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Human Subjects 
The study was conducted entirely using already collected tumor and paired-normal samples. In 

most cases, these tissues were left over in the pathology archive after the diagnostic needs were 

satisfied. In addition, the tumor and normal cases collected from Africa were consented for 

genomic studies. All cases were de-identified prior to sequencing. All germline cases were used 

solely for the purpose of identifying somatic mutations with additional restrictions on data 

sharing that protect patient identity. This study was approved by the Duke University Health 

System institutional IRB (#Pro00016490). 

 

Data Generation 
FASTQ files were obtained from the sequencer and aligned to the genome (version hg38) using 

BWA-MEM (version 0.7.17-r1188) after removing reads that were indeterminate reads (strings 

of Ns) and adapter dimers. All cases were subjected to WGS, WES and RNAseq and some 

samples were sequenced multiple times. Table S1 provides sequencing reads and statistics for 

DNA sequencing reads which includes tumor and normal pairs for each patient. Somatic variant 

calling was performed with HaplotypeCaller in single-sample and joint genotype mode, and 

Mutect2 from GATK4 software using the default parameters. The obtained variant call format 

files were merged and normalized using bcftools and then annotated using Annovar 

v.2017Jul16.8 Next, the variants were filtered by first considering only the PASS filter in at least 

1 sample. We removed variants found in the repetitive and low-complexity regions reported in 

RepeatMasker and genomic SuperDups databases, and we eliminated variants with a high 

population allele frequency (>0.01) reported in ExAC, gnomAD exome, and gnomAD genome 

databases. Finally, we filtered out variants that had a median base quality and average median 

mapping quality lower than 10. Whole genome sequencing data was used for primary discovery 

of variants. This was followed by interrogation of whole exome and transcriptomic sequencing 

data for those variants to better estimate the frequency of the events in our cases. 

 

Whole Genome DNA, Exome, and Transcriptome Library Preparation 
The BL cases comprised both formalin fixed paraffin embedded (FFPE, N= 65) and freshly 

frozen cases (N=36). Whole genome libraries were prepared using the KAPA HyperPrep kit. 

RNA libraries were prepared using the KAPA Stranded RNA-Seq Library Prep kit. 

 

We1 and others2 have previously established the feasibility of next generation DNA and RNA 

sequencing in FFPE cases. We also carefully compared the mutational rates from FFPE and 

frozen cases and found them to be similar. 

 

Approximately 50-300ng of DNA was enzymatically fragmented for 10-30 minutes using 

dsDNA Fragmentase (NEB, Ipswich, MA). Libraries were prepared using the KAPA Hyper Prep 

kit (Roche, Wilmington, MA) according to the manufacturer’s specifications. Subsequent 

libraries were PCR amplified using 6 to 12 cycles of PCR, depending on available input. 

Subsequent whole genome libraries were sequenced on the Illumina TenX platform, 150 paired 

end. Exome libraries were captured as described previously1. 

 

100-1000 ng of total RNA was subjected to ribosomal depletion by hybridization, RNase H and 

DNase I digestion (NEB, Ipswich, MA) and bead purification. Library preparation was 

performed using the KAPA Stranded RNA-Seq Library Prep kit according to the manufacturer’s 

specifications (Roche, Wilmington, MA). Multiplexed capture was performed on up to 24 RNA 

libraries using the SureSelectXT All Exon V6 + UTR bait set, according to the manufacturer’s 



specifications (Agilent, Santa Clara, CA). Subsequent libraries were sequenced on the Illumina 

Hiseq 2500 V4 platform, 50 paired end. 

 

EBV Identification 
We obtained the unaligned read pairs from the tumor and normal samples and performed 

Diamond BLASTX on the Non-redundant (NR) protein sequences database. The output format 

of Diamond alignment was set for taxonomic classification (“-f 102”). Samples were considered 

EBV-positive if at least 5,000 reads or >10% of unmapped reads were classified as 

Lymphocryptovirus at the genus level (NCBI tax ids: 10375, 10376, 10377). EBV status calls 

were not made for samples with fewer than 10,000 input unmapped reads. 

 

EBV subtype calls were made for EBV+ samples by determining the proportion of Type-1 (B95- 

8) vs. type-2 EBNA-2 (AG876) sequences among unmapped reads. Briefly, representative 

nucleotide sequences were downloaded in FASTA format from UniProt (Type 1: P12978, Type 

2: Q69022). As above, reads were aligned to a custom diamond database containing only 

representative sequences from each EBV subtype (diamond makedb -in <ebna2.fa>) with the 

option –max-target-seqs set to 1 to return only the top alignment. Alignments were filtered to 

include only significant hits which were defined as >35 amino acids in length, >50% amino acid 

identity, and with a maximum e-value of 1.0e-5. After filtering, a custom R-script was then used 

to determine the number of reads in each sample mapping to each EBNA-2 gene variant. A 

subtype call was made if >99% of reads mapping to EBNA-2 mapped to a single subtype. All 

cases were verified using in situ hybridization for EBER where material was available. 

 

CRISPR Screening 
Lentiviral particles were transduced into each cell line in triplicate, and harvested 3 days post 

transduction (early) and 3 weeks post transduction (late). In each case, DNA was isolated and 

targeted sequencing of the guide RNA sequences was performed. 

 

High throughput Illumina sequencing of sgRNA libraries amplified from plasmid sequences was 

used to determine sgRNA abundance for populations at each time-point. The median raw 

sequencing depth across sequencing libraries was 33,951,761 reads corresponding to 282 

reads/sgRNA for a given library. sgRNA preprocessing, QC, quantification and computing gene 

knockout scores was performed similar to our previous publication1. Subsequent sgRNA 

abundance was assessed and compared between the two time points. Highly abundant sgRNAs 

were predicted to target tumor suppressor genes, whereas less abundant sgRNAs were predicted 

oncogenic. 

 

Identification of essential BL genes 
The effects of gene knockout were considered significant for a cell line if the probability of 

observing a larger difference in the mean sgRNA counts between early and late time points was 

<0.05 (after correcting for multiple comparisons) and the CRISPR gene score for that gene was 

>1 or <-1. For each gene in each cell line, a paired Mann-Whitney U test was used to determine 

whether the normalized sgRNA counts observed in early and late time points was significantly 

larger than would be expected from chance alone (α = 0.05). Early and late sgRNA counts of the 

same sgRNA from the same replicate population were considered as pairs. Normalized sgRNA 

counts were log-transformed (log2 [1 + sgRNA count]) prior to significance testing to minimize 

the effects of outliers. Additionally, p-values were corrected for multiple comparisons using the 



FDR method as implemented in the R statistical environment (p.adjust). A similar method was 

used to determine whether gene knockout resulted in a significant effect at the disease level. 

Genes were considered significant at the pan-Burkitt level if a significant effect was observed 

when replicates from multiple cell lines (BJAB, BL41, Jijoye) were considered as a single cell 

line and assessed for significance using paired Mann-Whitney U tests as above. A similar 

method was used to identify pan-DLBCL genes from DLBCL cell lines (HBL1, Ly3, SUDHL4). 

BL- and DLBCL-specific essential genes were identified by removing genes which had a 

significant effect in at least one cell line from each disease. 

 

ID3 Affinity Purification, Mass Spectrometry and Protein Identification 
ID3-FLAG was constructed by cloning ID3 into the HindIII and BamHI sites in pLFLAG-N1; 

FLAG-ID3 was constructed by cloning ID3 into the BglII and HindIII sites in pLFLAG-C1. 

Constructs were confirmed by Sanger sequencing. Subsequent constructs were packaged into 

retrovirus and transduced into cell lines. Overexpression of ID3-Flag in BJAB cells was 

confirmed by Western blot. Cells stably expressing FLAG-ID3 were lysed in 1% Triton X-100 

lysis buffer, then incubated with FLAG resin, rotating at 4 °C for 1 hour. An on-bead digest was 

performed using trypsin (Promega, Madison, WI) and the FASP Protein Digestion Kit (Protein 

Discovery) at 37 °C overnight (16 hours). Eluted peptides were cleaned up with a C18 spin 

column (Peirce, Waltham, MA) and 3 ethyl acetate washes. To perform LC-MS, a reverse phase 

nano-HPLC using a nanoAquity UPLC system (Waters Corp., Milfor, MA) and Orbitrap fusion 

lumos mass spectrometer was utilized to perform mass spectral analysis. The raw mass 

spectrometry data was searched with MaxQuant. 

 

Gene Editing by CRISPR 
Guide RNA sequences were chosen targeting the helix loop helix region of the ID3 and TCF4 

genes using the MIT CRISPR Design tool (http://crispr.mit.edu/) and designed for BbsI 

digestion. sgRNAs were annealed using T4 PNK, digested alongside pSpCas9 (BB)-2A-GFP 

(pX458) (Addgene, Plasmid #48138) using the BbsI, and ligated using T4 DNA ligase (NEB, 

Ipswich, MA). Constructs were transformed into ElectroMAX™ DH5α-E™ Cells 

(ThermoFisher Scientific, 11319019) and colonies confirmed for vector + insert by Sanger. 

Constructs were nucleofected into cell lines using the Amaxa Electroporator (Lonza, Basel, 

Switzerland). Cells were harvested and mixed with Nucleofector solution, 22% Supplement 1 

(Cell Line Nucleofector® Kit V) containing 1 µg of vector. Cells single cell sorted based on GFP 

positivity. Clones were expanded for 3 weeks, and subsequent deletions in the ID3 and TCF4 

genes were confirmed by Sanger sequencing. 

 

BrdU Staining and Flow Cytometry Analysis 
Approximately 5 x 105 cells were harvested and processed using reagents from the FITC BrdU 

Kit (Biolegend, San Diego, CA) according to the manufacturer’s guidelines. Briefly, cells were 

subject to BrdU incorporation for 6 hours. Cells were in Cytofix/Cytoperm and DNase treated 

for 30 minutes followed by stained with FITC-anti-BrdU and 7-AAD. Samples were analyzed 

using a Sony flow cytometer machine (Sony Biotechnologies, SH800) with proper compensation 

for dual color analysis. Flowjo software was used to analyze the final data. 

http://crispr.mit.edu/


Validation of novel translocation t(8,7) – MYC and ACTB 
Through clustering discordant reads (i.e. read pairs whose mates map on different 

chromosomes), we identified a novel translocation between MYC (chr8) and ACTB (chr7) 

(Figure S1A). We used density based spectral clustering3 to cluster the discordant reads using a 

Euclidean distance metric (max distance of 300 bases). The breakpoints were identified using 

chimeric reads in MYC and ACTB genes. We then validated the presence of this translocation 

using Sanger sequencing around the breakpoint region (Figure S1B). 
 

 

Supplementary Figure S1: Validation of translocation t(8,7) – MYC and ACTB 

(A) Scatter plot shows discordant reads that support the translocation, with breakpoints shown as 

a blue line. (B) Sanger sequencing plot shows ±25 base pairs around the breakpoint region 

(shown as a blue line). 



Distribution of somatic variants in driver genes 
Variant stem plots for the top mutated driver genes with a high proportion of non-coding variants 

are shown in Figure S2. These plots show an enrichment of non-coding variants in the driver 

genes and highlight the importance of studying whole genomes in Burkitt lymphoma. Variants 

are plotted across the genomic coordinates (x-axis) with their height showing the number of 

mutated Burkitt lymphoma samples4. The variants are colored based on their functional 

annotation (missense, truncating or non-coding). The colored bars along the x-axis show the 

promoter and the exons. 

 

 
Supplementary Figure S2: Distribution of somatic variants in driver genes 

Variant-stem plots for selected driver genes show the distribution of somatic variants across 

the genomic coordinates on the x-axis and sample counts for each of the variants on the y- 

axis. The colored bars on the x-axis show the promoter and the exons. The promoter regions 

are also labeled. Variants are colored based on their function. 



Mutational signatures analysis 
We have analyzed the somatic variants identified in the 101 Burkitt lymphoma samples to infer 

mutational signatures5 and to highlight processes that lead to tumorigenesis. We initially inferred 

somatic signatures in 6 groups (endemic, sporadic and HIV with their EBV status) and observed 

that sporadic and HIV cases shared the same signature profiles, and thus combined them to increase 

statistical power. We reanalyzed mutation signatures from the 4 groups (Endemic_EBV+, 

Endemic_EBV-, Sporadic/HIV_EBV+, Sporadic/HIV_EBV-) and identified 3 signatures which 

explained >99% of the variance (Figure S3A, B). These 3 inferred signatures (S1, S2 and S3) were 

correlated to the COSMIC database of known signatures5, and are associated with distinct 

mechanisms. S1 is associated with transcriptional strand bias for C>A mutations, S2 is associated 

with dysregulation of AID activity, and S3 is associated with transcriptional strand bias for C>T 

mutations. 

 

 

Supplementary 

Figure S3: 

Mutational 

signatures analysis 

(A) Mutational 

spectrum of the three 

mutational signatures 

computed from the 

somatic variants. (B) 

Barplots representing 

the contribution of 

the somatic 

mutations signatures. 

(C) Scatter plots 

presenting the 

residual sum of 

squares and the 

explained variance of 

NMF decomposition 

with different 

numbers of 

signatures. (D) 

Heatmap shows 

Pearson correlation 

between the three 

signatures and the 

annotated mutation 

signatures from 

COSMIC database. 



CRISPR screen analysis 
We performed an unbiased CRISPR screen targeting 19,050 genes to identify essential genes in 

three BL cell lines (BJAB, BL41, Jijoye). Gene knockout effects were consistent with biological 

expectation and results from previous CRISPR screens6,7. As shown in Figure S4A, sgRNAs 

targeting genes that had been previously demonstrated to be essential across multiple human cell 

types (shown in blue) resulted in significantly decreased cell fitness relative to randomly chosen 

sgRNAs (shown in gray). By contrast, non-targeting control sgRNAs (shown in red) showed a 

significant increase in cell fitness relative to randomly chosen sgRNAs. 

 

We identified 889 essential genes whose silencing resulted in significantly decreased 

proliferation in the BL cell lines (Figure S4B). Driver genes are highlighted in the plot. We then 

performed a gene set enrichment analysis8 on these 889 essential genes using Msigdb Hallmarks 

gene sets and identified MYC, E2F targets, cell cycle and DNA repair as the top results (Figure 

S4C). 
 

 

 

Supplementary Figure 

S4: Essential genes 

identified using CRISPR 

screens in BL. 

(A) Histogram of CRISPR 

scores shows that pan- 

essential genes have lower 

scores compared to 

negative controls. (B) 

Waterfall plot showing 

genes ranked by CRISPR 

score. Essential genes 

which are also BL drivers 

are highlighted. (C) Gene 

set enrichment performed 

on CRISPR hits using 

Msigdb Hallmarks gene 

sets are shown as a 

barplot. 



Confirmatory data of ID3 and TCF4 CRISPR engineered deletions 
We used CRISPR methods to introduce deletion events in ID3 and TCF4 in order to disrupt 

function. We successfully engineered 3 cell lines to have large deletions (ranging from 11 to 548 

base pairs) in ID3 (Figure S5A). Similarly, we engineered 2 cell lines to have large deletions 

(ranging from 217 to 261 base pairs) in TCF4 (Figure S5B). Western blot analysis confirms loss 

of protein in ID3 CRISPR engineered cells (Figure S5C). 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 
 
 
 
 
 
 
 

 
Supplementary Figure S5: Confirmation of CRISPR engineered deletions in ID3 and TCF4 in 

cell lines. Alignment of wild type and CRISPR engineered knock out in (A) ID3 and (B) TCF4. 



Comparison of driver genes in Burkitt lymphoma whole genome studies 
We compared our driver genes list with recent whole genome studies9,10 and we found an 

overlap of 21 out of the 23 significant genes from Grande et al. and 14 out of 18 significant 

genes from López et al. Our study did not identify as driver genes 2 genes (PCBP1, P2RY8) from 

Grande et al and 4 genes (PCBP1, E2F2, ADNP, HNRNDP) from López et al, while we 

identified an additional set of 51 mutated driver genes, including MYC, IGLL5 and BACH2. 

Figure S6 shows the comparison as a Venn diagram. 

 

Supplementary Figure S6: Driver gene comparison with previous studies. Venn diagram shows the 

overlap between the identified driver genes by the current article, Grande et al. and López et al. 
 

Identification of 11q gains/losses in BL samples 
We have identified one sporadic case to have 11q24.2-qter loss, but no copy number gains for 

11q23.2-q23.3. Additionally, we have identified an HIV-positive case to have 11q23.2-q23.3 

copy number gains, but no telomeric losses of 11q24.1-qter. 

 

 
Mutational distributions for Frozen vs. FFPE samples 
We have extensively compared the application of next generation sequencing in frozen and 

paraffin cases in our previous work with diffuse large B cell lymphoma1. Here, we compared the 

number of driver variants in FFPE vs. Frozen tumors to evaluate potential biases introduced by 

sequencing FFPE cases. In all, we had 65 FFPE cases and 36 frozen cases. The mean number of 

somatic and driver events in both groups were highly similar (P>0.4, Wilcoxon rank sum test). 
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Table S1: Sample annotations for the 101 Burkitts patients in our study. Mapping rate and PCR 

duplication rate are calculated after trimming and alignment. 

Table S2: Filtered somatic variants for the 101 Burkitt lymphoma samples. 

Table S3: Genomic clusters, of the 228,010 somatic variants, that contain at least 4 variants and 

3 unique samples. 

 

Table S4: Sanger validation for driver gene variants. 
 

Table S5: Gene-level genetic alterations for the 101 samples. 
 

Table S6: Gene-level mutational associations. 
 

Table S7: Differential gene expression associated with driver gene mutations. 
 

Table S8: Genesets associated with driver gene mutations. 
 

Table S9: Comparison of differential gene expression for Burkitts vs. DLBCL. 

Table S10: Comparison of differential genesets for Burkitts vs. DLBCL. 
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