
Supplementary Material

1 Proofs of the structural decomposition theorems

This section contains the proofs of the structural decomposition theorems described in the main

text. First, we define in full detail the semi-direct product, used to combine two networks in a

hierarchical fashion.

Definition 1.1. Consider two Boolean networks,

F = (f1, . . . , fk) : {0, 1}k → {0, 1}k

with variables x = (x1, . . . , xk) and

G = (g1, . . . , gm) : {0, 1}`+m → {0, 1}m

with external inputs u = (u1, . . . , u`) and variables y = (y1, . . . , ym). Let Λ ⊆ {1, . . . , k} such

that |Λ| = ` and define xΛ := (xλ1 , . . . , xλ`). Then,

H = (h1, . . . , hk+m) : {0, 1}k+m → {0, 1}k+m

defines a combined Boolean network by setting

hi(x, y) =

{
fi(x) if 1 ≤ i ≤ k,

gi−k(xΛ, y) if k + 1 ≤ i ≤ k +m.

That is, the variables xΛ act as the external inputs of G. The corresponding coupling scheme is

defined to be

P = {xλ1 → u1, xλ2 → u2, . . . , xλ` → ul}.

We denote H as H := F oP G and refer to this as the coupling of F and G by (the coupling

scheme) P or as the semi-direct product of F and G via P .

Theorem 1.1. If a Boolean network F is not a module, then there exist F1, F2, P such that

F = F1 oP F2. Furthermore, we can find a decomposition such that F1 is a module.
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Proof. Let F = (f1, . . . , fn) be a Boolean network with variables X = {x1, . . . , xn} and

assume F is not a module. Then the wiring diagram of F is not strongly connected, implying

there exists at least one node y and one node xj 6= y such that there exists no path from xj to y

in the wiring diagram of F . Let X2 = {xj1 , xj2 , . . . , xjm} denote the set of all such nodes, i.e.,

the nodes for which there exists no paths to y. Further, let X1 = X\X2 denote the complement

set of nodes to X2. Note that for every xi ∈ X1, there exists a path from xi to y but no paths

originating from X2 to xi.

Define Λ to be the subset of indices Λ = {λ1, . . . , λ`} ⊂ {1, . . . , k} such that for each

λ ∈ Λ there exists at least one function fji with xji ∈ X2 which depends on xλ.

If Λ = ∅, then the sets X1 and X2 represent two groups of nodes, which are disconnected in

the wiring diagram. Hence the network F is a Cartesian product of F1 and F2. It follows that

F = F1 oP F2 with P = ∅.

If Λ 6= ∅, then for any xi ∈ X1, the corresponding update function fi does not depend onX2

by construction, as there are no paths from X2 to xi, and we set F1 to be the restriction of F to

X1, (F1)i := (F |X1)i = fi. For any xi ∈ X2, if the corresponding update function depends on a

node xj ∈ X1, then xj ∈ Λ by the definition of Λ. It follows by construction that any function

fi then can be written as a Boolean function on X2 with external inputs from xΛ.

Hence, F = F1 oP F2.

Note that in the above proof we can choose the node y such that it belongs to a SCC that

receives no edge from any other SCC. X1 will contain the nodes of this SCC and hence F1 will

be a module.

The main structural decomposition theorem follows directly from this:

Theorem 1.2. For any Boolean network F , there exist unique modules F1, . . . , Fm such that

F = F1 oP1 (F2 oP2 (· · ·oPm−1 Fm)),
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where this representation is unique up to a reordering, which respects the partial order of Q

(Eq. 1), and the collection of coupling schemes P1, . . . , Pm−1 depends on the particular choice

of ordering.

Proof. If F is a module, then m = 1 and the result follows.

If F is not a module, we use induction on the downstream subnetwork F2 in Theorem 1.1

to obtain the result.

2 Non-autonomous Boolean networks

This section contains the full definition of non-autonomous Boolean networks, as well as two

examples.

Definition 2.1. A non-autonomous Boolean network is defined by

y(t+ 1) = H(g(t), y(t)),

where H : {0, 1}k+m → {0, 1}m and (g(t))∞t=0 is a sequence with elements in {0, 1}k. The

network, denoted Hg, is non-autonomous because its dynamics depend on g(t).

A state c ∈ {0, 1}n is a steady state of Hg if H(g(t), c) = c for all t. Similarly, an ordered

set with r elements, C = {c1, . . . , cr} is an attractor of length r of Hg if c2 = H(g(1), c1),

c3 = H(g(2), c2), . . . , cr = H(g(r − 1), cr−1), c1 = H(g(r), cr), c2 = H(g(r + 1), c1), . . .. In

general, g(t) is not necessarily of period r and may even not be periodic.

If H(g(t), y) = G(y) for some network G for all t (that is, it does not depend on g(t)), then

y(t+ 1) = H(g(t), y(t)) = G(y(t)) and this definition of attractors coincides with the classical

definition of attractors for (autonomous) Boolean networks.

Example 2.1. Consider the non-autonomous network defined by

H(u1, u2, y1, y2) = (u2y2, y1)
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and the two-periodic sequence (g(t))∞t=0 = (01, 10, 01, 10, . . .), which corresponds to a 2-cycle

of the upstream 2-node network. If the initial point is y(0) = (y∗1, y
∗
2), then the dynamics of Hg

can be computed as follows:

y(1) = H(g(0), y(0)) = H(0, 1, y∗1, y
∗
2) = (y∗2, y

∗
1),

y(2) = H(g(1), y(1)) = H(1, 0, y∗2, y
∗
1) = (0, y∗2),

y(3) = H(g(2), y(2)) = H(0, 1, 0, y∗2) = (y∗2, 0).

Thus for t ≥ 1, y(2t) = (0, y∗2) and y(2t + 1) = (y∗2, 0). It follows that the attractors of Hg are

given by 00 (one steady state) and (01, 10) (one cycle of length 2). Note that (10, 01) is not an

attractor because (10, 01, 10, 01, ...) is not a trajectory for this non-autonomous network. This

is a subtle situation that can be sometimes missed when not considering all trajectories a limit

cycle represents.

Example 2.2. Consider the non-autonomous network defined by H(u1, u2, y1, y2) = (u2y2, y1),

as in the previous example, and the one-periodic sequence (g(t))∞t=0 = (00, 00, . . .), which

corresponds to a steady state of the upstream 2-node network. If the initial point is y(0) =

(y∗1, y
∗
2), then the dynamics of Hg can be computed as follows:

y(1) = H(g(0), y(0)) = H(0, 0, y∗1, y
∗
2) = (0, y∗1),

y(2) = H(g(1), y(1)) = H(0, 0, y∗2, y
∗
1) = (0, 0).

Then, y(t) = (0, 0) for t ≥ 2, and the only attractor of Hg is the steady state 00.

3 Proof of the dynamic decomposition theorem

For a decomposable network F = F1 oP F2, we introduce the following notation for attractors.

First, note that F has the form F (x, y) = (F1(x), F2(x, y)) where F2 is a non-autonomous

network. Let C1 = (r1, . . . , rm) ∈ A(F1) and C2 = (s1, . . . , sn) ∈ A(F C12 ) be attractors of
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length m and n, respectively. Then, the sequence ((rt, st))
∞
t=0 has period l = lcm(m,n), so we

define the sum (or concatenation) of these attractors to be

C1 ⊕ C2 = ((r1, s1), (r2, s2), . . . , (rl−1, sl−1)).

Note that the sum of attractors is not a Cartesian product, C1 × C2 = {(ri, sj)| for all i, j}.

Similarly, for an attractor C1 and a collection of attractors A we define

C1 ⊕ A = {C1 ⊕ C2|C2 ∈ A}.

Our second main theoretical result shows that the dynamics (i.e., the attractor space) of a

semi-direct product can be seen as a type of semi-direct product of the dynamics of the de-

composable subnetworks. When applied iteratively, this enables a computation of the attractor

space from the attractor space of each module.

Theorem 3.1. Let F = F1 oP F2 be a decomposable network. Then

A(F ) =
⊔

C1∈A(F1)

C1 ⊕A(F C12 ) =
⊔

C1∈A(F1)

⊔
C2∈A(F

C1
2 )

C1 ⊕ C2.

Proof. LetX1 andX2 be the variables ofF1 andF2, respectively. Further, let C = {c1, . . . , cl} ∈

A(F ) be an arbitrary attractor ofF with length l. We can define C1 = pr1(C) = (pr1(c1), . . . , pr1(cl)) =:

(c1
1, . . . , c

1
l ) as the projection of C ontoX1, and similarly C2 = pr2(C) =: (c2

1, . . . , c
2
l ) as the pro-

jection of C onto X2. By definition, F1 does not depend on X2. Thus, F1(pr1(x)) = pr1(F (x)),

and for any c1
j ,

F1(c1
j) = F1(pr1(cj)) = pr1(F (cj)) = pr1(cj+1) = c1

j+1.

Iterating this, we find that in general F k
1 (c1

j) = c1
j+k, from which it follows that C1 ∈ A(F1).
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Next, we consider the non-autonomous network F C12 defined as in Definition 2.1 where

y(t+ 1) = pr2F (g(t), y(t)), and g(t) = c1
t . If y(1) = c2

1, then

y(2) = pr2F (g(1), c2
1) = pr2F (c1

1, c
2
1) = pr2F (c1) = pr2(c2) = c2

2

and in general

y(k + 1) = pr2F (g(k), c2
k) = pr2F (c1

k, c
2
k) = pr2ck+1 = c2

k+1

Hence y(l + 1) = pr2F (cl) = pr2c1 = y(1) and thus C2 ∈ A(F C12 ). From this we have that

C = C1 ⊕ C2 ∈ C1 ⊕A(F C12 ) and thus

A(F ) ⊂
⊔

C1∈A(F )

C1 ⊕A(F C12 ).

Conversely, let C1 ∈ A(F1) and C2 ∈ A(F C12 ). We want to show that C1 ⊕ C2 ∈ A(F ). Let

g(t) = c1
t , y(1) = c2

1, and y(t+1) = pr2F (g(t), y(t)). Since C2 ∈ A(F C12 ), then y(t+1) = c2
t+1

by definition. Let N = |C2|. Then

F (c1
k, c

2
k) = (pr1F (c1

k, c
2
k), pr2F (g(k), y(k))

= (F1(c1
k), F

C1
2 (c1

k, y(k + 1)))

= (c1
k+1, c

2
k+1).

Thus FN(c1
1, c

2
1) = F (c1

N , c
2
N) = (c1

1, c
2
1) and hence C1 ⊕ C2 ∈ A(F ). It follows that

⊔
C1∈A(F1)

C1 ⊕A(F C12 ) ⊂ A(F ),

from which we can conclude that the sets are equal.

The following two examples highlight how Theorem 3.1 enables the computation of the dy-

namics of a decomposable network from the dynamics of its modules. To match attractors from
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the upstream module with the attractor spaces of the corresponding non-autonomous down-

stream networks, it is useful to consider the space of attractors in a specified order: we use

parentheses (curly brackets) to denote an ordered (unordered) space of attractors. If there is no

ambiguity, in practice we can use o instead of oP .

Example 3.1. Consider the Boolean network F (x1, x2, y1, y2) = (x2, x1, x2y2, y1). We can de-

compose F = F1 oF2 where F1(x1, x2) = (x2, x1) is an upstream module and F2(u2, y1, y2) =

(u2y2, y1) is a downstream module with external parameter x2. To find all attractors of F by

using Theorem 3.1, we find the attractors of F1 and the attractors of F2 induced by each of

those attractors. It is easy to see that A(F1) = {00, 11, {01, 10}} (where we denote steady

states C = {c} simply by c).

• For C1 = 00, the corresponding non-autonomous network is y(t + 1) = F2(0, 0, y(t)). If

y(0) = (y∗1, y
∗
2), then

y(1) = F2(0, 0, y∗1, y
∗
2) = (0, y∗1),

y(2) = F2(0, 0, 0, y∗1) = (0, 0).

Thus, the space of attractors for F C12 is

A(F C12 ) = {00}.

• For C2 = 11, the corresponding non-autonomous network is y(t + 1) = F2(1, 1, y(t)). If

y(0) = (y∗1, y
∗
2), then

y(1) = F2(1, 1, y∗1, y
∗
2) = (y∗2, y

∗
1),

y(2) = F2(1, 1, y∗2, y
∗
1) = (y∗1, y

∗
2).

Thus, the corresponding space of attractor is

A(F C22 ) = {00, 11, (01, 10)}.
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• For C3 = (01, 10), we define g(t) : N → {0, 1}2 by g(0) = (0, 1), g(1) = (1, 0), and

g(t+ 2) = g(t). F C32 is given by y(t+ 1) = F2(g(t), y(t)). If y(0) = (y∗1, y
∗
2), then

y(1) = F2(0, 1, y∗1, y
∗
2) = (y∗2, y

∗
1),

y(2) = F2(1, 0, y∗2, y
∗
1) = (0, y∗2),

y(3) = F2(0, 1, 0, y∗2) = (y∗2, 0),

y(4) = F2(1, 0, y∗2, 0) = (0, y∗2).

Then, the corresponding space of attractors is

A(F C32 ) = {00, (01, 10)}.

To reconstruct the entire space of attractors for F , we have

A(F ) = A(F1) oA(F2)

= (00, 11, (01, 10)) o
(
A(F C12 ),A(F C22 ),A(F C32 )

)
= 00⊕ {00} ∪ 11⊕ {00, 11, (01, 10)} ∪ (01, 10)⊕ {00, (01, 10)}

= {0000, 1100, 1111, (1101, 1110), (0100, 1000), (0101, 1010)},

which agrees with the space of attractors shown in Fig. 4B.

Example 3.2. Consider the linear Boolean network

F (x1, x2, y1, y2) = (x2, x1, x2 + y2, y1).

We can decompose F = F1 o F2 into modules F1(x1, x2) = (x2, x1) and F2(u2, y1, y2) =

(u2 + y2, y1). The space of attractors of the upstream module F1 is

A(F1) = {00, 11, (01, 10)} .
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Using the dynamic decomposition theorem (Theorem 3.1), we can identify all attractors of F

as follows (see Fig. S2 for a graphical description).

• For C1 = 00, the corresponding non-autonomous network is y(t+ 1) = F 2(0, 0, y(t)). If

y(0) = (y∗1, y
∗
2), then y(1) = F 2(0, 0, y∗1, y

∗
2) = (y∗2, y

∗
1). Thus, the space of attractors for

F C12 is

A(F C12 ) = {00, 11, (01, 10)}.

• Similarly, for C2 = 11, we find that the space of attractors for F C22 is

A(F C22 ) = {(00, 10, 11, 01)}.

• For C3 = (01, 10), we define g(t) : N → X1 by g(0) = (0, 1), g(1) = (1, 0), and

g(t+ 2) = g(t). F C32 is given by y(t+ 1) = F2(g(t), y(t)). If y(0) = (y∗1, y
∗
2), then

y(1) = (1 + y∗2, y
∗
1),

y(2) = (y∗1, y
∗
2 + 1),

y(3) = (y∗2, y
∗
1),

y(4) = (y∗1, y
∗
2) = y(0),

and in general for t > 0,

y(4t) = (y∗1, y
∗
2),

y(4t+ 1) = (1 + y∗2, y
∗
1),

y(4t+ 2) = (y∗1, y
∗
2 + 1),

y(4t+ 3) = (y∗2, y
∗
1).

It follows that there are only 2 periodic trajectories in this case: (00, 10, 01, 00, 00, 10, 01, 00, . . .)

and (11, 01, 10, 11, 11, 01, 10, 11, . . .), which both have period 4. The corresponding at-
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tractor space is

A(F C32 ) = {(00, 10, 01, 00), (11, 01, 10, 11)}.

Note that the repetition of certain states is needed to obtain the correct attractors of the

full network F .

To reconstruct the space of all attractors for F , we have

A(F ) = (00, 11, (01, 10)) o
(
A(F C12 ),A(F C22 ),A(F C32 )

)
=


00⊕ {00, 11, (01, 10)}
11⊕ {(00, 10, 11, 01)}

(01, 10)⊕ {(00, 10, 01, 00), (11, 01, 10, 11)}


=


0000, 0011, (0001, 0010),
(1100, 1110, 1111, 1101),
(0100, 1010, 0101, 1000),
(0111, 1001, 0110, 1011)

 .

The linear network F possesses thus two steady states, one 2-cycle and three 4-cycles.
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Figure S1: Modular decomposition of all published expert-curated Boolean gene regulatory
network models with more than one non-trivial module. Each model is labeled by the Pubmed
ID of its source. Each red non-trivial module is labeled by its size, i.e., the number of nodes
contained in the module. Trivial modules consist of one node only. They are colored gray if
they are input or output nodes, i.e., nodes without incoming or outgoing edges, respectively.
Otherwise, they are colored pink. For models with more than 40 modules, input and output
modules are omitted for clarity, indicated by ∗ after the Pubmed ID. An arrow from module X
to module Y indicates that some node in X regulates some node in Y . The directed acyclic
graph of the multicellular pancreatic cancer model, analyzed in Fig. 5, is shown in row 4,
column 4 (Pubmed ID 35752283).
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Figure S2: Graphical description of the dynamic decomposition theorem (applied to Exam-
ple 3.2). The dynamics of F1 oP F2 can be seen as a semi-direct product between the dynamics
of F1 and the dynamics of F2 induced by F1 via the coupling scheme P . The dynamics of F2

induced by attractors of F1 can vary, and the dynamic decomposition theorem (Theorem 3.1)
shows precisely how to combine all of these attractors.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.557227doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557227
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Proofs of the structural decomposition theorems
	Non-autonomous Boolean networks
	Proof of the dynamic decomposition theorem



