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Supplementary Figure 1 | Single cell multiplex spatial transcriptomics (s¢cMST) signal
processing and gene expression validation.

a, K-means clustering in the signal processing step of the scMST pipeline identifies dots (RNA
transcripts) with similar signal intensities, enabling unbiased inclusion of specific and exclusion of
unspecific signal from downstream analysis. Example image shows signal processing step for the
expression of the DIx5 gene where clusters 5- 8 are chosen to be included as true signal (red) and rest
of the clusters are excluded as background signal (blue). b, The table displays the number of sections
per embryo that were pooled for each stage included in the scMST analysis. ¢, RNA integrity is
preserved after nine rounds of re-hybridization, with 71% of transcripts remaining intact. Comparison
of raw transcript images and correlation plot for FoxD3 shown as a representative of the success of
RNA integrity maintenance during scMST rounds. d, Violin plots were generated to enable gene
expression comparison across multiple stages, shown as transcripts in volume, which are normalized
among genes and samples. Note that the data includes pooled cells from all germ layers within the

midbrain level tissue. e, Example of an imaging round in our scMST method (Hyb1, 7ss sample). The



figure displays five different RNA channels and one DAPI channel to demonstrate the absence of any

cross-talk or leakage between channels. Scale bar = 30 pm.
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Supplementary Figure 2 | scMST results shown as pooled heatmaps from parallel samples
together with pseudo-colored embryo images (7ss and 4ss)

a, scMST heatmap for end of neurulation stage (7ss, HH9, the endpoint of our study) highlights
transcriptionally distinct subpopulations using a color-coding scheme. a’, The same identified

subpopulations displayed in a UMAP. a”>, Two additional pseudo-colored embryos represent the



spatial location of cells representing each respective subpopulation of the pooled heatmap, replicating
the spatial pattern shown in figure 1d. b, scMST heatmap for late neural fold stage (4ss, HH7) shows
transcriptionally distinct committed populations that do not express pluripotency genes or markers of
the neighboring domains. The transcriptional profile of all the respective transitioning stem cell
populations suggests that the future fate is already dictated based on stronger expression of genes of
one domain, while the cells also still express genes of the neighboring domains together with
pluripotency genes, indicating an intermediate persistence of plasticity. The undecided group co-
express pluripotency genes and shares expression of neural and NC markers indicating the highest
level of stemness in the ectoderm. b’, The same identified subpopulations displayed in a UMAP. b”’,
Spatial back-mapping of cells in respective subgroups from the pooled heatmap into the original
tissue images from three different embryos demonstrates reproducibility of the spatial patterning of
the transcriptionally distinct subpopulations. Pseudo-colored cells show that while committed cell
groups do not overlap with each other’s domains, the transitioning stem cell groups overlap with other
domains at the borders, and the undecided stem cells predominantly span over neural and neural crest
domains. Source data for scMST are provided as a Source Data file. NNE=Non-Neural Ectoderm,

NF=Neural Fold, M=Mesoderm, Scale bar = 30 um
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Supplementary Figure 3 | scMST results shown as pooled heatmaps and the spatial distribution
of transcriptionally distinct subdomains from parallel samples (1ss and HHS)

a, The same identified subpopulations from the pooled heatmap in Fig. 1e displayed in a UMAP. a’,
Spatial distribution of cells in the subpopulations of the pooled heatmap in Fig le in two additional
embryos demonstrates reproducibility of the spatial pattern between embryos. b, scMST heatmap for
gastrula stage (HHS) shows ectodermal subpopulations mostly consist of undecided stem cell groups,
although some committed cells of future CNS, together with mesoderm and endoderm are detectable.
b> The same identified subpopulations from the pooled heatmap displayed in a UMAP. b”’,
Visualization of the subpopulations show spatial location of the committed subpopulations, while the
majority of the ectodermal cells are undecided stem cells that span the entire ectoderm. Note that the
notochord (N) is in the center of embryo 1, and on the side in embryos 2-3 to capture the very lateral

parts of the ectoderm. Source data for scMST are provided as a Source Data file. HH= Hamburger



Hamilton chicken stage, NNE=Non-Neural Ectoderm, NF=Neural Fold, M=Mesoderm,
END=Endoderm, N=Notochord (midline), Scale bar = 30 pm.
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Supplementary Figure 4 | Supporting scMST, bulkRNAseq and immunofluorescence data for
maintenance of pluripotency signature and existence of pan-ectodermal stem cells in the
developing ectoderm.

a, A second embryo showing pseudo-colored cells with a pluripotency signature spanning the whole
ectoderm until they are restricted to the dorsal neural tube at the end of neurulation recapitulates the
findings and spatial patterning shown in Fig 2a. b, The pan-ectodermal stem cells pseudo-colored in
the second embryo, which recapitulates the findings in Fig 2b. N=Notochord (midline). ¢, Table
showing the number of cells that belong to the respective groups (cells with pluripotency-signature,
and pan-ectodermal stem cells) represented in a and b (see also Fig. 2a-b) as well as the percentages
of overlapping cells. d, Table showing the number of cells that belong to both of the stem cell groups
from the heatmaps (transitioning and undecided from Fig. 1, Supplementary Fig. 2-3) and the pan-
ectodermal stem cell group (b and Fig. 2b). The number of overlapping cells between these groups is
presented together with the corresponding percentages. e, Numbers of differentially expressed genes
from stage to stage during neural crest development analyzed from the bulk RNAseq data that was
collected from the respective developing neural crest domains from each stage. The highest increase
in the number of upregulated genes is between stages HH7 and HHS. f, Volcano plot of the Wald test
always comparing two consecutive stages from the bulk RNAseq data set in d. Significantly
upregulated (red) and downregulated (blue) genes are colored (p-adj <0.05, LFC 0.75) and NC and
pluripotency markers are highlighted. g, Volcano plot of the Wald test comparing HHS to HH6.
Significantly upregulated (red) and downregulated (blue) genes are colored (p-adj <0.05, LFC 0.75)
and NC markers are highlighted. h, Immunostaining of Nanog protein (green) in the NC domain in
the dorsal neural tube together with the NC specification marker FoxD3 (red) at the end of neurulation
at the midbrain level (stage HH9) demonstrates that Nanog is translated into protein at the end of

neurulation in the neural crest stem cell niche domain. Scale bar = 30 um.
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Supplementary Figure 5 | Supporting scRNAseq data.
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a, Violin plots show RNA features, counts and mitochondrial ratio per each developmental stage.

Dashed red line indicates threshold for filtering cells to exclude the ones with >4000 features and

>0.4% mitochondrial content. b, Table representing cell counts in each replicate before and after

cleaning the data from ambient RNA and doublets (SoupX and DoubletFinder). ¢, Feature plots show

cells with high expression of known markers reflecting the three germ layers and notochord, as well

as the pluripotency genes Nanog, PouV/Oct4 and Klf4, which are mostly found in the ectoderm. d,

Heatmap showing top 15 differentially expressed genes in each cluster. e, Module score reflecting a

pluripotency signature demonstrates that the cells with the highest score are found in the ectoderm. f,

Bar Graphs highlight that ectoderm contains most of the cells that express pluripotency genes, as

demonstrated by using the pooled scRNaseq data from two replicates per stage (positive counts for

the three pluripotency genes individually in each cluster). g, Table showing the numbers of cells for

module scoring in Fig 3i. Note that the expression of genes of the neural crest score only emerge at

late neural fold stage. PE SC = Pan-ectodermal stem cells.
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Supplementary Figure 6 | Supporting bulk RNAseq analysis data on individual knockdowns of
pluripotency genes.

a, Separation of bulk RNAseq samples in Principal Component Analysis. Samples of each
knockdown cluster separately, whereas the control sides of all experiments cluster together. n = 4
biological replicates for each experimental samples and » = 9 biological replicates for control
samples, each sample consists of cranial neural plate border regions from HH7-8. b, List of
differentially expressed cellular functions contributing to cell cycle regulation, DNA repair, RTK-

signaling and protein processing in Fig 5c. c-e, Molecular Function Overrepresentation were obtained



by using PANTHER (GO biological process). Fold enrichments were obtained using statistical
overrepresentation test, and p-values were calculated using Fisher's Exact test and adjusted using the
Bejamini-Hochberg false discovery rate (FDR) method for multiple test correction. The plots
reflecting the differentially expressed genes of the respective knockdown of ¢, Nanog, d, PouV/Oct4

and e, KIf4. f, A schematic representation of alternative lengthening of telomeres pathway

(http://big.sci.am/software/tmm/) highlights how different components of the same pathway are
affected by the respective knockdowns of Nanog, PouV/Oct4 and KIf4.
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Supplementary Figure 7 | Individual morpholino-mediated knockdowns of the pluripotency
genes shows different impact on neural crest development.

a, Individual knockdowns of pluripotency genes affect Pax7 expression in the neural plate border.
Scale bar = 30 um. b, Integrated Density of Pax7 expression was measured for each side. The ratio
of the experimental morpholino side to its contralateral control morpholino side was calculated, based
on an average value of at least seven sections per embryo (n = 1). The obtained ratio was then
compared to that of control embryos injected with a control morpholino on both sides. To determine
the significance of the difference between experimental (Nanog MO, n = 6 embryos, KIf4 MO n =5
embryos, PouV MO n = 9 embryos) and control (CoMO n = 5 embryos) ratios, unpaired t-test was
applied (* =p <0.05, ** =p <0.01). ¢, A cartoon representation illustrating the regions where neural
tube thickness was measured (dorsal, middle, and posterior parts of the neural tube). Measurements
from these three sections were averaged per cross-section, following the same sample size (n) as in
b. The width of the experimental morpholino side was compared to the width of the contralateral
control morpholino side, and the resulting ratio was compared to the ratio from control embryos
injected with a control morpholino on both sides. Statistical significance was assessed using an
unpaired Student's t-test (* = p < 0.05). For b and c, see Supplemental Data 6 for exact p values.

Source data showing data points for b and ¢ are provided as a Source Data file.



