
5 Appendix771

5.1 Testing for latent genetic interactions772

To review the regression model from the Results section, suppose Yjk depends on a biallelic locus773

with genotype Xj , an unobserved (or latent) environmental variable Mj , and a latent genotype-by-774

environment (GxE) interaction XjMj for j = 1, 2, . . . , n unrelated individuals with k = 1, 2, . . . r mea-775

surable traits. The regression model is expressed as776

Yjk = βkXj + ϕkMj + γkXjMj + ϵjk, (S1)777

The left side of the equation are the trait values which are observable random variables. The right side778

contains four components: the observable genotype Xj with effect size βk; an unobservable variable779

Mj with effect size ϕk; an unobservable interaction XjMj with effect size γk; and an unobservable780

random error ϵjk with mean zero and variance σ2
k. Without loss of generality, we assume that Mj is781

mean zero with unit variance. Our inference goal is it to test whether γk = 0 for k = 1, 2, . . . , r without782

having to observe the latent environmental variable Mj .783

The following sections are outlined as follows. We first show that a latent genetic interaction induces784

trait variance and covariance patterns under the above model assumptions. We then review the distri-785

butional theory behind the individual-level trait central cross moments. Using these results, we briefly786

show how latent interactive effects can be detected within a regression model framework.787

5.1.1 Latent interactions induce differential variance and covariance patterns788

We show in the main text that a latent interaction can be detected based on calculating the individual-789

specific trait variances (ITV) and covariances (ITC). To construct these quantities, let ejk = Yjk −790

βkXj denote the trait residuals after removing the additive genetic effect. For simplicity, assume the791

effect sizes are known. For the jth individual, given the genotype Xj , the r × r individual-specific trait792

covariance matrix is793

Σj | Xj =


E
[
e2j1

∣∣∣ Xj

]
E[ej1ej2 | Xj ] · · · E[ej1ejr | Xj ]

E[ej2ej1 | Xj ] E
[
e2j2

∣∣∣ Xj

]
· · · E[ej2ejr | Xj ]

...
...

. . .
...

E[ejrej1 | Xj ] E[ejrej2 | Xj ] · · · E
[
e2jr

∣∣∣ Xj

]

 ,794

where the ITV are the r diagonal elements and ITC are the s =
(
r
2

)
off-diagonal elements.795

The presence of a latent interaction shared by multiple traits induces differential ITV and ITC pat-796

terns as a function of genotype. More specifically, given our model assumptions, the ITC between the797
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kth and k′th trait is798

Cov
[
Yjk, Yjk′

∣∣ Xj

]
= E

[
ejkejk′

∣∣ Xj

]
= E

[
(ϕkMj + γkXjMj + ϵjk)(ϕk′Mj + γk′XjMj + ϵjk′)

∣∣ Xj

]
= E

[
ϕkϕk′M

2
j + (ϕk′γk + ϕkγk′)XjM

2
j + γk′γkX

2
jM

2
j

∣∣ Xj

]
+ E

[
ϕkMjϵjk′ + γkXjMjϵjk′ + ϕk′Mjϵjk + γk′XjMjϵjk + ϵjkϵjk′

∣∣ Xj

]
= E

[
ϕkϕk′M

2
j + (ϕk′γk + ϕkγk′)XjM

2
j + γk′γkX

2
jM

2
j

∣∣ Xj

]
=

(
ϕkϕk′ + (ϕk′γk + ϕkγk′)Xj + γk′γkX

2
j

)
E
[
M2

j

∣∣ Xj

]
= ãkk′ + b̃kk′Xj + c̃kk′X

2
j ,

(S2)799

where ãkk′ = ϕkϕk′ , b̃kk′ = ϕkγk′ + ϕk′γk, and c̃kk′ = γkγk′ . Note that the fourth line follows from800

our assumption that the random errors of each trait are independent of each other, the genotype, and801

the environmental variable, and so E
[
Mjϵjk′

∣∣ Xj

]
= E[Mjϵjk | Xj ] = E

[
ϵjkϵjk′

∣∣ Xj

]
= 0. The fifth802

line follows from the assumption that the environmental variable Mj is mean zero with unit variance803

and independent of the genotype, and so E[Mj | Xj ] = E[Mj ] = 0 implying that E
[
M2

j

∣∣∣ Xj

]
=804

Var[Mj | Xj ]+E[Mj | Xj ]
2 = Var[Mj | Xj ] = Var[Mj ] = 1. Following similar steps as above, the ITV805

is806

Var[Yjk | Xj ] = E
[
e2jk

∣∣ Xj

]
= ak + bkXj + ckX

2
j ,

(S3)807

where ak = ϕ2
k + σ2

k, bk = 2ϕkγk, and ck = γ2k . Thus, we have shown that a latent GxE interaction808

will create differential trait variance and covariance patterns that depend on genotype. In particular,809

a latent GxE interaction in trait k (γk ̸= 0) will induce a variance pattern that depends on genotype810

(Equation S3), and also induce a covariance pattern between traits k and k′ when there is a shared811

interaction (γk′ ̸= 0) or a shared interacting variable (ϕk′ ̸= 0; Equation S2).812

Even though we limit our discussion to a single latent environmental effect and genotype, our re-813

sults hold more generally under the polygenic trait model. Furthermore, while we consider a simple814

interaction effect, it is straightforward to show that other complex latent signals involving the genotype815

induce differential variance and covariance patterns. Although, the exact functional form may be more816

complicated than above.817

5.1.2 Distribution of the cross products818

Following the above discussion, we describe the distribution for the cross product of two random vari-819

ables that follow a Normal distribution. We then use this result to describe the sampling variability of820

the cross product and squared residual terms within a regression model framework in the next section.821
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To simplify notation, let Y1 ≡ Yj1 and Y2 ≡ Yj2 denote the first two traits of the jth individual. With-822

out loss of generality, suppose these traits are normally distributed with mean zero, unit variance, and823

correlation coefficient ρ. The cross product term is denoted by Z = Y1Y2.824

The relationship between traits can be expressed as825

Y2 = ρY1 +
√
1− ρ2U, (S4)826

where U ∼ N(0, 1). The cross product term is then827

Z = Y1(ρY1 +
√
1− ρ2U)

= ρY 2
1 +

√
1− ρ2Y1U,

(S5)828

where Y 2
1 ∼ χ2

1 and Y1U ∼ B0 where B0 is the modified Bessel distribution of the second kind of order829

zero. For perfectly correlated variables, Z is distributed as a Chi-squared distribution with one degree of830

freedom. Alternatively, for uncorrelated variables, Z follows a modified Bessel distribution of the second831

kind of order zero. See ref. [69,70] for the distribution of the product of two normal random variables.832

The first two moments are833

E[Z] = ρ

Var[Z] = 1 + ρ2,
(S6)834

and, more generally, for mean centered traits with variances (σ2
1, σ

2
2), the first two moments are835

E[Z] = σ1σ2ρ

Var[Z] = σ2
1σ

2
2(1 + ρ2).

(S7)836

We use this result in the next section to describe the heteroskedasticity in a regression model that treats837

the cross products or squared residuals as outcome variables.838

5.1.3 Regression model for the cross products and squared residuals839

Using the central moments result, we first describe the regression model for the cross product terms.840

Let P = {(1, 2), (1, 3), . . . , (2, 3), (2, 4), . . . , (r − 1, r)} denote the set of cross product pairs such that841

|P | = s. The first and second element of the qth cross product is Pq1 and Pq2, respectively, and the842

cross product between traits is ZCP
jq = ej,Pq1ej,Pq2 . The regression model is843

ZCP
jq | Xj = E

[
ZCP
jq

∣∣ Xj

]
+ ϵjq

ZCP
jq | Xj = ãq + b̃qXj + c̃qX

2
j + ϵjq,

(S8)844

where E
[
ZCP
jq

∣∣∣ Xj

]
= Cov[ej,Pq1 , ej,Pq2 | Xj ] is expressed in Equation S2. The results in Section 5.1.2845

can be used to describe the random error in the model: The error term ϵjq is independent for j =846
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1, 2, . . . , n observations, but in general, is not normally distributed or identically distributed. Under the847

null hypothesis of no interactive effects, the errors are identically distributed.848

We note that the above regression model differs from typical regression models in two ways. First,849

the random error does not follow a Normal distribution, although for typical large GWAS sample sizes,850

this should not impact inference. Second, under the alternative hypothesis where interactions exists,851

heteroskedasticity arises in the model. To see why, using the results from the previous section, the852

variance of the error term can be expressed as853

Var[ϵjq | Xj ] = σ2
j,YPq1

|Xj
σ2
j,YPq2

|Xj
+ E

[
ZCP
jq

∣∣ Xj

]2
(S9)854

where σ2
Yj,Pq1

|Xj
= (ϕPq1 + γPq1Xj)

2 + σ2
Pq1

and σ2
Yj,Pq2

|Xj
= (ϕPq2 + γPq2Xj)

2 + σ2
Pq2

. Under the null855

hypothesis, if the heteroskedasticity is uncorrelated with the explanatory variables then there is type I856

error rate control. Therefore, controlling for sources of variation such as population structure and nearby857

SNPs with strong additive effects is important to avoid an inflated type I error rate. Finally, in addition to858

these sources of variation, an incorrect trait scaling will likely induce heteroskedasticity and also impact859

type I error rate control.860

We briefly state the regression model using the ITV. For the ITV, we are modeling the change in861

variance of trait k as a function of Xj :862

ZSQ
jk | Xj = E

[
ZSQ
jk

∣∣∣ Xj

]
+ ϵ′jk

ZSQ
jk | Xj = ak + bkXj + ckX

2
j + ϵ′jk,

(S10)863

where Var
[
ϵ′jk

∣∣∣ Xj

]
= 2σ4

Yjk|Xj
. The ITVs are a special case of the ITCs when ρ = 1.864

Thus far, we assumed that the effect sizes of the additive genetic term is known to simplify the865

theory. However, in practice, we use the residuals so the above theory does not exactly hold: while the866

studentized residuals are unbiased estimates, they follow a t-distribution and so the squared residuals867

follow an F -distribution (similar adjustments with the cross products). This nuance did not impact any868

inferences in our simulation study.869

There are a few important details with the above regression model approach. First, a test for870

differential ITV patterns is related to the Breusch-Pagan test [21]. In addition, a regression model871

on the correlation scale has been discussed elsewhere (see, e.g., [71]) and, more recently, is related to872

one studied by Lea et al. (2019) [30]. Second, the quadratic relationship between the cross products (or873

squared residuals) and genotypes only holds for simple interactions, and the underlying (and unknown)874

functional form is expected to be more complicated. Regardless, for GWAS data where interactions are875

difficult to detect, cq (or ck) is likely much smaller than bq (or bk) and so it is reasonable to assume that876

the linear term will dominate the signal compared to higher order terms.877

33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.11.557155doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557155
http://creativecommons.org/licenses/by/4.0/


5.2 Supplementary figures878
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Figure S1: General strategy to detect latent genetic interactions when there are two unobserved environ-

ments denoted by ‘A’ and ‘B.’ (a) The additive genetic effect is removed and any heteroskedasticity correlated

with genotype implies a latent genetic interaction. (b) When there are two traits measured, the pairwise prod-

ucts between the residuals (cross products) can be used to test for latent genetic effects.
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Figure S2: Revealing latent interactive effects using multiple traits. The first step is to remove the additive

genetic signal to ensure that the covariance between traits is not caused by the main (additive) effects of

the SNP. The individual-specific covariance matrix can then be estimated by calculating the corresponding

squared residuals (estimate of the diagonal elements) and the cross products (estimate of the off-diagonal

elements). These quantities can be used to infer latent interactive effects.
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Figure S3: False positive rate of the LIT implementations under the null hypothesis of no interaction. Our

simulation study varied the number of traits (rows), baseline trait correlation (0.25 (green), 0.50 (blue), and

0.75 (orange)), and error distribution (columns). For each configuration, there are 50 replicates at a sample

size of 300,000. The empirical false positive rate at a type I error rate of 1× 10−3 (red dashed line).
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Figure S4: Q-Q plot of the LIT implementations under the null hypothesis of no interaction. Similar to

Figure S3, our simulation study varied the number of traits (rows), baseline trait correlation (0.25 (green),

0.50 (blue), and 0.75 (orange)), and error distribution (columns). At each configuration, we simulated 50

datasets of 10,000 SNPs and then combined the p-values for a total of 500,000 p-values per configuration.
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Figure S5: The empirical power of the principal components (rows) for the squared residual and cross

product matrix at various baseline correlations (x-axis). In total, there was 10 traits simulated and the propor-

tion of traits with shared interaction effects (columns) was varied. Each point represents the average power

across 500 simulations at a significance threshold of 5× 10−8.
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Figure S6: A similar simulation setting to Figure 2 with the direction of the effect size for the interaction

term is opposite of the interacting environmental variable under (A) positive pleiotropy and (B) a mixture of

positive and negative pleiotropy.
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Figure S7: A similar simulation setting to Figure 3 with the direction of the effect size for the interaction term

is opposite of the interacting environmental variable under (A) positive pleiotropy and (B) a mixture of positive

and negative pleiotropy.
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Figure S8: Quantile-Quantile plot of the uLIT, wLIT, and aLIT p-values from the UK Biobank. (a) The unad-

justed p-values and (b) adjusted p-values using the genomic inflation factor. The figure removes significant

p-values and those in strong linkage disequilibrium.

Figure S9: The genomic inflation factor from the UK Biobank analysis using uLIT, wLIT, and aLIT at different

minor allele frequency quantiles.
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Figure S10: Comparison of the significance results using the marginal testing procedure and aLIT. The

genome-wide significance threshold is 5× 10−8.
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Figure S11: Comparison of aLIT p-values after adjusting for additive genetic effects (y-axis) and domi-

nance/scaling effects (x-axis). The dark red points are SNPs that are above the genome-wide significance

threshold of 5× 10−8. The p-values are transformed to be on a logarithmic scale similar to Figure S10.
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Figure S12: The average computational time to run aLIT on a SNP as a function of sample size and number

of traits. Data were simulated the same way in the simulation study and each point is the average time

across 500 replicates. Note that only a single core is used and that aLIT can distribute across multiple cores

to substantially reduce the computational time.
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