile plot of the uLIT, wLIT, and aLIT p-values from the UK Biobank. (a) The unad-
justed p-values and (b) adjusted p-values using the genomic inflation factor. The figure removes significant
p-values and those in strong linkage disequilibrium.
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Figure S9: The genomic inflation factor from the UK Biobank analysis using uLIT, wLIT, and aLIT at different
minor allele frequency quantiles.
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Figure S10: Comparison of the significance results using the marginal testing procedure and aLIT. The
genome-wide significance threshold is 5 x 1078.
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Figure S11: Comparison of aLIT p-values after adjusting for additive genetic effects (y-axis) and domi-

nance/scaling effects (x-axis). The dark red points are SNPs that are above the genome-wide significance
threshold of 5 x 10~8. The p-values are transformed to be on a logarithmic scale similar to Figure
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Figure S12: The average computational time to run aLIT on a SNP as a function of sample size and number
of traits. Data were simulated the same way in the simulation study and each point is the average time
across 500 replicates. Note that only a single core is used and that aLIT can distribute across multiple cores
to substantially reduce the computational time.
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