
SFIG 1A: Atto643 and TexasRed dyes were selected as current optimal dyes for fluorosequencing
through controlled sets of single molecule experiments. We downed selected dyes - Atto643 and
TexasRed through estimating and comparing parameters from a controlled set of experiments. (i)
Comparing dye-destruction rate through cycles of Edman chemistry on acetylated peptides (JSP260 and
JSP288) carrying their respective fluorophores, show the rates are 5.6% and 2% per cycle (ii)
Comparison of photobleaching rates between these peptides shows that less than 1.1% and 19% of
Atto643 and Texas Red dyes photobleach in 15 imaging cycles. (iii) mean intensity (mu) and the spread
(sigma) of Atto643 dye is 11729.35 and 0.22 and TexasRed is 4970.85 and 0.19 AU respectively.
SFIG 1B:: Solvent stable fluorophores were selected to span the visible spectra.
To enable fluorosequencing, we need multiple fluorophores that can be distinguishable across the visible
spectra. Through screening of 70 dyes for solvent stability, we have identified four different fluorophores,
Atto425, Atto495, TexasRed, and Atto643, for our microscope imaging setup (see methods). The
excitation and emission spectra for each of these fluorophores are shown.
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SFIG 2: Optimization of coupling solvent and time for cleavage chemistry increased Edman
efficiency to > 95% across a range of different peptides. (Panel A) The normalized counts of
fluorescently labeled amino acid cleaved at the correct cycle, increased with increasing time of TFA
incubation with maximum cleavage rate observed with 8 min trifluoroacetic acid incubation time. (Panel
B) The addition of N-methylmorpholine (x mM) into the PITC coupling solution, increased the Edman
efficiency by 12% (depicted as drop percentage of fluorescent tracks at 2nd position) for peptide JSP127.
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SFIG 3: The position of prolines with respect to the labeled amino acid effects the efficiency of
Edman degradation. We observed that the efficiency at which the Atto643 labeled lysine residue is
cleaved is affected by the presence of proline residues by an average of 9.5%, when proline residues
were located N-terminal to the fluorescently labeled lysine residue. Fluorosequencing for two sets of
similar peptides were compared, differing in the position of proline residue at the 2nd (panel A; peptides -
JSP286, JSP263) or 3rd position (panel B; Peptides - JSP285, JSP287), and the decrease in efficiency
was found to be similar.
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SFIG 4: Vapor deposition method for silanization of glass slides reduces fluorescent
contamination across the different imaging channels. (A) Image setup for vapor deposition of
3-azidopropylsilane (see methods) is shown. (B) The fluorescent images of the slide post functionalization
shows extremely low counts of fluorescent contaminants across the four imaging channels (445, 480, 532
and 561 channel; see methods for optical setup). The values represent the number of peaks/field for each
channel. The peptides in the 640 channel (not shown) contains a dye-labeled peptide and used to focus
the slide. Scalebar represents 10μm
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SFIG 5: Illustration of the computational workflow for inferring peptide sequences from raw
fluorosequencing data. Briefly, the workflow comprises of two major parts - (a) building of a machine
learning classifier: Using the input peptide set and experimentally determined fluorosequencing
parameters, namely, Edman efficiency, photobleaching rates, dye destruction rates, dud dye rates and
dye intensity distributions, we simulate possible fluorosequencing reads. With the knowledge of the
source peptide, we train and test using random forest to build a classifier. (b) Image processing: the raw
images obtained for 1000s of images across different fluorescent channels and Edman cycles are
collected, aligned, filtered and fluorescence intensity reads obtained. Each fluorescent track is then
classified to an input peptide with a score. Applying a score threshold, we collate the counts of individual
peptides present in the input sample. Details of the protocol is given in methods section and pseudocode.
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SFIG 6: Quenching of fluorophores labeled on the same peptide was observed. By measuring the
intensity distributions for single, two, three and four fluorophores and attempting to fit them through an
additive gaussian distribution, we observe that there is significant dye-dye interactions or quenching of
fluorescent signal between the fluorophores. The raw intensities for the four different peptides are shown
in panel A-D, with an attempted overlay of the predicted intensity distribution based on the gaussian fit
parameters for the single dye.
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SFIG 7: FRET is observed across wide range of donor fluorophores
SFIG 7A-B: FRET phenomena is observed in peptides containing JF549 and Atto647N. (A) Overlay
and offset images of the peptides across three channels - (1) 561, (2) “FRET” and (3) 561 channel
indicates the missing signal in the 561 or donor channel. (b) Recovery of the counts of the 561 channel
after photobleaching of the dyes in the 647 channel can be seen through the raw images of the donor and
the acceptor channels before and after photobleaching
SFIG 7C-D: FRET phenomena is also observed across multiple combinations of dye-pairs -
Alexa488/Atto647N and JF525/Atto647N. Despite the minimal overlap between the emission spectra of
the Alexa488 and JF525 dyes with the Atto647N dyes with estimated FRET efficiency of 32.2% and 37%
(as calculated using the online FRET calculator - https://www.fpbase.org/fret/), we observe significantly
high FRET signal.
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SFIG 8: FRET is mitigated between fluorophores on peptides, when attached through polyproline
linkers
(Panel A SFIG 8A): Donor signal of tetramethylrhodamine, recovers when spaced away from Atto647N
dye using rigid polyproline linker. We excited the donor fluorophore (Tetramethylrhodamine) on two
peptides (depicted in the legend in the left panel) using a 500 nm monochromator. We recorded the
emission signal from 525-700 nm and found that the tetramethylrhodamine dye spectrum was absent for
the shorter Pro(3) peptide while present in the Pro(14) (Peptide-JSP168).
SFIG 8B: Increased polyproline linker length to 30 units decreased FRET efficiency to <10% on the
single molecule imaging system. We performed single molecule imaging on three peptides, JSP212,
JSP213, and JSP214, with different constructions of donor fluorophore (Janelia fluor 549) and acceptor
fluorophore (Atto643). The left panel illustrates the fluorophore constructions, indicating the presence or
absence of a polyproline linker (shown as a helix) on the three peptides. (A)The scatter plot of the
intensity of peptides across the 560 and 640 channel is shown for each of the three peptides. The peptide
with no Pro(30) linker (top figure) had only <5% of colocalized spots, while high colocalization (67%) was
observed when fluorophores were constructed with a Pro(30) linker (bottom). (B) The FRET efficiency
across the three peptides for each of the individual peptide measurements is shown. The stoichiometry
value for every individual peptide measurement is the ratio of donor and acceptor fluorophore after
normalization of intensity and cross-talk across the channels. The spacing of fluorophores through the
construction of a Pro(30) linker reduced FRET efficiency to less than 10% (shown in the bottom figure).
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SFIG 9: Edman degradation occurs at similar rates for peptides containing fluorescent Promer.
There was no significant difference in Edman degradation efficiency observed between peptides with
fluorophores constructed with and without promers (JSP263, JSP274), as indicated by the average loss
of 62% of fluorescent peptides at the 3rd position.
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SFIG 10: Score distribution between decoy and input peptide set. The results of the experiment
scored 49,480 fluorescent tracks to the most likely peptide, either to the 4 peptides present in the input
set or the decoy peptides (see methods). Panel A presents a histogram showing the count of peptides for
various classification scores. It is clear from this data that higher scores correspond to peptides from the
input set, which are represented in blue. On the other hand, the decoy peptides are not highlighted. In
Panel B, the peptides that have been classified are evaluated on a precision/recall curve. The data
suggests that 8% of the peptides (in terms of recall) had a very high precision of 99%.
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ADDITIONAL DESCRIPTIONS OF METHODS AND MATERIALS

SDS Page gel purification
For peptides labeled with fluorescent Promers, we mixed them with a Tricine Sample

Buffer (BioRad, Cat#1610739) and loaded them onto a 16.5% Tris/Tricine SDS PAGE gels
(BioRad, Cat#4563065) with Tris/Tricine running buffer (BioRad, Cat#1610744) while excluding
traditional reduction and heating during sample preparation. We ran gel electrophoresis (Biorad,
Cat#4006213) on the loaded sample, until loading dye ran off the gel. After washing the gel, we
imaged the gels using a gel imaging station (Amersham Imager 600 gel dock) in the 530 and
630 nm fluorescent channels. We cut out bands of interest using a razor blade, washed the
excised pieces with water, and then crushed and submerged them in a 50% vv of
Acetonitrile/water in a microcentrifuge tube. We sonicated them for 5 minutes and heated them
at 60C for 30 minutes to extract the peptides from the gel. Then, we removed the supernatant
and used a C18 ziptip (Thermofisher) to desalt and purify the peptides. We characterized the
excised peptides using LC-MS or MALDI. We found that Promer labeled peptides had a different
migration speed than protein standards; a 10kDa peptide with Promers had a similar retention
time as a 25kDa Protein standard (Precision Plus Protein Dual Xtra Standard, Cat#1610377).

Detailed synthesis of Promers
Using an automated peptide synthesizer (Liberty Blue microwave peptide synthesizer,

CEM Corporation) to synthesize the polymer backbone of the Promers. We prepared fresh stock
solutions of each amino acid building block (Fmoc-glycine, Fmoc-proline, Fmoc-lysine(boc), and
Fmoc-PEG2) at a concentration of 0.2M, as well as coupling reagents (1M of Oxyma base and
1M of DIC). After coupling the first 20 monomers on the resin, we performed double coupling of
Fmoc-glycine, Fmoc-proline, and Fmoc-Peg2. Then, we removed the terminal Fmoc group and
reacted the resin with 5eq of DBCO-NHS in dry DMF, containing 2.0 eq of Triethylamine for 2
hours at 37C to functionalize the polypeptide with DBCO. Next, we washed and cleaved the
DBCO-functionalized polypeptide from the resin with an acidic cocktail consisting of 50% TFA,
45%DCM, 2.5% Triisopropylsilane, and 2.5% water for 2h at room temperature. We dried the
cleavage cocktail via N2 gas until ≤5% of the initial volume remained, then added 10:1 vv of cold
ether to precipitate the peptides. After decanting off the ether, we re-solubilized the resulting
solid product in 50% Acetonitrile/Water for purification. We purified the DBCO-polypeptide using
HPLC with a semi-prep column (Hichrom C8, 5 microns, 10cm x 10 mm, 150 Å) operating at a
5mL/min flow rate and an elution gradient of 5-95% Acetonitrile (0.1% Formic acid) over 60
minutes. Then, we labeled the Finally, we purified the labeled peptides using HPLC and the
same semi-prep column as described earlier. We provide representative LCMS traces and
MALDI characterization for the Promers used in this publication in the supplementary
information.

Synthesis of peptides with N-terminal branched proline polymer
We synthesized a peptide with the sequence

Boc-Lys[fmoc]-Gly-azLys-Gly-Pra-Gly-Resin on Tentagel Rink Amide Resin by using
boc-lysine(fmoc) to enable the synthesis of variable length proline backbones from the lysine
side chain. After synthesizing the proline polymer, we installed a terminal glycine residue. Then,
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we labeled the N-termini on the branched glycine with either TMR-NHS or JF549-NHS dye
(1.2eq) on the resin by incubating it in DMF and 2eq of Triethylamine for 2h at room
temperature. After cleaving the peptide and purifying it using preparative scale HPLC, we
labeled the azidolysine on the peptide with 1.2 eq of DBCO-Peg4-Atto647N (custom
synthesized by Atto-tec) by incubating the mixture overnight at room temperature.

Fluorophore selection through solvent stability screen.
We obtained the fluorophores commercially or obtained them through collaborators (see

supplementary sheet 3 for source). We screened 70 fluorophores to identify those most
resistant to the Edman solvents by covalently attaching the dyes to Tentagel beads
(Chem-Impex International, 04773) and measuring their fluorescence after a 24-h incubation
with TFA, pyridine/PITC (9:1 vv), Methanol and Piperidine at 40 °C. Nonspecifically bound
fluorophores were removed by repeated washing with dimethylformamide (DMF),
dichloromethane, and methanol. These beads labeled with fluorescent dyes were suspended in
100 μL of phosphate-buffered saline (PBS, pH 7.2) in a 96 well plate. We captured the
fluorescent bead images across multiple channels, using an Epi-microscope and calculated the
change in fluorescent intensity, compared to the methanol control. Custom script was used to
measure the bead fluorescence from the images.

Epi-microscope (Nikon Eclipse TE2000-E inverted microscope) used was equipped with
an Apo 60×/NA 0.95 objective, Cascade II 512 camera (Photometrics), a Lambda LS Xenon
light source and a Lambda 10-3 filter-wheel control (Sutter Instrument), and a motorized stage
(Prior Scientific), all operated via Nikon NIS Elements Imaging Software. Images were acquired
at one frame per second through a 89000ET filter set (Chroma Technology) with channels
'DAPI' (excitation 350/50, emission 455/50), 'FITC' (excitation 490/20, emission 525/36) 'TRITC'
(excitation 555/25, emission 605/52), and 'Cy5' (excitation 645/30 emission 705/72).

Total Internal Reflection Fluorescence (TIRF) Microscopy
Single-molecule TIRF microscopy experiments were performed on two different Nikon

systems, detailed below:
System A

Nikon Ti-E inverted microscope equipped with a CFI Apo 60X/1.49NA oil-immersion
objective lens and a 1.5X tube lens, a motorized stage (TI2-S-HW, Nikon Inc Scientific), an
1022x1022 pixel sCMOS detector (pco.edge, PCO),and a LUNF-XL (Nikon) laser including 561
and 647 nm lasers and filter cube containing 405/488/561/638 quad dichroic and barrier filters,
an emission filter wheel with band pass filters detailed below (all filters, Chroma). Each image
represents a 72 μm × 72 μm square region of the sample. The different channels can now be
considered as a combination of incident laser wavelength and the corresponding bandpass
filter. The “561 channel” consists of excitation with the 561 nm laser (9.5 mW, 50%) through
quad dichroic and emitted signal collected through emission filter EM-603/30. The “640 channel”
consists of excitation with the 640 nm laser (2.5 mW, 10%) and collected through quad dichroic
and EM-705/72 emission filters. The “FRET channel” consists of excitation with the 561 nm
laser (9.5 mW, 50%) through quad dichroic and emitted signal collected through emission filter
EM-705/72. Laser powers measured after the objective.
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System B
Nikon Ti-E inverted microscope equipped with a CFI Apo 60X/1.49NA oil-immersion

objective lens and a 1.5X tube lens, a motorized stage (ProScan II, Prior Scientific), a scientific
CMOS camera equipped with a 2048 x 2048 pixels (binned to 1024x1024 pixels) (Hamamatsu,
Model #C15440) and a MLC400B (Keysight) laser including 561 and 640 nm lasers and filter
cube containing 405/488/561/638 quad dichroic and barrier filters, an emission filter wheel with
band pass filters detailed below (all filters, Chroma). Each image represents a 72 μm × 72 μm
square region of the sample. The different channels can now be considered as a combination of
incident laser wavelength and the corresponding bandpass filter. The “561 channel” consists of
excitation with the 561 nm laser (9.4 mW, 70%) through quad dichroic and emitted signal
collected through emission filter EM-603/50. The “640 channel” consists of excitation with the
640 nm laser (2.5 mW, 20%) and collected through quad dichroic and EM-705/72 emission
filters. Laser powers measured after the objective.

Calibration imaging experiments
We calibrate each system regularly to determine channel offsets, illumination flatness,

and regional point spread functions (PSF). For the channel offsets we dilute 100 nm Tetraspeck
Fluorescent Microspheres (ThermoFisher, Cat #T7284), in 100uL methanol solvent and spotted
them onto a glass slide to dry, adjusting the dilutions to achieve approximately 100 peaks per
field. We captured images in all channels over 100 fields. Each microsphere contains dyes
spanning multiple fluorescent channels and can be used to determine any fixed lateral offset
between channel images. For the other metrics we use either the tetraspec calibration data or
experimental samples of single count peptides.

We then analyze these images using the “calibration_sigproc” workflow, which, for
multi-channel data, first performs a subpixel alignment via gradient descent after a fast Fourier
transform to provide the per channel offsets. Next the peaks are identified in a similar manner as
experimental data (detailed below in signal processing) however here each channel is treated
independently. Using the calculated peak we parameterized the PSF, which models the shape
and intensity of a single fluorescent peptide, by fitting each peak to 2d gaussians. The images
were split into 25 sub regions and then the average PSF was calculated using all peaks and all
fields, given a regional expectation for the PSF. Lastly, from the individual these fits we
calculate the location and intensity of each peak which are used as a spatial indicator of
illumination. Combining this information across all fields we arrive at a geometric expression of
the regional illumination for each channel.
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Signal processing
Signal processing includes the series of image processing steps converting multichannel

images captured through the Nikon microscope (.nd2 files) after every Edman cycle into
intensity arrays for each image channel across the cycles for every peptide spot. Glossary of
terms used are shown in Supplementary Table ST1.
Steps

1. Nd2 files are converted to npy files. After every Edman cycle, we saved the images in
Nikon’s proprietary nd2 file, which comprises images from multiple channels and fields.
Using an n2 converter python package, we converted the nd2 files (one per cycle,
containing all channels for all fields) to numpy array files (one per field, containing all
cycles for all channels). During this conversion process, we computed a
per-channel/cycle field quality metric using a low-pass Fast Fourier Transform (FFT) filter
to measure low-frequency power in the image. We later use this per-channel/cycle
metric and average them to arrive at a field-quality measurement, which may be used for
filtering ahead of classification.

Pseudo-code:
OUTPUT: numpy array (.npy file) per field, after reorganizing the contents of nd2 files,
one per cycle.
FOR every imaging cycle

GET nd2 file that contains data for multiple channels and multiple fields
OUTPUT. npy temporary files for each channel, cycle per field
USING nd2 python library

FOR every field
GET all channel/cycle information from temporary. npy files for this field
OUTPUT single. npy file containing all cycles/channels for this field
USING nd2 python library
COMPUTE and save low-frequency-power as a measure of field quality

2. Regional illumination balancing is applied to account for variations in signal
intensity over different regions within each image. We balance each image to
overcome non-uniform signal intensity (e.g. “vignetting” inherent when using spherical
optics) based on the regional illumination measured during calibration experiments
described above.

Pseudo-code:
OUTPUT: regionally balanced image as numpy array.
FOR every field

FOR every channel
GET experimentally-determined balance_image for this channel
FOR every cycle

Divide channel-cycle image by balance_image
SAVE regionally-balanced image
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3. Band-pass signal filtering. We transform every regionally-balanced image into the
frequency domain using a standard FFT algorithm (numpy) and reject signals above and
below empirically-determined threshold frequencies to remove both background
(reject-low) and over-saturated (reject-high) signals.

Pseudo-code:
OUTPUT: band-pass filtered image data
FOR every field

FOR every channel
FOR every cycle

USING regionally-balanced image
REMOVE signal above and below reject thresholds via FFT filter
SAVE filtered image

4. Subpixel image-alignment, shift, and resample. We align all images for a given field
across cycles to account for stage movement between cycles. This involves, first an
alignment done on one channel for all fields then the channel offsets, determined during
calibration, is applied to the remaining channels. For the fixed channel alignment, we
perform a first-pass pixel-level alignment via OpenCV's filter2d convolution, giving us
pixel-offsets for each image relative to the first cycle’s image. Then, we determine the
sub-pixel offset using a gradient-descent in Fourier space to achieve sub-pixel accuracy.
An alignment score for each field is calculated as the maximum shift in pixels required to
align all system cycles, which we use downstream to filter out images prior to analysis.

Pseudo-code:
OUTPUT: resampled aligned images + alignment scores for every field stack
FOR each field

FOR each channel used for alignment
FOR every cycle in the experiment

ALIGN the filtered images in the field stack to the first one
SAVE the pixels-shifted pair value per image (alignment score)
USING pixels-shifted alignment offsets per image
SHIFT image via FFT-based sub-pixel shifting
RESAMPLE common region of interest from shifted images

5. Find peaks via convolution. We determine the locations of fluorescent peptides
(peaks) for the first cycle because the signal must be present in at least the initial image
to be a valid peptide signal. These peaks correspond to local maxima in signal intensity
for each image. To find peaks with 1-pixel accuracy, we convolve an approximate
point-spread-function kernel (an area under curve of 1.0 Gaussian that has been tuned
to match observed empirical data) with the image in each channel. We then refine these
locations to ½ pixel accuracy by using the center-of-mass of the already-identified peaks,
determined by the regional context.
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Pseudo-code:
OUTPUT: peak locations
FOR every channel:

FIND peaks in cycle 0 by convolving source image with approximate PSF
COMPUTE union of peaks across channels and return as a single list of locations

6. Fit Gaussian parameters to some or all of the peaks. We select at random a subset
of the peaks found in step 5 and fit each peak to a 2D Gaussian. This serves to examine
peak sizes, potentially at different cycles, as a proxy diagnostic for focus. Although this
information is not used in the signal-processing pipeline "proper" (i.e. it is not an input to
further downstream processing), it is displayed in reports viewed by persons analyzing
the data by default.

7. Compute radiometry parameters per peak.We fit the parameters for the 2D Gaussian
point-spread-functions during calibration to the peaks of control peptides located at
various positions within the field. As discussed in calibration, the shape and intensity of
these point-spread-functions depend on the peptide's location in the field. We use the
appropriate parameters for the PSF based on a peak's location in the field to construct
the expected PSF image ( ), which acts as a kernel. This kernel is then convolved𝑃𝑆𝐹
with the observed peak background removed image ( ) to derive the (Eq.𝐷𝑎𝑡𝑎 𝑠𝑖𝑔𝑛𝑎𝑙
S1b) and (Eq. S1e) for every peak in every channel and cycle.𝑛𝑜𝑖𝑠𝑒
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From the data we further calculate the number of cycles each peak remains fluorescent

Pseudo-code:
OUTPUT: peak information (radiometry)
FOR each peak

DEFINE kernel from PSF params based on location in field
CONVOLVE with peak
DETERMINE parameters such as signal and noise
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8. Collation of data into intensity reads and calculation of lifespan metrics.We collate
the peak information for the different channels and generate an intensity array for the
channels associated with each peptide termed reads. From the data we are able to
calculate the lifespan: the number of cycles each peak remains fluorescent. This is
calculated from the minimum cosine distance between the measured reads and all
possible unit normalized reads. It is the lifespan that is used to calculate the frequency
histograms in Figs. 2, S2, and S9. We additionally calculate the intensity summary
statistics for each peak during and after its lifetime.

9. Information of all the identified peaks are collected for each channel across cycles
and assembled as an intensity array associated with individual peptides. We
collate the peak information for the different channels and generate an intensity array for
the channels associated with each peptide. We then combine these intensity reads into a
multidimensional numpy array, which we call a radmat (radiometry matrix). In the radmat,
every row is a peak and every column is the cycle, with signal and noise for the channels
occupying different dimensions. We use a custom python dataframe to store information
about radmat the other information about the peaks, and a separate data frame for all
the metadata about the peak information including: field quality score, field alignment
score, aligned position (x and y), and lifespan length. This flexible format allows for a
number of computational transformations and extractions, and provides a list of all the
information contained in the end of the data.

10. Post Signal Processing Filtering: For all post signal processing analyses, we remove
poor quality reads using several filter metrics. First, we remove any fields where the
alignment offset is greater than one third of a PSF sub region (150 pixels). This removes
peaks having significant changes in illumination and/or PSF size from cycle to cycle.
These extreme misalignments are rare with typical combined offsets between 5 and 25
pixels. Next we remove any field with poor field quality. As discussed above this value
measures low frequency (large) structure in the image. Examples of these types of
structures include large fluorescent contaminants (eg. dust, silane clusters, peptide
aggregates) or large negative structures (e.g. bubbles). For consistency we set this
value to 500 for all runs in this publication. To ensure that we are only analyzing single
peptides we also filter by how well the peak resembles the expected PSF, i.e. low noise
values. The most common cause of high noise is non-diffraction limited spots resulting
from two or more peptides (or contamination) in close proximity. The noise threshold is
chosen to reject above, approximately two standard deviations above mean noise
distribution. Because noise and signal are correlated the noise threshold also increases
with signal. Currently this threshold is set manually but we are working on methods for
automation to improve reproducibility.

Additional filtering may be used for specific analysis. For colocalization analysis a
dark threshold is set at three sigmas above the background distribution. For FRET
analysis and classification, low intensity contamination is removed by rejecting all peaks
above the dark threshold and three sigmas below the mean one count intensity. Lastly
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for classification we also remove any high count anomalies at three sigmas above the
highest count intensity distribution. We are working on removing both these high count
and contamination anomalies from our workflow to avoid the need of this filtering in the
future.

Estimation of fluorosequencing parameters
We divided the fluorosequencing parameters used in this publication into system-wide

parameters and fluorophore-dependent parameters, which are defined in detail in our previous
publications (Swaminathan, Boulgakov, and Marcotte 2015; Swaminathan et al. 2019). They are
estimated here through a series of controlled experiments, parameter fitting, and estimations.
Since the collection of this data presented here, we have developed automated methods of
parameter estimation (Smith, 2023; Smith MB, VanderVelden K, Blom T, Stout HD, Mapes JH,
Folsom TM, Martin C, Bardo AM, Marcotte EM. Estimating error rates for single molecule
protein sequencing experiments. bioRxiv (2023) doi:10.1101/2023.07.18.549591) based on the
whatprot classifier (Smith, Simpson, and Marcotte 2022) and other publicly available data fitting
packages. The results in that publication show parameters consistent with the values presented
here.

The system-wide parameters include the average probability of Edman failure
(p_edman) and surface detachment rate (p_detach). Edman failure is the percent of molecules
per cycle that do not undergo the removal of the N-terminal amino acid by Edman degradation.
We modeled this in a similar method to that described in Swaminathan et al. 2019. As shown in
this publication this value is highly dependent on both the experimental conditions and the
peptide sequence and ranges from 1 to 20% per cycle. For the optimized conditions used in the
classification experiments (Fig. 4 and 5), a value of 5% per cycle was used in the classifier
training simulations. During sequencing the entire peptides can be removed by either release of
non-specifically bound peptides or hydrolysis of the underlying silane surface. The rate of this
detachment from the surface (p_detach) is measured using peptides with two fluorophores and
calculating the rate at which the signal for both fluorophores are lost in the same cycle. In our
previous publication we reported values of 5% per cycle, here with the surface improvements
we now measure this rate at 0.5% per cycle.

We determined the fluorophore-dependent parameters for each fluorophore, including
Alexa555, TexasRed-X, and Atto643 (shown in Supplementary Table ST2). To determine these
parameters, we conducted controlled experiments with dual-labeled peptides to calculate the
surface detachment, above, and the dud-dye rate, and with N-terminally acetylated peptides
(JSP260, JSP229, JSP288) which are not subject to Edman degradation chemistry, to isolate
losses due to chemical-destruction.

To determine the per cycle photobleaching rate we continuously illuminate the peptide
for 120 seconds and acquire an image every second. We plotted an exponential decay curve for
the counts of single peptide molecules remaining over time. When acquiring the images, we
used the imaging solvent (Supplementary Table ST7). To determine the chemical destruction
rate we imaged the acetylated peptides as with fluorosequencing after six Edman cycles and
measured the loss rate of peaks per cycle. This measurement provides the combine per cycle
loss due to photobleaching and chemical destruction rates (p_bleach).
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As described previously, we observed that peptides with two counts of the same
fluorophores, which was confirmed through mass characterization, appeared to have the
brightness of only a single fluorophore. We speculate that the sample preparation process could
have caused photobleaching or the formation/presence of a non-fluorescing isomer. To calculate
the dud dye rate ( , p_dud), we imaged multiple fields of the dual-labeled peptide. By𝑅

𝑑𝑑

measuring the count of peptides with one ( ) and two ( ) fluorophores, we computed the𝐹
𝑠

𝐹
𝑑

fraction of fluorophores that are considered "duds" using the Equ. S2. We note that this
calculation will slightly underestimate the true dud dye rate as we are unable to calculate the
fraction of peptides with no fluorescence.
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Lastly, the mean intensity distribution and its standard deviation are calculated for the population
of peptides with single fluorophore fluorescence.

Building Machine Learning Classifier
To infer peptide identity, we designed a workflow involving building a machine learning classifier
which classifies and scores the signal data obtained from fluorosequencing directly to peptide
identity.

1. Reference peptide database is created. We create an expected peptide database
either from a protein list, simulating the peptides generated from protease digestion in
the sample, or by generating directly from a list input peptide. In the case of building the
four peptide classifier Fig. 4, we also include a random set of 50 peptides as a decoy list.
In the case of the MHC peptide experiment, we use reference peptides identified using
mass-spectrometry as the reference database. We then convert the peptide sequences
to a “fluorostring” represented as [.0.1..1] where "." represents an unlabeled amino acid.
The numbers represent the fluorophores for each channel (0 or 1).

2. Using Monte Carlo simulations, synthetic fluorosequencing reads are generated
for reference database peptides. Using the experimentally obtained fluorosequencing
parameters detailed above, we perform Monte-Carlo simulation for each peptide in the
list by simulating 1000 copies for each peptide, labeling the selected amino acids with
fluorophores, and using the probability of Edman failure, dud-dye, photobleaching, and
dye-destruction, from the experimentally obtained fluorosequencing parameters detailed
above, for the simulation. At each cycle, we simulate the possibility of Edman failure, dye
bleaching, and so on, to arrive at a dye-sequence for the peptide. The resulting
sequence is assigned a random value drawn from the intensity distribution for the
channel dye, yielding the signal for the peptide at each cycle. Note that the information
about the originating peptide is stored alongside the simulated fluorosequencing read.
The sequence of radiometry at each cycle, in each channel, for each peptide follows the
same format as the data produced by the instrument through the signal processing
pipeline described above.
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3. A random forest classifier is trained on the synthetic reads. We used the
peptide/fluorosequencing data generated from Monte-Carlo simulation to construct a
multi-class Random forest classifier. The number of features employed was determined
by multiplying the number of channels and the number of cycles. Typically, the training
set comprised 80% of the data, while the remaining 20% was reserved for testing.

Raw intensity array data for each individual peptide obtained from fluorosequencing
experiment is scored against the random forest Classifier. We use the machine learning
classifier to classify and score the intensity array (reads) generated from signal processing steps
for each read. The classifier assigns a score to all peptide classes for each read, which can be
considered a probability of assigning the read to the correct peptide class. The read is then
attributed to the highest scoring peptide class. To determine a scoring threshold, we examine
the scores associated with the decoy peptide list (known to be incorrect classifications) and the
scores associated with the input peptides (known to be correct). In the case of the four peptide
mixture samples (Fig. 4), we applied a score threshold of 0.99 and obtained the counts for the
different classified peptides. In the case of the MHC peptide mixture samples (Fig. 5), we
applied a score threshold of 0.7 and obtained the counts for the different classified peptides. For
the high-scoring reads above, we also clustered the reads using the Python umap-learn
package’s default settings, indicating each read’s assignment by color.
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