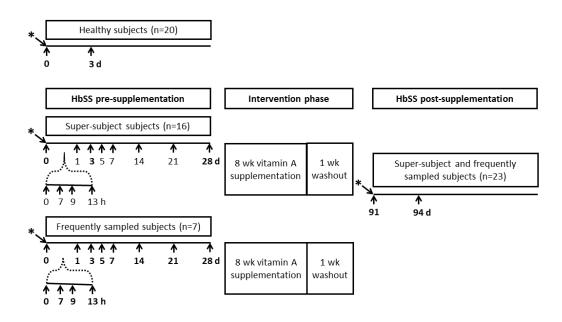
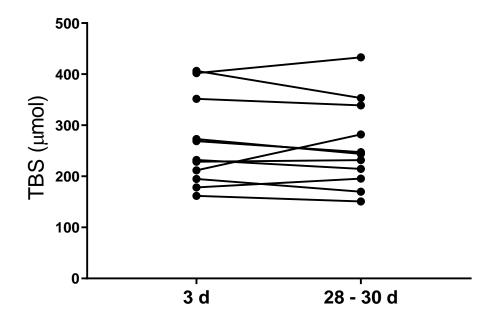
## **Supplemental Methods**

## Adjusting plasma retinol fraction of dose


To obtain the most representative central tendency for the group composite data on  $FD_p$  for modeling, we adjusted (normalized) each individual's values for FDp in samples collected later than 3 d postdosing based on their position relative to the geometric mean at 3 d. Specifically, for each subject, we calculated a 3 d ratio using the equation:

3 d ratio<sub>(i)</sub> = geometric mean  $FD_p$  at 3 d /  $FD_{p(i)}$  at 3 d


where *i* is the  $i^{th}$  subject. Then, we multiplied each subject's FD<sub>p</sub> at post-3 d times by the 3 d ratio using the equation:

Adjusted  $FD_{p(i)} = 3 d ratio_{(i)} \times post-3 d FD_{p(i)}$ 

The composite super-subject dataset was defined as the geometric mean  $FD_p$  at each time, including adjusted  $FD_p$  values at all sampling times after 3 d.



**Supplemental Figure 1** Study design and blood sampling schedule. Healthy subjects were sampled at baseline and 3 d after dosing; SCD-HbSS super-subject participants were sampled before supplementation at baseline and at 3 d after dosing and at one additional time; after the intervention phase, they were sampled at baseline and 3 d post-dose; frequently sampled subjects were sampled at all times indicated from 0 to 28 d post-dose. The asterisk (\*) represents the time that the oral [<sup>13</sup>C<sub>10</sub>]retinyl acetate dose was administered; times indicated in bold show when blood samples were collected from all subjects in the specified group. SCD-HbSS, sickle cell disease hemoglobin SS type.



**Supplemental Figure 2** Paired predictions for TBS calculated by RID at 3 d and at later times for a subgroup (n=11) of young people with SCD-HbSS before supplementation. Symbols show TBS predicted for individual subjects and lines indicate their paired predictions at the 2 times. Later times were 28 d for 8 subjects and 29 or 30 d for 2 others. Values were calculated using Equation 1 (see Methods) with group values for the equation's composite coefficient *FaS* calculated by modeling the super-subject dataset along with each subject's SA<sub>p</sub> at the corresponding time. Model-predicted values for *FaS* used in these calculations were 2.40 at 3 d (n=11), 0.622 at 28 d (n=9), 0.618 at 29 d (n=1), and 0.614 at 30 d (n=1). Based on paired comparisons, TBS predictions were not significantly different at 3 d versus the later times. The geometric mean TBS for this subgroup of SCD-HbSS subjects was 252 µmol (range, 162–406 µmol) at 3 d and 248 µmol (range, 151–433 µmol) at 28 d. RID, retinol isotope dilution; SA<sub>p</sub>, retinol specific activity in plasma; SCD-HbSS, sickle cell disease hemoglobin SS type; TBS, vitamin A total body stores.

## Supplemental WinSAAM Deck

```
A SAAM31
                    CHOP SCM ALL PRE-RX SS [08-APR-2023]
C 2EV DI; LOSS SPLIT 50/50; INPUT INTO DT(3)
c DECK FOR MSS FIG 1
C FD ADJU >3D VS TIME AS DISCUSSED IN MSS
C UPDATED [13C10]ROH ANALYSIS FROM 17-OCT-19
H PAR
CC TRACER
   IC(3) 1.0
   DT(3)
             2.627307E-01
   DN(3)
             8
   L(4,3) 0.75
   L(0,3) = 1 - L(4,3)
  L(5,4) 9.643918E-01
L(6,5) 4.675106E+00
L(5,6) 3.123267E-02
   L(10,6) 1.650246E-03
  L(7,5) 2.954719E+00
L(5,7) 2.439266E-01
C L(8, 5) = (DR/2)/M(5)
   L(8,5) 0.234
   DT(8) 0.052
DN(8) 8
   L(10,8) 1.0
CC PARALLEL TRACEE
   UF(13) = 1.73078
   DT(13)=DT(3)
   DN(13) 8
   L(14, 13) = L(4, 3)
   L(0, 13) = L(0, 3)
   L(15, 14) = L(5, 4)
   L(16, 15) = L(6, 5)
   L(15, 16) = L(5, 6)
   L(20, 16) = L(10, 6)
   L(17, 15) = L(7, 5)
   L(15, 17) = L(5, 7)
   L(18, 15) = L(8, 5)
   DT(18)=DT(8)
   DN(18) 8
   L(20, 18) = L(10, 8)
   IC(13)=0.454729
   IC(14)=1.34601
   IC(15) = 2.77
   IC(16)=393.823
   IC(17) = 33.5534
   IC(18) = 0.0337
H DAT
105
                                              FSD=0.05
             TIME (d)
                           FD
             0
                             0
             0.296629663 0.021174952
```

| Disease Deiv |                |             |           |
|--------------|----------------|-------------|-----------|
|              | 0.383482966    | 0.04395/318 |           |
|              | 0.529109414    | 0.06960207  |           |
|              | 1.042291763    | 0.070569    |           |
| 105          |                |             | FSD=0.025 |
| 100          | 2.998148553    | 0.014841528 | 100 0.020 |
| 105          | 2.990140333    | 0.014041520 |           |
| 105          |                |             | FSD=0.05  |
|              | 5.033566367    | 0.009483225 |           |
|              | 7.023935806    | 0.007910541 |           |
|              | 14.16594578    | 0 004449613 |           |
|              | 21.44515146    | 0.004122146 |           |
|              | 21.44515146    | 0.004123146 |           |
|              | 28.32947454    |             |           |
| CC COMPART   | MENT SIMULATIO | NS          |           |
| 104          |                |             |           |
|              | 0.0            |             |           |
| 0            |                |             | F 0       |
| 2            | 0.1            |             | 50        |
| 2            | 1.0            |             | 23        |
| 2            | 10             |             | 7         |
| 105          |                |             |           |
| 200          | 0.0            |             |           |
| 0            |                |             | 50        |
| 2            | 0.1            |             | 50        |
| 2            | 1.0            |             | 23        |
| 2            | 10             |             | 7         |
| 106          |                |             |           |
| 100          | 0 0            |             |           |
|              | 0.0            |             |           |
| 2            | 0.1            |             | 50        |
| 2            | 1.0            |             | 23        |
| 2            | 10             |             | 7         |
| 107          |                |             |           |
| 107          | 0 0            |             |           |
|              | 0.0            |             |           |
| 2            | 0.1            |             | 50        |
| 2            | 1.0            |             | 23        |
| 2            | 10             |             | 7         |
|              | IO             |             | 7         |
| 114          |                |             |           |
|              | 0.0            |             |           |
| 2            | 0.1            |             | 50        |
| 2            | 1.0            |             | 23        |
| 2            | 10             |             | 7         |
|              | Ŧθ             |             | 1         |
| 115          |                |             |           |
|              | 0.0            |             |           |
| 2            | 0.1            |             | 50        |
| 2            | 1.0            |             | 23        |
| 2            | 10             |             | 7         |
|              | 10             |             | /         |
| 116          |                |             |           |
|              | 0.0            |             |           |
| 2            | 0.1            |             | 50        |
| 2            | 1.0            |             | 23        |
| 2            | 10             |             | 7         |
|              | ΤŪ             |             | 1         |
| 117          |                |             |           |
|              | 0.0            |             |           |
| 2            | 0.1            |             | 50        |
| 2            | 1.0            |             | 23        |
| 2            | 10             |             | 7         |
|              |                |             | 1         |
| CC S FOR CO  | MP 6 + 7       |             |           |
| 125G(25)     |                |             |           |
|              |                |             |           |

XG(25) = (F(5) / F(15)) / ((F(6) + F(7)) / (F(16) + F(17)))1.0 2 0.5 18 2 2 1.0 18 7 10 CC Fa\*S 126G(26) XG(26) = (F(6) + F(7)) \* G(25)1.0 2 0.5 18 2 1.0 18 2 7 10