

Supplementary Figure 1. The distribution of Rgg1-SHP (**a**) and Rgg2-SHP (**b**) systems in different bacterial taxa. **c**) Physico-chemical signatures of LCPs (red) and of PptAB-exported streptococcal SHPs (green) and enterococcal PrgX-like (blue) mature quorum sensing peptides. The panel displays the coordinates of each peptide sequence in the

two first principal components of the space of 66 physiochemical amino-acid descriptors (the 10 Blosum indices, 3 Cruciani properties, 6 FASGAI vectors, 10 Kidera factors, 3 MS-WHIM scores, 8 protFP descriptors, 8 ST-scales, 5 T-scales, 8 VHSE-scales and 5 Z-scales implemented in the 'Peptides' R package). **d**) Clustered heatmap representing the enrichment of each amino-acid type within LCPs (red), SHPs (green) and PrgX (blue): non-polar (A,C,F,G,I,L,M,P,V,W,Y), aromatic (F,H,W,Y), aliphatic (A,I,L,V), small (A,B,C,D,G,N,P,S,T,V), tiny (A,C,G,S,T), polar (D,E,H,K,N,Q,R,S,T,Z), charged (B,D,E,H,K,R,Z), acidic (B,D,E,Z) and basic (H,K,R).

Supplementary Figure 2. Differential conservation of amino acids across regions of LCP clan receptors. Structure-guided multiple sequence alignment of receptors paired with LCPs. Each row depicts a receptor sequence, labeled according to their species origin and their cognate LCP. The structural domains and the LCP-contacting residues of RopB from *S. pyogenes* are mapped onto corresponding sites of the alignment. The conservation level of each site is displayed in the bottom of the alignment, and the most conserved amino acids at each site are highlighted in different shades of blue.

Supplementary Figure 3. Differential selective pressure across regions of RopB clan receptors. a, Site-wise dN/dS of each amino acid in the alignment in fig. S2 (the closer to 0, the higher the inferred purifying selection acting against amino acid substitution). Sites corresponding to LCP-contacting residues in RopB are highlighted in red. b, Structure of the LCP-binding pocket of RopB (PDB code: 6DQL). The boundary of the LCP-binding pocket is marked as dashed lines. The secondary structure (helices α 1-12) of RopB-CTD is labeled and the highly conserved helix α 6 is highlighted in red.

Supplementary Figure 4. Co-evolution receptor-LCP pairs. a, Mapping LCPcontacting residues and LCP sequences. Each line corresponds to a candidate receptor-LCP pair of a given species. The corresponding physiochemical cluster of the LCP is highlighted in color (as in panel b), and the LCP-contacting residues are displayed at the right. The LCP-contacting amino-acids are colored according to their conservation level in the multiple sequence alignment. The green boxes indicate outlier LCP-binding residues, whose cognate LCPs also deviate from the canonical LCP signature in the PCA of peptide chemical descriptors. The red box highlights identical LCP-contacting residues associated with distinct LCPs, which nonetheless harbor an identical region. **b**, PCA of LCP chemical signatures.

Supplementary Figure 5. Comparisons of pairwise evolutionary distances between entire receptors, LCP contacting residues, and predicted LCPs.

Supplementary Figure 6. a, Confocal microscopy images of the LCP_{ss}^* mutant strain either unsupplemented or supplemented with the indicated synthetic peptide. For each sample, bright-field, fluorescence-field, and merged images are shown. Magnified view

of the FITC–LCP_{ss}–supplemented growth. **b**, The *LCP_{ss}** mutant strain was grown to the late exponential phase ($A_{600} \sim 2.0$) and supplemented with either the indicated synthetic peptide or the carrier for the synthetic peptides (DMSO). Unmodified LCP_{ss} was added at a final concentration of 1 μ M, whereas varying concentrations FITC-LCP_{ss} were used. After 30 min of incubation at 37 °C, cells were washed three times with sterile PBS, suspended in PBS, and lysed. Fluorescence measurements were obtained with clarified cell lysates using excitation and emission wavelengths of 480 nm and 520 nm, respectively. The unsupplemented *LCP_{ss}** mutant strain was used as a reference, and changes in relative fluorescence units (RFU) relative to the reference are shown.

Supplementary Figure 7. Analysis of RopB_{ss} binding sites within the *ropB_{ss}-NRPS-BGC* intergenic region. **a**, the *ropB_{ss}*, *LCP_{ss}*, and *NRPS-BGC* genes are marked by block arrows. The bent arrow above the line indicates the putative transcription start site of LCP_{ss} (*PLCP_{ss}*). Numbers indicate the nucleotide positions relative to the first nucleotide of *NRPS-BGC* start codon. Promoter fragments (probes 1-3) tested for RopB_{ss} binding in

the electrophoretic mobility shift assay (EMSA) are shown as bars and the numbers at either side of each probe indicate the positions of 5' and 3' ends of the fragment relative to the first nucleotide of NRPS-BGC start codon. b, increasing concentrations of purified apo-RopB_{ss} and LCP_{ss}-bound RopB_{ss} (50, 100, 150, and 200 nM of RopB_{ss}) were incubated with the indicated probe and reaction mixtures were resolved on a 10% native-PAGE. Synthetic LCP_{ss} was added in the reaction mixture at a final concentration of 1 µM to generate LCP_{ss}-bound RopB_{ss}. The positions of free (F) and RopB_{ss}-bound (B) probes are marked. **c**, analysis of RopB_{ss} binding sites within the $ropB_{ss}$ -LCP_{ss} intergenic region. The nucleotide sequence within the $ropB_{ss}$ -LCP_{ss} intergenic region is shown and the promoter fragments (probes 1-3) tested for RopB_{ss} binding in the EMSA are boxed and shaded in different colors. d, increasing concentrations of purified apo-RopB_{ss} and LCP_{ss}bound RopB_{ss} (50, 100, 150, and 200 nM of RopB_{ss}) were incubated with the indicated probe and reaction mixtures were resolved on a 10% native-PAGE. e, the nucleotide sequence of RopB_{ss} binding site in *PLCP_{ss}* and the nucleotide sequence used in the FP studies is boxed. The inverted repeats within the RopB_{ss} binding site are marked by arrows above. f, comparison of RopB_{ss} and RopB-GAS binding sites. The 12-4-12 bp motif in RopB_{ss} binding site and 9-7-9 bp motif in RopB-GAS binding site are labeled. **g**, increasing concentrations of purified apo-RopB_{ss} and LCP_{ss}-bound RopB_{ss} (50, 100, 150, and 200 nM of RopB_{ss}) were incubated oligoduplex containing the identified RopB-binding site and reaction mixtures were resolved on a 10% native-PAGE. h, Analyses of the binding between the FITC-labeled oligoduplex containing the putative RopB_{ss}-binding site and apo-RopB_{ss}, LCP_{ss}-bound, or SCRA-bound RopB_{ss}, as assessed by FP assay.

Strain or Plasmid	ain or Description	
Strains		
WT Streptococcus salivarius	<i>Streptococcus salivarius</i> strain DS85_40B	https://www.ncbi.nlm .nih.gov/Traces/wgs/ JAIQWT01?display= contigs
LCP _{ss} *	<i>S. salivarius</i> mutant strain that has the start codon of <i>LCP</i> _{ss} changed to stop codon in WT SAL	This study
LCP _{ss} *::LCP _{ss}	<i>S. salivarius</i> strain in which the stop codon introduced in the LCP_{ss}^* mutant strain was reversed to start codon	This study
$\Delta rop B_{ss}$	S. salivarius mutant strain that has the ropB _{ss} coding region inactivated by marker less deletion in WT SAL	This study
$\Delta ropB_{ss}$::rop B_{ss}	S. salivarius strain in which the $ropB_{ss}$ coding region was reintroduced in the $\Delta ropB_{ss}$ mutant strain	This study
Enterococcus malodoratus	<i>Enterococcus malodoratus</i> DSM strain number DSM 20681	https://www.dsmz.de /collection/catalogue /details/culture/DSM- 20681
Streptococcus porcinus	<i>Streptococcus porcinus</i> DSM strain number DSM 20725	https://www.dsmz.de /collection/catalogue /details/culture/DSM- 20725
Limosilactobacillus reuteri	<i>Limosilactobacillus reuteri</i> DSM strain number DSM 32035	https://www.dsmz.de /collection/catalogue /details/culture/DSM- 32035
<i>Ε. coli</i> DH5α	Host strain for cloning purposes	
E. coli BL21(DE3)	Host strain for protein overexpression, <i>F</i> -, omp <i>T</i> , hsdSB(rB-mB-), gal (λ c I 857, ind1, Sam7, nin5, lacUV-T7 gene1), dcm(DE3)	
Plasmids		

Supplementary Table 1. Bacterial strains and plasmids used in this study

pJL	Low-copy number plasmid capable of replication in <i>Escherichia coli</i> , but a suicide vector in streptococcus. Chloramphenicol resistant. Used to generate isoallelic <i>S. salivarius</i> mutants	(5)
pET28a	Overexpression vector for N-terminally hexahistidine tagged recombinant proteins, KmR	Novagen
pET28a-ropB _{ss}	pET28a carries <i>ropB</i> _{ss} gene for overexpression of N-terminally hexahistidine tagged recombinant <i>ropB</i> _{ss}	This study

Supplementary table 2. Primers used in this study

Primer	Sequence 5' – 3'	Purpose
	GTATCGATAAGCTTGATATCGAATTCCTGC	5' primer for 5' region of
$\Delta ropB_{ss}$ A	AGCCCGGGGGGATCTCCCATAGCTTTATTA	ropBss to delete ropBss
	AACGAAAATTTCTTTAC	
	GGATGAAATTAATGCATAAATGAAGATGAT	3' primer for 5' region of
$\Delta ropB_{ss}$ B	CGATTGCTTGTCC	ropBss to delete ropBss
	GGACAAGCAATCGATCATCTTCATTTATGC	5' primer for 3' region of
$\Delta ropB_{ss}$ C	ATTAATTTCATCC	ropBss to delete ropBss
	GGGATTTTGGTCATGAGATTATCAAAAAG	3' primer for 3' region of
$\Delta ropB_{ss}$ D	GATCGATATGTCAGGAGCCTATATGCCAC	ropBss to delete ropBss
	TAG	
	CAATACATTAAGTGTGGAGGTAACTATTAG	5' primer of LCPss to
LCP _{ss} * A	TGGTTGATTTTACTATTTCTTTGA	change the LCPss start
		codon to stop codon
	ТСАААGAAATAGTAAAATCAACCACTAATA	3' primer of LCPss to
LCP _{ss} * B	GTTACCTCCACACTTAATGTATTG	change the LCPss start
		codon to stop codon
		5' primer for 5' region of
$\Delta oppAD_{ss}$ A	GTCAATTTACTTGGCAAAAGA	oppA to delete oppADss
		3' primer for 5' region of
$\Delta oppAD_{ss}$ B	TGTGTATAGA	oppA to delete oppADss
		5 2 minute for the state
		5 primer for spc along
ΔoppAD _{ss} C		with oppAss overlap
		sequence to delete
		oppADss
		3' primer for 5' region of
$\Delta oppAD_{ss} D$	CATCCGGATGACAAGCCA	oppDss to delete
		oppADss

ΔoppAD _{ss}	TCGCGAGCCGATAATATTACTTATAATTTT	5' primer for spc along
spcF	TTTAATCTGTTATTTAAATAG	with oppDss overlap
		sequence to delete
		oppADss
ΔoppAD _{ss}		3' primer for spc along
spcR		with oppDss overlap
		sequence to delete
		oppADss
S. porcinus		5' primer for S. porcinus
<i>speB_</i> qRT Fwd	TGCGTGAAATTTGGTGAACAG	<i>speB</i> qRT-PCR
S. porcinus		3' primer for S. porcinus
<i>speB_</i> qRT Rev	ATATGGACTACGGCCCATCTA	speB qRT-PCR
S. porcinus		5' primer for S. porcinus
<i>tufA</i> _qRT Fwd	GGACACGCGGACTATGTTAAA	reference gene <i>tufA</i> qRT-
		PCR
S. porcinus		3' primer for S. porcinus
<i>tufA</i> _qRT Rev	AGGATGTGCTCACGAGTTTG	reference gene tufA qRT-
		PCR
E. malodoratus		5' primer for <i>E.</i>
16S qRT Fwd	CATCCCTTGACGGTATCTAACC	malodoratus reference
		gene 16S rRNA qRT-
		PCR
E. malodoratus		3' primer for <i>E.</i>
16S qRT Rev		malodoratus reference
		gene 16S rRNA qRT-
		PCR
E. malodoratus		5' primer for <i>E.</i>
T7SS qRT Fwd	ACGATGTGTGGGTCTCTTTATC	malodoratus T7SS qRT-
		PCR

E. malodoratus		3' primer for <i>E</i> .
<i>T7SS</i> qRT Rev	TCAACGAATCGTGCAGATGTA	malodoratus T7SS qRT-
		PCR
E. malodoratus		5' primer for <i>E</i> .
<i>T7-eff</i> qRT Fwd	GIGACAAAGICICIGCCCAATA	malodoratus T7-eff qRT-
		PCR
E. malodoratus		3' primer for <i>E</i> .
<i>T7-eff</i> qRT Rev	GAGGATCAAACTTCGCAGGTAA	malodoratus T7-eff qRT-
		PCR
E. malodoratus		5' primer for <i>E.</i>
hypothetical	CTAGCAGCICITCCATTICITIC	malodoratus gene 1 rRNA
<i>gene 1</i> qRT Fwd		qRT-PCR
E. malodoratus		3' primer for <i>E</i> .
hypothetical	CATACAATTCACCTTCCCAATCC	malodoratus gene 1 rRNA
gene 1 qRT Rev	CATAGAATTGACCTTGCGAATCG	qRT-PCR
L. reuteri tufA		5' primer for <i>L. reuteri tufA</i>
gRT Fwd		gRT-PCR with the locus
	GAAGGIGACCCAGAACAAGAA	tag A4V07_02000
L. reuteri tufA		3' primer for <i>L</i> , <i>reuteri tufA</i>
aRT Rev		aRT-PCR with the locus
9	CATGAATGGCTTGTCAGTAGGA	tag A4V07_02000
l reuteri ABC		5' primer for L reuteri
transportor gono		ABC transporter gono 1
	CAAGTTGGTGTCGTCAGTGATA	apt pcp with the locus
		lag A4V07_07970
L. reuteri ABC		3 [°] primer for <i>L. reuteri</i>
transporter gene	CATAGAATTGACCTTGCGAATCG	ABC transporter gene 1
1 qRT Rev		qRT-PCR with the locus
		tag A4V07_07970