Supplementary Figures and Tables

Supplementary Figure S1. Knocking out Dot1l in ESCs

- (A) qPCR analysis of the expression of pluripotency genes (*Oct4, Sox2* and *Nanog*) after the depletion of *Dot1l* in ESCs. qPCR data are presented as mean ± s.e.m. (n = 3 independent experiments).
- (B) Schematic showing CRISPR/Cas9-mediated deletion of *Dot11* using two sgRNAs. Locations of primers were used to distinguish *Dot11^{-/-}* clones from WT ESCs are shown as horizontal red arrows. WT: wild-type; E: exon.
- (C) An agarose gel image illustrating the PCR-based genotyping assay of the *Dot11* -/- ESCs with primers in (B).
- (D) DNA sequencing results of mutation sites in *Dot11-¹⁻* ESCs.
- (E) Schematic of the location of *Dot1l* RT-qPCR primers. The sgRNA target sequences on exon 1 and exon 5 of the *Dot1l* gene are highlighted in green.
- (F) Cell morphology of WT ESCs and $Dot11^{-/-}$ ESCs. Scale bar, 100 μ m.
- (G) qPCR analysis of the expression of pluripotency genes in WT ESCs and Dot11^{-/-}ESCs.

Data are presented as mean \pm s.e.m. (n = 3 independent experiments). ns: non-significant in Student's *t*-test.

(H) Western blot analysis of pluripotency genes in WT ESCs and $Dot1^{l-}$ ESCs. β -actin was used as a loading control.

Supplementary Figure S2. Expression of pluripotency genes after differentiation and rescue

- (A) Representative flow cytometry scatter diagram analysis of the MERVL-gag⁺ population in WT ESCs and *Dot11^{-/-}* ESCs.
- (B) qPCR analysis of the expression of pluripotency genes in WT ESCs and *Dot11^{-/-}* ESCs differentiated into TSCs respectively. qPCR data are presented as mean ± s.e.m. (n = 3 independent experiments).
- (C) qPCR analysis of the expression of pluripotency genes after Dot1l overexpression (OE) in *Dot11^{-/-}* ESCs. Data are presented as mean ± s.e.m. (n = 3 independent experiments) for the qPCR results. ns: non-significant, ***p < 0.001 in Student's *t*-test.

Supplementary Figure S3. Expression of MERVL/MT2 loci and fusion genes in *Dot11^{-/-}* ESCs

(A) Dot plot of all TEs in WT ESCs and *Dot1I^{-/-}* ESCs. Red dots represent MERVL, purple dots represent MT2.

- **(B)** Dot plot of all expressed genes in WT ESCs and *Dot1h^{1/-}* ESCs. Genes with alternative transcript(s) overlapped with MT2 are labeled in red.
- (C) Principal component analysis of *Dot11^{/-}* ESCs, TBLCs, TLSCs and published 2CLCs based on gene expression. WT, wild type; TBLCs, totipotent blastomere-like cells; TLSCs, totipotent-like stem cells; 2CLCs, 2-cell like cells.
- (D) Upregulated meiosis genes enriched in the GO term in *Dot11^{-/-}* ESCs.

(E-F) Reactome (E) and KEGG (F) pathway analysis of upregulated genes in *Dot11⁺⁻* ESCs.

(G-H) Reactome (G) and KEGG (H) pathway analysis of downregulated genes in *Dot1I^{-/-}* ESCs.

Supplementary Figure S4. Binding profile of Npm1 and Dot1I in ESCs

- (A) The expression level of *Mllt10*, *Mllt6* and *Mllt3* during early embryogenesis according to published RNA-seq data.
- (B) qPCR analysis of the expression of Npm1 in J1 ESCs treated with control (Ctrl) shRNA or Npm1 shRNAs. Data are presented as mean ± s.e.m. (n = 3 independent experiments).
- (C) qPCR analysis of the expression of MERVL after the depletion of *Npm1* in J1 ESCs. Data are presented as mean ± s.e.m. (n = 3 independent experiments). ***p < 0.001 in Student's *t*-test.
- **(D-E)** Locations of Dot1I (D) and Npm1 (E) binding peaks relative to the nearest transcription units (Promoter, 2 kb around transcriptional start sites).
- (F) PlotProfile of the distribution of Dot1I and Npm1 binding peaks on gene characteristics. The ChIP-seq signal was calculated as the log2 ratio of normalized reads relative to the input. TSS, transcription start site; TES, transcription termination site; -3 Kb, TSS

upstream 3 Kb; 3 Kb, TES downstream 3 Kb.

(G-I) Integrative Genomics Viewer (IGV) visualized the Dot1I and Npm1 ChIP-seq signals mapped to the consensus sequence of IAPEy-int (G), RLTR45-int (H) and RLTRETN (I) respectively.

Supplementary Figure S5. Generation of Dot11-mutant cell lines

- (A-B) Western blot analysis of the expression of Dot1l mutants using Flag antibody in Dot1l -/- ESCs. β-actin was used as a loading control. Ctrl OE: control vector overexpression; Δ: deletion.
- **(C-E)** Western blot analysis of the expression of Dot1I DOT1 (C), Dot1I AT-hook (D), Dot1I Rootletin (E) mutants using Flag antibody in *Dot1I* ^{-/-} ESCs. β-actin was used as a loading control. Ctrl OE: control vector overexpression.
- (F) Western blot analysis of Dot1I ΔC-terminal (CI) mutant using Flag antibody in *Dot1I^{-/-}* ESCs. β-actin was used as a loading control. Ctrl OE: control vector overexpression; CI: catalytic inactive.
- (G) qPCR analysis of the expression of pluripotency genes after rescue of Dot1I ΔCterminal (CI) mutant in *Dot1I* ^{-/-} ESCs. Ctrl OE: control vector overexpression; CI: catalytic inactive. qPCR data are presented as mean ± s.e.m. (n = 3 independent experiments). ns: non-significant in Student's *t*-test.

Supplementary Figure S6. Retrotransposon expression after the knockout of H1 variants

- (A) Expression heatmap of retrotransposons after H1 TKO (triple-knockout). Differentially expressed TEs were defined as TEs with fold change > 1.5 and FDR adjusted P < 0.05 (Wald test).</p>
- **(B)** The ATAC-seq reads mapped to MERVL in WT ESCs and H1 TKO ESCs was visualized using Integrative Genomics Viewer (IGV).
- (C) A scatter diagram shows transcriptome analysis of the expression of 100 reported MERVL repressors after *Dot1l* knockout. Blue dots or triangles indicate repressors with significant expression change (adjusted *p* < 0.05, Wald test). Triangles represent repressors with log2 (fold change) >1.
- (D) qPCR validation of the expression of indicated MERVL repressors in *Dot11^{-/-}* ESCs. qPCR data are presented as mean ± s.e.m. (n = 3 independent experiments). ns: nonsignificant, ***p < 0.001 in Student's *t*-test.

Supplementary Figure S7. Dot1l catalytic activity is required for H1.2 enrichment on chromatin

- (A) ChIP-qPCR analysis of H1.2 binding on MERVL. ChIP-qPCR data were normalized to input and that of the control region. Data are presented as mean ± s.e.m. (n = 3 independent experiments).
- (B) ChIP-qPCR analysis of Dot1I and catalytic-inactivated Dot1I mutant binding on MERVL. ChIP-qPCR data were normalized to input and that of the control region. Data are presented as mean ± s.e.m. (n = 3 independent experiments).
- (C) ChIP-qPCR analysis of Npm1 binding on MERVL. ChIP-qPCR data were normalized to input and that of the control region. Data are presented as mean ± s.e.m. (n = 3 independent experiments).
- (D) qPCR analysis of the expression levels of *Dot11* and *Npm1* following their individual depletion as well as simultaneous depletion. Data are presented as mean ± s.e.m. (n = 3 independent experiments). ns: non-significant, ***p < 0.001 in Student's *t*-test.

Supplementary Figure S8. Screening histone H1.2 ubiquitination sites

(A-C) Western blot analysis of the overexpression of H1.2K64R (A), H1.2K46R (B), H1.2K206R (C) in *Dot11* ^{-/-} ESCs. Ctrl OE, control vector overexpression; K, Lysine; R, Arginine. β -actin was used as a loading control.

(D-E) qPCR analysis of the expression of MERVL after overexpression of H1.2K46R (D) and H1.2K206R (E) in *Dot11^{-/-}* ESCs. Ctrl OE, control vector overexpression; K, Lysine; R, Arginine. Data are presented as mean \pm s.e.m. (n = 3 independent experiments). ns: non-significant, ****p* < 0.001 in Student's *t*-test.

Supplementary Table S1. Sequences of primers, shRNAs and guide RNAs			
Gene	Sequence F (5'-3')	Sequence R (5'-3')	
Dot1l	GGTCTGCGAGGAAATCCCAG	TGGCCCGGTTGTATTTGTCA	
Oct4	GTGGAAAGCAACTCAGAGG	GGTTCCACCTTCTCCAACT	
Sox2	GCGGAGTGGAAACTTTTGTCC	CGGGAAGCGTGTACTTATCCTT	
Nanog	TTGCTTACAAGGGTCTGCTACT	ACTGGTAGAAGAATCAGGGCT	
Cdx2	AGGCTGAGCCATGAGGAGTA	TGAGGTCCATAATTCCACTCA	
Eomes	CAATGTTTTCGTGGAAGTGG	GTTAGGAGATTCTGGGTGAA	
Plet1	AACGATTCAGTCAGTGCCGT	TGACTTTGAGGCTGTGCGAT	
Ascl2	AAGCACACCTTGACTGGTACG	AAGTGGACGTTTGCACCTTCA	
Tcstv1	GGTGCTCCAAATCTGAGACACTT	ATAGATCCCAATCGGCAATCC	
Zfp352	AAGTCCCACATCTGAAGAAACAC	GGGTATGAGGATTCACCCACA	
Usp17lb	TCTCCTTCCCAGAAGATCCAG	ACTCTCCCAACTCAGACTGT	
Gm8300	TACTCACCAGGTCAATGCAGG	GTCCTGGCTCCTGATAGTTAC	
Gm4027	AGATGGTACTCACCAGGTCAA	ATGTCCCAGAGTACTGGCTT	
Gm4340	TTGTTGGGAATTTGGCTGCC	CATGGGTGAAAGCTGGCCTA	
Sp110	ATGAAGGTGAACATCGCCTATG	GGACAGAGGGACCAGATTTTG	
Zscan4	GAGATTCATGGAGAGTCTGACTGATGAGTG	GCTGTTGTTTCAAAAGCTTGATGACTTC	
Tcstv3	GATCCTGCATCTTATAGTGCCA	TGACTTTCTCACTTCTGGCG	
Npm1	CATGTCTGGAAAGCGATC	CCTTTGATCTCGGTGTTG	
Mllt3	CGTCTTCCACTTGCACGAAAG	CCCGGACTCTTCTACCTTGTAA	
Mllt6	TAGCCTGACAGCGAAGAAGG	CAGCTTGAGGAAGCAGTCCA	
Mllt10	AGGACGAGGTCTCCCATAGTA	GTGCCCGTCGCAATAAACC	
H1.0	CATCAAGCGCCTAGTGACCA	TCTTGACAGGGGTGGCTTTG	
H1.2	CGCGTCTAAAGCCGTAAAGC	CTTGGCTGCAACCTTCTTGG	
Gapdh	AGAAACCTGCCAAGTATGATGAC	GTCATTGAGAGCAATGCCAG	
IAPEz	AAATCAATCTGTTGTGTTTCCAC	ACCACATAACAGGAATCTGACAC	
ERVK10C	TTCGCCTCTGCAATCAAGCTCTC	TCGCTCGTGCCTGAAGATGTTTC	
IAPEY-int	TTCCCTCAAGCAGTAGATAATGA	GGCAGAGGTCCTTTATAGTCAGT	
ERVB4-2	ACTTGATACCCAATGAATGG	AGATTTTGTCAGCAGTCCAG	
MERVL	AAGAGCCAAGACCTGCTGAG	TCCTCGTTTCTGCAACTGGT	
MT2	GGCTACACCTTCTGCTGGAG	TCGCAGCTGTGAATGGAAGT	
MTA	TGGGTTCTATAAGAGAGCAGGC	TGTTCTTTACTGGCTTGCCTCC	
SINEB1	GTGGCGCACGCCTTTAATC	GACAGGGTTTCTCTGTGTAG	
Gene	shRNA Sequence		
Control shRNA	GATGAAATGGGTAAGTACA	Dot11 gRNA1	
Dot1l shRNA1	CCTCGGTTTACACAGCTTCAA	AGCCCGCCGTCTACCCGTGG	
Dot11 shRNA2	CGGCAGAATCGTATCCTCAAA	Dot11 gRNA2	
Npm1 shRNA1	GGAAGATGCAGAGTCTGAA	CTGAATACTCGGCCGTCCAA	
Npm1shRNA2	GCAGAAGCAATGAACTATGAA		
Mllt3 shRNA	CCCGCCACCATTATTGAAA		
Mllt6 shRNA	GCTTGCTATGGCATCGTCCA		
Mllt10 shRNA	GCAGTATCGACATGATGGA		

Supplementary Table S2. primary antibodies			
primary antibodies	Catalog		
Anti-Dot11	D4O2T, Cell Signaling Technology		
Anti-H3K79me1	ab2886, Abcam		
Anti-H3K79me2	ab3594, Abcam		
Anti-H3K79me3	C15410068, Diagenode		
Anti-Oct4	sc-5279, Santa Cruz		
Anti-Sox2	sc-365964, Santa Cruz		
Anti-Nanog	sc-293121, Santa Cruz		
Anti-MERVL-gag	A-2801, EpiGentek		
Anti-HA	30701ES60, Yeasen		
Anti-Npm1	sc-271737, Santa Cruz		
Anti-Flag	F1804, Sigma		
Anti-H1.0	A3298, ABclonal		
Anti-H1.2	19649-1-AP, Proteintech		
Anti-H3	17168-1-AP, Proteintech		
Anti-Ubiquitin	10201-2-AP, Proteintech		
Anti-β-actin	AC026, ABclonal		